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1. The purpose of the present note is to prove the central limit theorem
of trigonometric series. In [1] R.Salem and A. Zygmund have proved this
theorem for lacunary trigonometric series. From now on let us put

N N 1/2
11 Sv(t)= >_ ay cos 2mk(t + ;) and By = (—% > ai) .
k=1 K=1

In §8 2—5 we prove the following

THEOREM. Let Sy(t) be the N-th partial sum (1.1) of a trigonometric
series for which

1. 2 By 1+ oo, as N— + oo,
and let {n,} be a sequence of positive integers such that

1. 3) Mpr/me > q > 1.

We set

1. 4 R,(t) =S, () and R(t) = S.(t) — S..(t), Sor k>1,
and suppose that

1. 5) B:, — B, = o(B:), as k— +oo,
(1. 6) sup| Ry(#)|* = O(B3. — Bu.,), as k— +oo,

and, for some function g(t)

@1 i[5 T RO+ 2RORw0) — 60 |de =0,

e m=1

Then ¢(t) is bounded and non-negative and we have, for any set E C [0,1]
of positive measure and any real number o # 0,

LS
w/g(t) ?

@8 tm-Ltluier SN(t)/BNgw}‘=N72—?1T2—‘Ldtj:exp{_%2}du,

voo | E]

where ©/0 denotes + oo or — oo according as o >0 or o <O0.

1
(1.6) implies that g() is bounded and f g(®)dt =1. (1.7) and (1.8) show
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that the “interrelations” of R(t) and R,(¢) have no “influence” on the limit
distribution of SN(t) whenever |7—k|=2. However, we can construct an Sx(?)

such that llm B2 Z R, (t) R, () exists and does not vanish identically.

Especially, if SN(t) is lacunary, then we can take a sequence {n,}, satisfying
(1. 3), such that R,,_,(#) = 0 and R,.(¢) contains only one term for 2> k,. In
this case under the conditions (1.2) and (1.5), (1.6) and (1.7) always hold for
g(t) = 1. Therefore {Sx(¢)} obeys the ordinary central limit theorem.

Salem and Zygmund have also proved that if Sy(¢) is lacunary, then (1.2)
and (1.5) are necessary for (1.8) (c.f.[1]).

Let F(w) be the distribution function on the right hand side of (1.8), then
we have, for any real number A

f_: e™dF(w) = ‘ |E! f exp{ — %g(t)} dt.

Flo) is called “pseudo Gaussian” owing to the form of its characteristic
function. F{w) is continuous except zero and is discontinuous at zero if and
only if the set {¢;¢ € E, g(¢) = 0} is a set of positive measure.

In the same way we can prove the central limit theorem for the remainder
terms of the Fourier series of a square integrable function (c.f.§ 6).

In §§8 2—5 we prove that for any fixed real A, we have

1.9 lim ——+ E] fexp{ SA(t)ldt = ﬁ Lexpi—— Z\'2ig(t)} dt

N—>oo
which is equivalent to (1. 8).

2. Hereafter let us assume that the conditions of the theorem are
satisfied. From (1. 3) there exists a positive integer » such that

@21 A —qg)>6.
Using this r, let us put

i
2. 2 A= 2 R@®O=S,0—-S @),
k=(l—-1) r+1 a-nr
2. 3) D; = B;[T B%(L iy
2. 4 4, = SlllplAz(t)l:
and
N
(2. 5) Cy= Z D=

l=1

Then by the conditions of the theorem, we have
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(2. 6) Cyl + o0 and Dy = o(Cy), as N— + oo,
r r \1/2
@7 A=Y s RO =" { S supl Ry
k=(l-1)r+1 ¢ kE=(—1)r+1 t
= O(D)), as [ — 4 oo,
and, for any n such that nuw_yy, <n = ny,
1 N
@. 8) [[8:0 - a0 » " dt < Db = o(CY), as N— + oo.
0 1=1
LEMMA 1. We have
1 1 N
lim [+ 3 {A%(t) + 2A(t)A,+1(t)}— g(t)'dt — 0.
~*=Jo N =1
PROOF. We have
r
Al) = 2 {Ri(®) + 2R(t)Rei(t)} —2R, ()R, , () + X,(2),
K=(l-1)r+1
and
Az(t)Azﬂ(t) = Rzr(t)Rzrﬂ(t) + Yl(t)$
where
r k-2
2.9 Xt)y=22 Re(@) 2 R(®),
k=(l-1)r+3 J=(-1)r+1
(+0r r
(2.9) Yi(t) = {Z ROLE R | = RlOR o)
k=lr+1 J=(-1)r+1
By (1.6) we have
r 2
(2.10) 1 X.(2)] = (Z le(t)l) = O(Dy), as [ — + oo,
\k=(l-1)r+1
and
(2.10) 1Y, (®)| = O(DD.;,), as [ — + oo.

