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Introduction. This paper is a continuation of the previous paper [4] in
which we have proved, among others, that the bundle space of a principal circle
bundle over a complex manifold, which has a connection satisfying certain
conditions, admits a normal almost contact structure (cf. Theorem 6 [4]). In this
paper we first consider the converse of the above theorem, and we shall call
such a bundle, for the sake of simplicity, a contact bundle over a complex
manifold (§1. Theorem 1).

In §2 we consider the period function of a regular closed vector field (Def.
3) and we prove Theorem 4 which says that the period function of a regular
closed analytic vector field X on a complex manifold M is the real part of a
holomorphic function on M if JX is also a closed vector field on M,J being
the complex structure tensor of M. Using this theorem we shall prove that if
the vector field & of a normal almost contact structure (¢,&,7) is a regular
closed vector field, the period function of £ is necessarily constant. From this
we shall see that there is no other example of normal almost contact structures
than the examples constructed in Theorem 6 [4], at least, when the vector field
& is a closed vector field.

In §3 we consider the family of contact bundles over a complex manifold
M, and we shall finally show that two contact bundles are isomorphic if and
only if there exists a diffeomorphism f, of M, onto itself such that fFQ = Q,
where () and ) are associated 2-forms on M, to each contact bundle, when
M, is simply connected (cf. Def. 1).

1. Contact bundles over complex manifolds. Let M(M,, S',7) be a
principal circle bundle over a (always C*-) differentiable manifold M,, S' being
the 1-dimensional torus and = being the projection of M onto M,. Let 3 = (¢,
£7) be a normal almost contact structure (cf. Def. 2[4]) on M. The Lie algebra
t of S* being identified with the real number field R, we shall now suppose
that % is a connection form on M and that & is a vertical fundamental vector
field A* corresponding to the unit vector A of r. As in [4] we shall denote by
B(M) the Lie algebra of vector fields on M.

In the sequel we shall often denote the differential of a differentiable map
f by the same letter f. We shall now prove the following theorem® which

1) Y.Hatakeyama obtained similar results in Tohoku Math. Journ., 15(1963), pp.176-181.
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may be considered as a converse to Theorem 6 [4].

THEOREM 1. Notations and assumptions being as above, we can find an
unique complex structure J on M, such that $X*) = (JX)* for X € BM,),
where X* denotes the lift of X with respect to the connection 7. Moreover,
the 2-form Q on M, such that dy=m*Q satisfies the following condition

QUJX, JY) = X,Y)
for XY € B(M,), ie. Q is a 2-form of type (1.1) with respect to J.

PROOF. Take a tangent vector X of M, at p, € M,. Define
(1. 1) JX = mp X3},

where p € M, =(p) = p,, and X* is the lift of X at p with respect to the
connection 7. By (1.1), J is well defined. In fact, take p' € M such that =(p)
= . Then p = R, - p for some element a € S', R, being the right translation
corresponding to a. Then X% = R, X#. It must be shown that mpX} = mpX}.
For this, it is sufficient to prove that ¢oR, = R,o¢. Since & generates a one
parameter group of right translations of M, it is now sufficient to prove that
the Lie derivative of ¢ with respect to & vanishes identically, i.e.

1.2 (&, Y] = ¢lE Y]

for all Y € B(M). However, (1.2) was proved as (2.13) in [4]. Hence by (1.1),
J is well defined. First, we prove that J? = —~ 1,1 being the identity map. In
fact, for X < T,(M), J'(X) = n$(JX)} = m((mdp X)) = md($X3) = — mX§ =
X, where we have used the fact that ¢X3 is horizontal in the third equality.
Hence J is an almost complex structure on M,. To prove that J is integrable,
we first remark that

(JX)* = $(X*)
for X € B(M,). Next we shall prove that
JIX, Y] =[JX, Y]+ [X,JY] + JJX,JY]
for X,Y € B(M,). For this purpose, X* being the lift of X with respect to 7,
we calculate the lift (J[X,Y])* of J[X,Y], using (2.3) [4], as follows:
JIX, Y])* = ¢[X, YT* = ([ X¥,Y*]) = ¢[X*, Y*]

