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1. Let Σ&n be a given infinite series with the sequence of partial sums

{sn}. Let {pn} be a sequence of real, non-negative constants, and let us write

Pn = Pθ + />! + ••• + />»•

The sequence-to-sequence transformation :

(i. i) tn = M. + M.-I + ••• + &*. (Pn ̂  0)
•LU

defines the sequence {tn} of Nδrlund means of the sequence {sn} generated by
the sequence of coefficients {pn}. The sequence {sn} is said to be summable
(N, pn) to the sum 5, if lim tn exists and equals s [1, p. 64].

?2->oo

In the special case in which pn is defined by

(1.2)

ίn reduces to the familiar Ήarmonic mean of order kJ In this case we say
that the sequence {sn} is summable (H, k) to the sum 5. The case k = 1 is due
to Riesz [ 6 ] and the general case is due to lyengar [ 2 ]. It should be noted
that lyengar writes (N, k) in place of (H, k). We do not use his notation to
avoid confusion with (N, pn) where pn = k.

The main interest of this method of summation lies in the following Tau-
berian theorem :

THEOREM 1 [ 2 ]. If sn (n — 0, 1, •) is a sequence summable (H, k) to 0,
and if

(1. 3) sn - 5n_! =Ξ an :g An'" (A > 0, 1 > μ > 0),

then sn -* 0.

Rajagopal [ 4 ] has given a simple proof of this theorem in the case k — 1
which has been adapted by Rangachari [ 5 ] to the general case.

lyengar [ 3 ], after proving the case k — 1 of Theorem 1, states without
proof the following extension which is interesting in view of the application
which he has made of it, to obtain a scale of convergence tests for Fourier
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series of which the simplest is a test due to Hardy and Littlewood [7, p. 35].

THEOREM 2. Let pn(n = 0, 1, •) be a strictly positive sequence such that
{pn+i/Pn} monotonically increases to the limit 1, and Pn—*°°. Suppose that
[sn] is summable (N, pn) to 0 and

(1. 4) sn - 5n-ι = αn ̂  -̂  (A > 0),

where N = N(n) is a positive integer defined by

(1. 5) PN rg μPn < PN+l, 0 < μ < 1.

Then sn — > 0.

In connection with this theorem Rangachari [5] remarks, "Unfortunately,
however, it does not seem possible to prove it like Theorem 1, and lyengar's
proof of it is not known since he died apparenly before he could fulfil his
promise to publish the proof •".

The object of this paper is to give a simple proof of Theorem 2.

2. We shall neeed the following lemmas for proving Theorem 2.

LEMMA 1 [1, p. 68]. If p(x) = ΣPnχU is convergent for \x\ < 1, and

(2. 1) A = 1, Pn > 0, - ^ - (n > 0),
Pn Pn-l

then

(2. 2) {p(x)}~1 = l-c,x- c,x* ---- ,

where

(2. 3) ( i ) cn^0(n>0); (ii) pn+l ^ pn (n ̂  0).

n^00* then

(2.4) Σ>» = 1-

We note that under the conditions of Theorem 2, ^n+1 -- > 1 and this im-
Pn

plies that p(x) is convergent for \χ\ < 1. Further, we assume, without any
loss of generality, that p0 = 1 in Theorem 2. Hence all the conditions of this
lemma are satisfied. Clearly

(2. 5) pn = dA-i + c2pn_2 + ...+Cnpt(n> 0).

LEMMA 2. If {pn} satisfies the conditions of Lemma 1, and if Pn — > oo?

then
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(2. 6)
dn = cn+1 + cn + z + = 1 - d - c2 - - cn ̂  -p- (n > 0)

PROOF. Using (2. 5) repeatedly we have

Pn — ClPn-l + C*Pn-2 + * * * + CnpQ,

Pn-l = ^lPn-2 + + Cn-^o,

Pi =

Adding we obtain

Pn + dlPn-l

which reduces to

Cι/>o

+ dn-lPl = (Cι + C2 + + Cn)p0,

(2. 7) pn + JA-I + + dnp, = p0 = 1.

Now using (2. 3) we have

(2. 8) l^dn^ dn+1 (n > 0); 1 ̂  A, ̂  ρn+1(w ̂  0).

Finally using (2. 7) and (2. 8) we prove (2. 6).

LEMMA 3. If {sn} is summable (N, />„) ίo 0, then

(2. 9) lim
•Ln +

= 0,

where {pn} and N = N(n) are defined as in Theorem 2 and m — m(n) = [λΛΓ],

PROOF: — Making use of the definition of tn and (2. 5) we write

Now inserting the expression for 5n_r(r = 0, 1, n), we have

where

/0 .
(z,. ιυ;

= / , An_rrrtr,
r=o

Pn-r + m - ClPn-r-1 + m ---- ~ Cn-rpm(r < Π\ pn(r = H)
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the second expression for An_ r in (2. 10) being derived from the first by (2. 5).
Clearly An_r ^ 0 (r ̂  n).
Now

n n-m n

(2. 11) Σ A -rPrίr = Σ + Σ = ΣI + Σ* - say.

Since tn —> 0, we have by (2. 10) and by Lemma 2,

Σ>

r=o

m-1

A: = 0

m-1

Λ:=0

m-1

^ o(Pn)

(2. 12)

Further, by the first expression for An_ r in (2. 10) and by (2. 3), (i), ( i i)
and (2. 6), we have

^ o(Pn)

(2. 13) ?

The lemma now follows from (2.11), (2.12) and (2.13).

3. Proof of Theorem 2. The proof follows the usual argument and it is
only for the sake of completeness that we give it here. We suppose that

(3. 1) lim inf sn = — h, h > 0.

Then there exists a sequence of positive integers n0 < nλ < < nk —> oo, such
that
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Let us assume, without any loss of generality, that A > ht / 2. Now choose

X = h, I (2 A) in Lemma 3. Then by (1. 4)

(3. 3) sn = snk -f ank+ι + -f an rg — hγ + al / 2, nk^n^nk + mk

where mk — m (nk).

Now

n n+m

(3. 4) £ A+m-Λ = Σ + Σ = Si + 5,, say.
r=0 r==o r=n+l

From Lemma 3,

(3. 5) 5, - 0 (Pn+m).

Choosing n = nk, we have by (3. 3)

(3.6) =--^-P»-ι

Now in view of (1. 5) and (2. 3) (ii), we can show that there exists a v > 0
such that

P — PΠΛΠ , > vPπ ι "> ILVP > ̂  P 1? ^> k•*- m—l -•• [ΛJV]—l :—- *'•*• Λ+1 *^ fA i/j. n -—: fj j. Ti+Tji j «v -̂̂  *>Ό

Hence

a /P <__ Jh^.J^fL ί L ̂  Z, \

which contradicts the assumption that the sequence {sw} is summable (N, />n)
to 0.

We can easily see that lim inf sn Φ — oo.
Hence lim inf sn = 0.

Similarly lim sup sn = 0.
This completes the proof of Theorem 2.
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