Let w, (or w}) denotes the maximum (or minimum) frequency of a trigometric
polynomial X(¢), then we have, by (1.4) and (2.9),
W= Ny + N < 270,

and

3 -1
w; = Min {n(k_l) +1— n(k..g)}; n(l—l)7‘+2(1 —q').
(I-1)r+ 3skslr

From (2.1), we can see that
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Wi [, > ¢ (1 — g2 > 3.
This shows that X,(¢) and Xi(¢) are orthogonal if |k — | =2, and we have

f 1% X2) }Zdt =2 U {z( le<t)}2 dt + [1 {z( X21+1(t)}2 dt]

=23 fol Xi(t) dt.

=1

By (2.10) and (2.6), we have

\

(2.11) f {% X,(t)}zdt =0 (§; D‘}): o(CY), as N— 4 oo.

=1 =1

In the same way Y(¢) and Y(¢) are orthogonal if |/ — k] =2 and we have,
by (2.10") and (2.6),

(2.11%) f 1 {NZ Yl(t)th =2 ZY f 1 Yit)dt = O (%j D: D2l+1)

i=1 1=1 i=1

N+1
=0 (Z D;‘)zo(C‘}v), as N — + oo,

l=1
On the other hand we have

Nr

‘_4: {AN2) + 20, (0)A ()} = X (RAE) + 2R(&) R ()} + 2 {Xu(®) + 2Y,(#)}.

k=1 =1
Hence by (1.7), (2.11) and (2.11’), we can prove the lemma.

3. From (2.6) and (2.7) there exists a sequence of integers {¢(N)} such
that

3.1 d(1)>1, pN)T + o and S(N) l\l/glvx A, = o(Cy), as N —co,

k
Putting M, = >_ ¢(/), we can choose a sequence of integers {N,} satisfying the

=1

following conditions;

N, =1, and for k=1
(3. 2)

My—l

3\&—1 = <¢(k))—l z Dlz and M2k,—1 < Nk = Mzk-

U=My: s

Since N, <M,,_, < N, < M, < Ni,1, we have
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Nin—1

(33 S DMA=S B@ S Dit Dii=olCh),  asm—+ oo,

k=1 l=Nea
If we put
Ny—2
3. 4) T(t) = Z Al(t),

l=Ng1

then we have, by (3. 3)
1, m Ny | m

(3. 5) f ST -3 Al(t)‘gdt =S D, + Dk, = o(C%,), as m—+oo.
0 k=1 =1 k=1

and, by (3.1) and (3.2)

Np—-1

3. 6) Tl =3 1A0)] = Ne — Ne-)Max 4,

=Ny

=My — Mzk—a)M}%XAt = 3¢(2k)Max 4, = 3¢(Nk)M§XAz = o(Cy,)®, as k—oo.
=N I=Ng =Nk
From (2.8), (38.5) and (3.6) we have, for any z satisfying 7w, , < n< #.x,,

/

S() — 2= TW(e) |3dt = o(C%,.), as m— + oo.

k=1

and
B: = C% (1 + o(1)), as m— + oo,

Hence for the proof of the theorem it is sufficient to show that for any fixed
real number A, we have (c.f.(1.9))
in

3.7 }'}—12 ]7}:—1 fEexp{CN i Tk(t)} dt = I—l}:—I Lexp {:%2 g(t)}dt.

m k=1

LEMMA 2. We have

1
lim f
m—>co 0

REMARK. From this lemma it is seen that g(¢) = 0.

dt = 0.