= [pX*, Y*] + [X*,dY*] + ¢[pX*, $Y*] — {pX* - p(Y*)— pY *-9(X¥)}E

= [(JX)*, Y*] + [X*, (JY)*] + ¢l(JX)*, (JY)¥]

= q([((JX)*, Y*DE + [JX, YT* + o([X¥*, (JY)*DE+ [X, JY

+ ¢([JX, JYT¥)
= [JX,Y]* + [X, JY]* + (JIUX, JYD* + {5([(JX)*, Y*])
+ ([ X*, (JY)*D3&.
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It is now sufficient to prove that
[pX*, Y*]) + n([X¥, ¢Y*]) =0
for X,Y ¢ B(M,). By (2.7) [4] we see
n([pX*, Y*]) = ¢X* « (Y*) — Y* - n(9X*) + n([¢*X*, $Y*])
= ([ — X* + g(X*E, ¢Y*]) = — 5(IX*, $Y*]).
Hence we have proved that J is integrable.

Now it is well known that there exists (uniquely) a 2-form @ on M, such
that dyp = 7*Q. For this Q we calculate as follows:

QUX, JY) = QmpX*, mpY™) = (rQGX*, $Y%)
= dy$X*, $Y) = — - n([$X, $Y*) = — - X*, Y¥)
= dn(X, Y) = X, Y9) = X, ),

where we have used (2.7) [4] in the fifth equality. The uniqueness of J is clear
from ¢(X*) = (JX)*. Thus Theorem 1 is proved.

DEFINITION 1. Let M(M,, S',m) be a principal circle bundle, and 3 = (¢,
£ n) be a normal almost contact structure on M satisfying the conditions of
Theorem 1. For the sake of simplicity we shall call such a bundle M(M,, S',7)
with 3 a contact bundle over a complex manifold M, The 2-form Q on
M, in Theorem 1 will be called the associated 2-form to the contact bundle
(or associtead 2-form to 7).

THEOREM 2. Let M(M,, S',m) and MM, S',7) be contact bundles with
S, and 3. Let f be an isomorphism of 3 to S (cf. Def. 4[4)). Then there exists
a holomorphic homeomorphism f, of M, onto M, such that Tof = f,omr and
f¥Q = Q, where Q and Q denote the associated 2-form to the contact bundles

M and M respectively.

PROOF. Since f is an isomorphism of 3 to 3, f(§) = €. Hence f is a fibre
preserving map of M onto jf. Therefore f induces a diffeomorphism f, of M,
onto M, such that 7rof = fyom. To prove that f is holomorphic, it is sufficient

to prove that
ff oX = f WX

for all X € B(M,), J and J being the complex structures of M, and Mo
respectively. Now

-9 FoTX = frmpX* = TfpX* = mgfX*.
We shall next prove that
(1. 4) FX* = (fLX)F,
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In fact, 7(fX*) = (f*7)X* = 5(X*) = 0, whence fX* is horizontal. On the other
hand 7(fX*) = ferX* = f,X, which proves (1.4). Inserting (1.4) into (1.3), we
have

fodX = 7(f X)* = TfX.
Thus Theorem 2 is proved.

2. Period functions of regular closed vector fields.

DEFINITION 2. Let M be a differentiable manifold and let X be a vector
field on M such that X, %0 for any p € M. Then clearly X defines a 1-
dimensional (involutive) distribution on M i.e. X defines a 1-dimensional vector
subspace of the tangent space of M at each point of M. Let C, be the maximal
integral curve of this distribution through the point p. X is called regular if for
each point p, € M there exists a coordinates system {x,,x,, -+, 2,} on a

neighborhood U(p,) of p, such that

(i) (p) =0 i=12+-4n,

(i) C, N Up) = g < Up)la(a) = o) i = 2,3, -, )
for all point p € U(p).

DEFINITION 3. Let X be a regular vector field on M. We shall call X a
(regular) closed vector field on M, if for each p e M, C, is a closed curve.
When X is a closed vector field, @, = exptX denoting the l-parameter group
of transformations on M generated by X, we define a function Ay(p) on M as
follows:

Me(p) = inf{t]t > 0, @,(p) = p}.