G L THO — g

PROOF. We have

Np—2

(3. 8) We) =2 {ANR) + 28(0)A14,(8)} — 285 oADAN-i(E) + Z(2),

l=Ng,

*) Ne=Migr = 2k — Do1) > 2k — 1),
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where
N—2 -2

3. 8) Zdt)y=2 3. A A®).
1Ny +2 J=Np,

If w (or w:) denotes the maximum (or minimum) frequency of terms of Z.(2),
then Uy < 2n,.(N,C_2) and u;; Z Min{n(l_,)r +1— Ni-2yr 5 Nlc—l -+ 2 é l é Nk — 2}
Hence we have, by (2.1)

Ui = Ayl — q " > (A — q_r) > 3.
Uy, 20 w,—2) 2

3. 9)

This implies that {Z,(#)} is orthogonal and we have, by (3.8

f{f: Zk(t)r it =3 [ zoa =45, { S AG Y Aj(t)}z dt

k=1 k=1 JO k=190 \l=Ni—+2 =Nyt

In the same Way{ Al(t)i Aj(t)} and {As(t)’i2 A,-(t)} is orthogonal if

J=Nga J=Ngy
|7 — s| = 2. Therefore we have

fo 1 {ki Zk(t)} dt<8i %52 1A%(t){l—z2 A,(t)}z dt

k=1 =N +2 Jo J=Ngq

By (3.6), we obtain

j{i zk<t>} =83 sup {Ji }mml }NZ INOY

k=1 J=Ni—q =Ny +2 Yo
m Np—2
=3 0C%) > Di=o(C%,), as m —+ oo,
k=1 =N 1+2

On the other hand we have, by (3. 8)

i TXt) = % {A%(t) + 2A,(2) Am(t)}+ i Z () — AL ()
— 2Ay, (O)Aw, () — i [Ax, 2 () + 2A8,1(2) {Ax—s(&) + Ax(®)}].

From (8.3) it is seen that

f

m

=3 Dy, +2 Z { f AL dt}w 1 [ | Amea(®) + Am(t)Pdt}m

k=1

m

Z b () + 28w a(E) [Awlt) + Am(t)}} ,dt

k=
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m m 1/2 m 1/2
= Dh 2 {z D } {z (Diros + D)
k=1 k=1 k=1 )
= 0o(C%,), as m — + oo,

and

1
f {Afvm(t) + 2| Ax, (H)Ax, ()] } dt = D}, + 2Dy, Dy_,, = o(C%,), as m— + oo,
0

Therefore we obtain

|

By the above relation and Lemma 1, we can prove this lemma.

4. LEMMA 3. We have, for any real number \,

1

S THE) - {i (A30) + 2800 1(0) } dr=oCh) as moten,

1

N iNT(2)
[T+ 23]

m

i = €YK

b

where K is a constant.

PROOF. By (2.7), we have

Ne—=2
> {A%’(t) + 2Al(t)A,+1(t)}— 28y, —o(£)Aw,—i(t)
=Ny,
Ne—-1 Ny—1
=33 A®M=K> D for some constant K.
=Ny, I=Nka

Hence we have, by (3.8)

/ Ni—-1
m - 2 m K7\12 Z. D;2 + Kzzk(t) )
(4. 1) II {1 + 1—)\'(?@—} é H 1+ =N
k=1 N k=1 Cif
If we put
{ Mi—1
=~ K)\? D} + NZ, (¢
4. 2) IO+ ,zZN ‘ ) =1+ ¥,0),
: k=1 t C%vm

then ¥,(¢) is a sum of terms in the following form;

8
(constant) X 1T cos 27r’umj(t + ﬂmj),

Jj=1

1=m<my,<<-.--<my=m and u;njévmjéumj,
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where u; (or u;) denotes the maximum (or minimum) frequency of terms of
Z(t). Further we have

s—-1

4. 3) II cos 2mv,, (¢ + Bn) = 23 o 7 cos 27 (Ut + Bu) + z 80m(t + B}

J=1

where §; denotes + 1 or — 1 and ) denotes the summation over all combina-

tions of (8,_;, 8;—s,* + +,8;). From (3.9) it is seen that

s—1 s—-1

U, + 22 80 = U, — 2 Vm = U, — D Un,
Jj=1

J=1 j=1

my—1 me—1
Zitn, =2 = “;"-(1 -2 3j""')_z % U, > 0.

j=1 J=1

Since vm’s are integers, (4. 3) and the above relation imply

H cosZwvm(t+,3 )dt—‘O

0 Jj=1

1
and this implies f V,.(¢) dt = 0. Therefore we obtain, from (4. 1) and (4. 2)

Np-1
. VKZ D}
1 m . T (t) m ~
(1 A20 iy
-[ k=1 CNm ) k=1 C2

2K m  Ne-1 , »
= exp > 2> Dit=é"s

u k=1 1=Ni,
LEMMA 4. We have, for any measurable set E and any real number N

lim [lI {1 + ””T"(t)}dt_ \E|.