We shall call Ae(p) the period function of X. We shall denote frequently
tp=(exp tX)- p for — oo <t < oo, p € M, whenever there is no confusion.
It is to be noted that Ax(p) > 0 for each p € M by the regularity of X.
For the period function AMp) = Ax(p) of a closed vector field X we have
the following lemma (cf. [1] p. 722).

LEMMA 1. The period function Np) is a differentiable function on M,
especially it is continuous.

THEOREM 3. Let ($,En) be a normal almost contact structure on M.
Suppose that & is a closed vector field such that its period function N(p) is a
constant. Then there exist a complex manifold M, and a C*-map = of M
onto M, such that M(M,,S',m) is a principal circle bundle over M,, 75 is a

connection form on M and & is a vertical vector field on M.

PROOF. Let M(p) = ¢, = const. Then the torus group S'= R/Z ¢, of real
numbers modulo ¢, operates on M by
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t, D)= pup) fort « R, p< M,

where @, = exp #£ is the 1-parameter group of transformations of M generated
by & Clearly the only element of S' having a fixed point in M is the identity.
Hence by a well known theorem [2] and the same argument in [1] p.725, M
has a S'-bundle structure. Let M, be the base space of this bundle. To prove
that # defines a connection form on M it is sufficient to prove that 7 is right
invariant. For this it suffices to see that the Lie derivative of 5 with respect to
& vanishes identically i.e. £- 9(X) — 5([§, X]) = 0 for X € B(M). However, this
is an immediate consequence of (2.7) [4] by putting Y = £ Hence the bundle
M(M,, S', w) satisfies the conditions of Theorem 1 and thus M, has a complex
structure, which proves Theorem 3.

Now we want to prove that if the vector field & of a normal almost contact
structure (¢, & n) on M is closed, the period function of & is necessarily constant
on M. For this purpose we shall prove the following theorem which may be
considered as an analogue of Lemma 1 for the complex case.

THEOREM 4. Let M be a complex manifold and X be an analytic vector
field on M, i.e. X generates a local 1-parameter group of holomorphic
transformations of M. Suppose that X and JX are both closed wvector fields,
J denoting the complex structure of M. Put f(p) = Mx(p) + &/ — 1 Mx(P).

Then f is a holomorphic function on M.

PROOF. Put X = X — &/ =1 JX. Then X is a holomorphic vector field on
M, ie. X can be expressed locally as follows:

£ =3 hiew)

8wi

for complex coordinates system {w,, -, w,}, where h; = hi(wy, -+, w,) is a
holomorphic function for i = 1,2,---,2#. Fix a point p, € M. Since X #0 on
M, by a well known theorem, we can find a complex coordinates system

{21, 2,} on a neighborhood U = U(p,) of p, such that

(i) zi(py) = 0 i=1,2,++m,

. ~_ O

(i1) X =% on U.

Let C denote the additive group of complex numbers. Then C operates
holomorphically on M by z-p=exptX-expsJX-p for c=¢t+a" —1s
and p € M. We note here that exptX and expsJX commutes since [X, JX]
=0. Put f(py) = 2°= 2" ++/ — 1 »°, 2° and »° being real and put

Zl(z * P) = g(z7 zl(l’)a R Zn(P))



ON NORMAL ALMOST CONTACT STRUCTURES 95

for |z — 2°| <& and p € U, & being sufficiently small. Since ¥ is a holomorphic
vector field, the function g(z,z,,+ -+, 2,) is holomorphic for |z — 2°| <§&, |z
< a for some a > 0. We want to solve the equation

9’(2, 0, 2P zn) = O

for z. For this, we show first that
o9 (.0
'a?(z :0"' '90)#:0

In fact,
]

g(z*+2,0+:0)— g(°0---0)

P4

ag 0 . et
5¢ (250,27 0) = lim

= lim 2@+ 2)- p) — 22" )

20 Z

= lim z](z . Po) - z1(Po)
2-0 P4

= lim 2,(t - po) — 2:(po)
t—>0 t

= Xoe) =( o @+ V=10 = (o @) = 1,

where we have put 2, =x, + ~/—1 3y, x; and y, being real. Using the
existence theorem of implicit functions, we can find a holomorphic function
Mzy,** % 2,) In 2] <a(@=2,---,n) such that

{h(O, e, 0) =2
g(h(zb M) zn)’ 07 Z9y zn) = 0.
Next we shall prove that there exists a neighborhood U, C U of p, such that

@ 1 J(0) = hzo(P), + + +» za(P))

for p € U,. For this purpose we shall prove the following lemma essentially
proved in [1].

LEMMA 2. Let X be a closed vector field on a differentiable manifold
M and Mp) = Nx(p) its period function. Let {x, --+,x,} be a system of
coordinates on a neighborhood U of p, such that

. 1)
(i) Xp=<W)p forpe.U
(ii) (o) =0 i=1,2,+%,m.
Put x.(t-p) = glt, z.(p),* + +, xu(P)). Suppose that m =3 and that there exists
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a continuous function h(x,,«++,Za ***, Tp, ** *Xn) for some B such that

(lil) h(o’ AR 0) = )\’(PO)
(IV) g(h(xb S ia; Y 553) R xm)sxh ceey La-1s 0’ La+1s

e, X1y O) Tp+1y *° % xm) = 0

for x| < a, a being sufficiently small positive number, where ~ denotes the
omission of the letter under the .

Then there exists a neighborhood U, of p, contained in U such that
A’(P) = h(xl(P>s MY fa(?% Y 55/3(?), DY xm(P))
for p € U, satisfying zxq(p) = 0.

PROOF. If this lemma were false, there would exist a sequence of points

{p}in, such that p, — p(v — o), x4(p,) = 0 and that

)'(PV) #* h(xl(Pu)a ct EEa(Pv)» tt fﬁ(Pv)’ ° "xm(Pv» > 0.
We can suppose that x,(p,) = 0 by virtue of (i). Now
xa(h(xl(Pv), ) -"?a(Pv), MY fgﬁ(Pv); MY xm(Pv))'Pv)
zg(h(xl(j)v)s ct Y ia(?u): tt Y fﬁ(?v)a MY xm(Pu)); ° "xl(Pv),
Y xa—l(Pu), 0> xa+l(Pv)$ DY xﬂ«l(Pv)’ 0> xﬁ+1(Pv),
<o Za(p) = 0.
Hence we can find an integer %k, > 1 such that
h(xl(Pv), tt Y i'\a(Pu), ) -%B(Pv), tt xm(Pu)) =k,- 7\'(Pu)
By the continuity of A
h(xl(Pv), ] EEa(Pv)’ ) fﬁ(?v)’ ct xm(Pv)) - h(O, ) O) = 7\’(PO)
(v — o0).

Hence k&, Mp,) = Mp,) (W — ). On the other hand, by virtue of Lemma 1,
Mp) is continuous, so Mp,) — Mp,) (v — o0). Therefore we have

Mpo) = lim &, - Mp) = lim 2Mp,) = 2Mpy),

which implies AM(p,) = 0. This contradiction completes the proof of Lemma 2.
Return now to the proof of Theorem 4. Let m:U — U be the map such
that

{zl(WP) =0
zi(mp) = z:(p) i=2)
for p € U. Put

91 (D), y:(p), z:(P); - -+, zu(P) = 2t - P)
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and put

h(z27 et zﬂ):hl(z2 PR zn) + '\/_ 1 hZ(zQ; RS zn);
h, and A, being real. We shall prove that

G1(hi(2o(D); + = =5 2a(P)), 0, 0, 25(p), < =+, 2u(p) = 0
for p € U’, where U’ is a neighborhood of p, contained in U. In fact,

91(i(=o(P), -+ =, 2a(P)), 0,0, 25(p), * + =, 2u(P))

= Re g(h,(za(p), * + +» 2a()), 0,0, 25(p), - * +, 2a(P))

= Re z,(n,(zo(p); * = = 2a(P)) - TP)

= Z1(hy(=a(P), = + -2u(P)) - TD)

=z2,(& =1 ho(2o(P), * + 5 2a(P)Pi(2o(D)s + 5 2a(D)) - ™)

= 2,(h(za(p), - * *, 24(P)) - TP)

= Re 2,(A(zs(p), =+ +, za(P)) - TP)