M= VE k=1

PROOF. Let f(t) (or h,(t)) be the real (or imaginary) parts of
ﬁ {1 L T) }
k=1
Further let e(z) denotes the indicator of the set E, that is, e(t) =11if ¢ € E
and e(t) =0 if ¢ & E and let us put

Fm®) ~ Com + 2 Ciym €08 2Rt + Vi m),

k=1
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hu(t) ~ dom + > di,mcos 2mk(t + &, ),
k=1

and

e(t) ~ e, + X e cos 2mk(t + &,).

k=1

Since f,(2), hn(t) and e(z) belong to L,(0,1), we have by Parseval’s relation

Ek N

f ﬁ (1 + lth(t) }dt = ey(Co,m + idom)

+ % Z ev{cr,mCos 2mk(Yy m — &) + idy mcOs 2mR(8k, m — Er)}-

k=1

Hence we have

4 4 [ {1+ 2IL) }dt—eo<c0m tidy)| 3 lenl (eunl + 1dinll.

E k=1 CNm k=1

On the other hand it is easily seen that

lI {1 4 zhgk(t) } — 14 zhgl(t) Z i)\,gk(t) l-f {1 ZXCT,(t) }
Nom Nu  je1 N

N

k=1

If z.(or z;) denotes the maximum (or minimum) frequency of terms of T(z),
then we have 2y = nxw,-» and 2y = nyw,,-1) + 1. Hence we have, by (1.3) and

2.1),

4. 5) 2ra/2 > g7 > 6.

If 2 <v, <z, then we have, for any (m,, m,, - -,m;) such that 1=m , <<m,
Leoo ol < b,

and

Therefore the frequencies of terms of

T.(0) H {1 + ’7"(/?;’("‘) }

m

z,;,% sz and by (4.5) these intervals are disjoint.

lie in the interval [%
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This implies that
Y HORT) {1 L T|e) }

Cr. 4 Cy,
62;/5
=>"  {camcos 2mn(t + Yy m) + idy mcos 2mrn(t + 8, m)},
n=4z’ /5
and
(4. 6) com=1and dy,n =0 for all m.
Let us put

S ars

I=Nxq »

where D denotes the summation over all p such that ng_;y,_; < p = n,,, that is,
p

the double summation runs over all p such that a,cos27p(t + a,), a term of

Sx(t), belongs to T(¢). Then we have

k-1 62, /5
an BT REEF e+l
m j=1 Ny n=4z;’/5

For each m let us define p(m) as follows

x *)
4. 9) plm) = MaxIsz/S; L= C}éi}.

l=1
k
Since Cy, — + © as m — oo, Max{k; > L gC}éﬁ} increases to + oo,

l=1

asm — + oo, Therefore we have

4.9 plm)— + oo, as m— +oo,
By (4.4), (4.6) and the fact that ¢, = | E|, we have

(I {1+ 2T }d ~ 1BV = lecl {cum] + Ienl]

E

k=1

p(m 1/2 1/2 1/2
g o+ a4 5o (g )+ (5

k>p(m) k>p(m) k>p(m)

By Lemma 3 the last term of the above formula is less than

1 m m m 1
*) Since L2~ f T2 (@) a, (Z Lk>2 =S L=y f TiOdE= 1 C3 for m>me.
k=1 k=1 k=1 0

0

Therefore we can always define p(m) for m > m,.
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1/2
«/T{Z ei} e = (1), as m — +oo,

k>p(m)

k
By (4.8) we have, for k(m) = Max {k;z ngcgi},
=1

p(m) k(m) k-1
> {Iclc,ml + |dk,ml}§z %H(l-kizli):o(l), as m— oo,
kel k=l Nm  jml N

LEMMA 5. For any f(t) € Ly0,1), we have
{1+ AED k(t)}] ft)dt = f o

PROOF. If f(¢) is a simple function, that is, f(¢#) assumes only finite number
of values, then the lemma follows from Lemma 4. If f(z) € L,0,1), we can
take a simple function fJ(z) such that

1

lim [ ﬁ

m—e Jo k=1

1 1/2
{ f Lf(2) — f. s(t)lzdt} <§, for any given & > 0.
0

By Lemma 3, we have

fol [ﬁ {1 + lthk(t) U { () — f2)} dtl

i

i1 {1 + ﬁgﬂraﬂ { [ e - fg(t)lzdt}m = g,
Therefore we have

[[ﬁ {1 + 17\g’k(t) Hf(t) ff(t) dt‘

k=1

1

1

= f LI"_LI {1 lWT'“(t) }er(t)_ f S8 dt‘+e“K/28+ f Lf8) — f(2)| dt
=&+ % + &, for m > m.