= Re g(h(za(p), * * +, za(P), 0, 2:(p), + + =, 2a(p)) = O,
where we have used the commutativity [X,JX] = 0 in the fifth equality. By
virtue of Lemma 2 there exists a neighborhood U; of p, contained in U’ such
that Mx(p) = hi(2:(P), * * +, 2a(p)) for p € U; satisfying y,(p) = 0. In the same
way, using Lemma 2 again, we can find a neighborhood U; of p, contained
in Uj such that

Mox (P) = ho(2a(P); * + +, za(P))

for p € Uy satisfying x,(p) = 0. From this it follows that

@1 () = h(zo(p), * * = za(P))

for p € U7 satisfying z,(p) = 0. On the other hand it is easy to see that f(p)
= f(z - p) for = with sufficiently small |z|. Hence we conclude that there exists
a neighborhood U, of p, contained in U;" such that (2.1) holds for p < U,.
Hence f is holomorphic in U, which completes the proof of Theorem 4.

In the rest of §2, M is assumed to be connected.

THEOREM 5. Let (¢, E,7) be a normal almost contact structure on M such
that & is a closed vector field on M. Then the period function N of & is a
constant on M.

PROOF. Put M =M x S !, S' being the 1-dimensional torus with the natural
(normal) almost contact structure. Then M has a complex structure J induced
by (¢, &, 7). Consider & as a vector field on M. Then £ is an analytic vector
field on M with respect to J, since (¢, & m) is normal. Let f(j';j = 7\5(;) +a4/—1
Me(p) be the function associated to & as in Theorem 4. It is clear that Ay (;) is
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constant, sO Ag (;) is also constant since f(]gj is holomorphic on A7. On the
other hand, since M(p) = M(p) for p=(p,2),t € S', p e M, M(p) is also

constant on M, which completes the proof.

COROLLARY 1. Let (¢, &,1) be a normal almost contact structure on M
such that & is a closed wvector field on M. Then M has a circle bundle
structure over a complex manifold M,.

In fact, since the period function of & is constant we can apply Theorem 3.

COROLLARY 2. Let (¢,&n) be a normal almost contact structure on a
compact manifold M such that & is a regular vector field on M. Then M has
a circle bundle structure as in Corollary 1.

In fact, every maximal integral curve of a regular vector field on M is a
closed set in M, so compact in M, which says that & is a closed vector field on
M. Hence we can apply Corollary 1.

In the case when & is a proper vector field, i.e. € generates a global 1-para-
meter group exp té(— oo <t <o) of transformations on M, we want to show
that & is a closed vector field if there exists one point p, € M such that the
maximal integral curve C,, through p, is a closed curve. For this purpose we
prepare the following two lemmas.

For a proper vector field X we define Ay(p) as in Def. 3, while Ax(p)
=oo if - p+# p for any £ > 0.

LEMMA 3. Let X be a regular, proper vector field on a differentiable
manifold M. Let M° be the set of all points p € M such that Ax(p) < oo.
Then M is open in M.

PROOF. Let p, € M°. Then there exists a system of coordinates {x,, x,, - -,
x,} on an open neighbourhood U of p, such that (i) (ii) of Def. 2 are satisfied.
Put Ax(p) = Np. We can assume that |x;| <A, on U and that X = % on U.

1

By the continuity of exp A, X we can find an open neighborhood V of p,
contained in U such that A,-V c U. We shall show that V ¢ M°. Take a
point p € V. Then AppcU. Now by the property (ii) there exists a real
number ¢ such that Ay p=1¢-p, |t] <A, Hence (A, — ¢)- p = p holds. Since
A — £ >0, it follows p € M°, which proves V ¢ M, q.ed.

LEMMA 4. Let X be a regular, proper vector field on M. Let p, € M
such that Nx(p,) = oo. Then for each positive number K there exists an open
neighborhood U of p, such that M(p) = K for any p € U.

PrROOF. Let {z,,x,,+--, x,} be a system of ccordinates on an open neigh-
bourhood U, of p, satisfying (i) (ii) of Def.2. We can assume that there exists a
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positive number K, < K such that |x,| < K, on U, and that X = 8% on U.