5. LEMMA 6. We have, for any fixed real A,

1};12 Z] fexp{ Co Z Tk(t)} dt = %rj;e}‘p{ T g(t)}

m =1

PROOF. Let us put

E, = {t;0§t<1 ,CL’ Z Tut)— g(t),<1}.

Nn g=1
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Then Lemma 2 implies that |ES|— 0, as m —c0.¥> Hence we have

5. 1) f exp { C Z Tk(t)} dt = o(1), as m—co,
ENES, Vi k=1
By (3.6) we have for k =m
s?plTk(t)l = o(Cy,), for k=m, as m — oo,

By (2.7) and (2.6) it follows that for some constant K

N+1 N+1

CN Z (A0 + 28(DAL,(D)} = i Z Al = 2122 Z Di(y) = K.

l=1

and by Lemma 1 this implies |g(#)| = K. Therefore if ¢ € E,, we have

z | Tu(®)|* = KMax

Nm =1

C3 Téffj ' = o(1), for all ¢, as m — oo,

By the above relations and the fact that e = (1 + 2)exp{ -zz— + O(lz1%3,

as z — 0, we have, for ¢t € E,,

sz(t)}zi" {1+-’%} { 5 T,a(t>+o(1)},as m—soco.

m =1 k=1 mkl

exp{ C

Since

2C ZT,%(t)}l

Nm =1

it is seen that for ¢ € E,,

5 Tk(t)} ﬁ{ ”gvk(t) } exp-{ Z‘CZ‘Z 5 T,%(t)% + (1), as m —oo

Nn g=1 k=1 Np  g=1

exp {

Further for ¢t € E,

I {15820 (oo fai 20 [ o |5 w0

=\e

0 {5y, = 10~ g0 =1

m k=1

*) F¢ is the complement of a set F with respect to the interval [0, 1].
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m ]
< Kt C1'2 2 Ti) - g(0)|, for some constant K'.
Nm g=1

Hence we have, by (5.1) and Lemma 2,
N < re (o T {—v } '
Tw(t ldt—— 1+ k 1)t dt
fEexp{ o = Tx0)] Hl Crexpl —5 90
1
=K [

Since g(¢) =0, by Lemma3 and Lemma 5 it is seen that

012 S Ti) — g(t)}dt + o(1) = o(1), as m — oo,

fEexp{ C’}’: 5 Tk(t)} ar = [1I {1 + %%@} exp{ - _;”f g(t)]g dt + o(1)

‘m k=1 E k=1

m

= j;exp{——;'-gg(t)} dt + o(1), as m — oo,

By Lemma 6 and (3.7) we can prove the theorem.
6. In this paragraph let f(¢) € L,(0,1) and

&) ~ a, + > aicos 2mk(t + a),

k=1
N 1 1/2
Sy(t) = ay + >_ ax cos2mk(t + ;) and Ry = (7 > a}‘;)
k=1 k>N
On the remainder f(¢) — Sy(t) we can prove the following
THEOREM 2. Let {n.} be a sequence of positive integers satisfying the
Hadamard gap condition ny.,/n. > q>1 We put
Uk(t) = Snk+l(t) - Sﬂk<t) and E;ZC = nz/k - Rzlkn,
and suppose that
Sltlp lUk(t)l = O(Elc), E= O(R2nx): as k— + oo,

and, for some function ¢(t)

1

lim dt = 0.

J—>oo

7%2_ i {Un(®) + 2Un(@&)Uni(2)} — g(8)

T m=k

Then ¢(t) is bounded and non-negative and we have, for any set E C [0, 1)
of positive measure and any real number o # 0,

1
w/(O)*F

. 1 1 —u2/2
lim o {232 € E, (f(0) = Sa(0)/ Ry =0} | = Wuﬂfﬁ [ evrau,
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where o/0 denotes + oo or — oo according as >0 or o <0.
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