Put A = {¢- p,| % =t =K}. Since p, & A, there exist open sets W and U,
such that Ac W, p, e U ,c U, and W N U, = &. Now it is easy to find an
open neighbourhood U of p, contained in U, such that t- p € W for% ==

K and p € U. We shall show that M(p) > K for p € U. Take a point p € U
and ¢ such that 0 < ¢ =K. If té%—,then t- p= pholds by (ii). If tg% ,
then t-p e W,so ¢-p ¢ U,. Hence ¢+ p# p for 0 <t = K, which shows Mp)
=K, q.e.d.

THEOREM 6. Let (¢,& 1) be a normal almost contact structure on a
connected manifold M, such that & is a regular, proper vector field on M.
Suppose that N(p,) < oo for some p, € M, then M(p) < oo for amy p € M,
i.e. & is a closed vector field on M.

PROOF. Let M° be the set of points p for which A(p) << oo, then M° is
open in M by Lemma 3. Put A, = AM(ps), and M, = {p € M|M(p) = No}. Let
(¢°, £, 7°) be the restriction of (¢, £, 1) to the open submanifold M°. Since (¢°,
£,7°) is normal, we can apply Theorem 5. Hence An = A;|M° is constant on
each connected component of M°. From this it follows that M, is open in M.
Next we shall prove that M, is closed in .M. Take a sequence of points p, €
M, w=1,2,---) such that p, > qg € My — o). If A(q) = oo, then by Lemma
4 for K = 2)\,, we can find an open neighbourhood U of ¢ such that A(p) =
2, for p € U. Since p, € U for a sufficiently large vy, Ay = A(p,,) = 2\, implies
a contradiction. Hence A(q) < o0, so g € M°. Now, since Ao(p) is a continuous
function on M° by Lemma 1, A(q) = lim N(p,) = N,. Hence ¢ € M,, which
proves that M, is closed in M. Since M 1is connected, the non empty open,
closed set M, coincides with M, which proves Theorem 6.

3. Family of contact bundles over a complex manifold. We shall define
the product of two contact bundles (M,3) and (M,3) over a complex manifold
M,, (cf. Def. 1). First we recall the definition of the product (or called sometimes
sum) of the principal circle bundles M and M (cf. e.g. [3]). Let M = M(M,,S",
m) and M = M(M,, S, 7). A(M x M) denotes the set of all elements (p, 5) € M
x M such that =(p) = m(3). We say that two elements (p, p) and (q,7) of A(M
X M) are equivalent if there exists an element a € S' such that

pra=gq, prat=q.
We denote by M-M the quotient space of A(M x 7f) by this equivalence

relation. The projection from A(M X if) onto M, induces a projection from
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M - 3f onto M,, which we shall denote by & = o +7. The action of S! on
A(M x M) defined by (p,p)+a = (p-a, ), (p, ) € AM x M), a € S! preserves
the equivalence relation, hence it defines the action of S! on M-jf. The bundle
M - 3i(M,, S',7) is, by definition, the product of M and j7. It is known that
the family of circle bundles over M, form a multiplicative abelian group by this
multiplication, the unit element being the trivial circle bundle over M,.

Let now 3 = (¢,&,1) and S = ($, E,7). We define a linear differential form
n X 5 on M X if as follows:

7 X 7 = p*¥(n) + P*(7),
where p and p are the natural projection from M x M onto M and if respect-
ively. We denote also by 7 X 74 the restriction of 9 X 3 to A(M X M). Then
there exists an unique differential form % on M - M such that

pH7) =n %7,

where u is the natural projection of A(M x M) onto M- M. We can see that 7
defines a connection on M- 7f and the 2-forms Q, O and { associated to the
connections 7, 7 and 7 respectively satisfy
3. 1) G=0+0.

(For the proof, cf. [3] p.32). We denote 7 = 5-7.

We want now to define the product & = ¢-¢ of ¢ and ¢ as follows. As
usual we denote by T',(M) the tangent space of M at p. Then we see that the
tangent space T 4,5 (A(M X 3f)) can be identified with the subspace 1%, 5 (M
X M) of Tppn(M X 1f) defined by

Thn(Mx M) = {(X,X) € TppM x M)|7X = 7X].
LEMMA 5. Let (X,, X5 € Ton(AM x 77)) and
Xo X0) € Taop (AWM X 11)). Then, p(X,, Xs) = p(Xo, Xq) implies p((JrX)y,
(X)) = w(JmX)y, (JmX)¥), where YX(Y ¥ resp.) denotes the lift of Y (Y
resp.) at p(at P resp.) with respect to the connection n (7 resp.).

PROOF. Let ¢ be the projection of A(M X 3f) onto M,. For an element
a € S' we define the map Q, of A(M X jf) onto itself by

Qu(p, p) = (pa, pa™")

for (p,P) € A(M X 7f). Then clearly uoQ, = u, and ¢ = 7rou hold. Now by the
assumption

TuX,, X9) = Tu(Xe Xo)-
Hence

X, = 6(X,, X,) = 6(X,, Xa) ==X,
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Since u(p, p) = p(q,q), there exists an element a € S' such that ¢ = pa, ¢ =
p-a”!. Therefore we have

(Jr X = (JrX)ja = Ru(JmX,);
and
(JrX)F = Re(Jm X))}
Hence
w((JmXDF, (JrX)F) = p(RJmX,)5, Ra(ImX,)F)
= poQ((JrX,)7, (JW:Xp)?)
= u(JJrX,);, (JmX,)P), q.e.d.

By virtue of Lemma 5 we can define a tensor field & of type (1.1) on M-
M as follows:

(3. 2) $(u(X,X0) = p(JJrX,)F, (JmX)3)
for (X,, X5) € Toppn(AWM X M)).

Next we define a vector field £ on M-if as follows:
(3 3) gu(lhf?) = .u(ém Of)):
where 0; denotes the zero tangent vector of if at 5. We see easily that £ is
well defined by (3.3) and £ is a vertical vector field of M-jf such that

7(8) = L
Now we have the following proposition

PROPOSITION 1. 3 = ($,E.,%) is a normal almost contact structure on

PROOF. For X,, € T,(M,) and mp = p, we denote by X*.pp the lift of
X,, at u(p, p) with respect to the connection 7. Then it is easily seen that X*,q 5
= u(X%, 2(5‘—). Hence by the definition (3.2) of ¢ we have

FX*uom) = (X5, X)) = w(IX0)5, (JX,,”_%‘) = (VX)) w5

which shows that
XF) = (JX)*

for X € B(M,). By virtue of (3.1) we see that the associated 2-form {3 to 7 is
of type (1. 1) with respect to J. Now in the same way as the proof of Theorem

6[4] we can prove that ¥ is a normal almost contact structure of M-j1. We
shall not repeat the proof in detail.

DEFINITION 4. 3 in Proposition 1 will be called the product of 3 and 3
and denoted by 3 = =.3.
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DEFINITION 5. Let Ly(M,, S*, m,) be the trivial circle bundle over M,, i.e.
Ly= M, x S" and =, is the usual projection from L, onto M, We define the
normal almost contact structure %, = (¢, &, 7,) on L, as follows:

¢0(X7 Y) = (JX7 O) X € Tpn(M0)7 Y € Ta(Sl),
d

&=(03)

7= (0, dt)

where ¢ denotes the coordinates of S'.

.LEMMA 6. Let (M, %), (3,3) be contact bundles over the same complex
manifold M,. Let 3 = (,€n) and 3 = (P,E,9). Suppose that there is a
bundle isomorphism f of M onto M such that f*7 = 5. Then ~'¢f = ¢ holds,
i.e. % and 3 are isomorphic by f.

PROOF. Put ¢ = f~'¢f. First we note that f(X*)= X* for X ¢ B(M,),
since f is a bundle isomorphism such that f*% = . Then for X € BM,) we
have

#(X%) = KR =fFXF= fUXF = X = $(X).

On the other hand we have ¢'(¢) = ¢(&) = 0. Hence ¢'(X) = ¢ (X) for any X «
B(M), which proves the lemma.

LEMMA 7. Let (M,3), (M%), (Af,3) and (34, 2) be contact bundles
over the same complex manifold M,. If 3. ~73, and 5 =73, then 3-5 ~3,-3,.

PROOF. Let f(g resp.) be an isomorphism of 3 to %, (of 5 to 5, resp.).
Then the bundle isomorphisms f and g induce an bundle isomorphism A of
M- 7f onto M, -3, such that A*(y, - 7,) = 5.7, where 7, for example, is the
contact form of 3,1 e. 3 = (¢, & 7). Hence 3, - 3 =~ 3, - T, follows from Lemma 6.

LEMMA 8. Let (M,3), (M, %) and (M,,2;) be contact bundles over the
same complex manifold M, Then

(3. 4) (Z:3) 3= (335,).

In fact, there exists a bundle isomorphism of (M- M,)- M, onto M-(M, .
M,) preserving the contact forms, hence (3.4) follows from Lemma 6.
In the same way as above two lemmas we can prove easily the following

Lemma.

LEMMA 9. Let (L, 3,) be the trivial contact bundles over M, and (M,3)
be a contact bundle over M,. Then we have

E'EOEEO'E—%E.
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We now define the inverse 7' of 2 for a contact bundle (M,3). For this
purpose, we first recall the definition of M~'(M,, S', 7). The bundle space M™!
is the same as M. The action of an element @ of S' on M is p— p-a! for
pe M ie M is different from M only in the action of the structure group
S'. Now we define 37! = (¢, — & — ) for M if 5 = (¢,&9) for M. Then we
see that (M™!, 37!) is a contact bundle over M,. The following Lemma can be
proved in the same way as the preceding lemmas.

LEMMA 10. Notations being as in Lemma 9, we have
ST =3 =3,

PROPOSITION 2. Let (M,3) and (3M,S) be contact bundles over M,.
Suppose that the associated 2-forms to (M,3) and (M,S) both vanishes ident-
ically, and suppose that M, is simply connected. Then = = 5.

PROOF. Let 2 = (¢,&,7), S = (¢, £, 7). By the assumptions, the holonomy
groups of 7 and 7 are both reduced to the identity. Take and fix three points
p € M, p, € if and p, € M, such that =(p,) = p, = 7(p,), m(7 resp.) being the
projection of M(3f resp.) onto M,. Take a point p € M. We want to correspond
a point p in M to the point p. We choose a curve Y in M, joining =(p)
and p,. Take the horizontal lift ¥ of v on M whose initial point is p. Let ¢
denote the end point of 7. Then there exists an (unique) element a < S' such
that ¢ = p, - a. Now take the horizontal lift ¥ of ¥Y™' on M whose initial point
is P,-a, where Y~! denotes the inverse curve of Y. Then the end point $ of ¥
is independent on the choice of the curve 7, since the holonomy groups with
respect to » and 7 are both identity. We now denote 7 = f(p). Then we can
verify that f gives rise to an isomorphism from X to 5. Since the proof is
canonical, we shall omit the proof in detail.

COROLLARY. Let (M,3) be a contact bundle over M,, whose assciated
2-form vanishes. Suppose M, is simply connected. Then % =3,,.

THEOREM 7. Let (M,3), (M,S) be contact bundles over a simply connected
complex manifold M,, whose associated 2-forms are Q and () respectively.

Suppose Q = Q, then 3 =3.

PrROOF. Consider the product 3-37' on M-j1~"'. Then the associated 2-form
of S.37! vanishes identically by the formula (3.1). Hence by the corollary above,
we have

33t 3.
Then by Lemma 8,9 and 10 we have
S=3. 3 D=E-F)- T2, 55,

which proves Theorem 7.



104 A.MORIMOTO

We shall now prove the following theorem® which is the converse to
Theorem 2 when the base space is simply connected.

THEOREM 8. Let (M,3)((M,S) resp.) be a contact bundle over a complex
manifold M, (M, resp.) whose associated 2-form is Q (Q resp.). Suppose that
there eixsts a diffeomorphism fo of M, onto M, such that f& Q = Q. Suppose
also that M, is simply connected. Then we can find an isomorphism f of =

to 3 such that

(3. 5) mof = foom,

where w and T denotes the projection of M and M onto M, and M,
respectively.

PROOF. M’ = M(M,, S*,foem) with 3 on M defines clearly a contact bundle
over M, whose associated 2-form is f;*Q = Q. By virtue of Theorem 7 there
exists a bundle isomorphism f of M onto pf such that f is an isomorphism of
S to 5. (8.5) is now clear by the definition of M’ and Theorem 8 is proved.
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