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1. Let
&) =2 c2" =2 c,r"e™
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be a function regular for »=|z|<<1. If for some p> 0, the integral
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[ 1 ftrey12 a0

0

remains bounded when » — 1—0, the function f(z) is said to belong to the

class H”. It is well known that, if f(z) belongs to the class H?, then f{z) has

a boundary value f{e’) = lim f(re'’) for almost all 6 (0 =6 = 27) and f(e")
-1

is integrable L?. Moreover if p=1, a necessary and sufficient condition for
the function f{z) to belong to the class H? is that

Z cneinﬂ
n=0

is the Fourier series of its boundary function f{e*).
Let us denote

6x(6) = 5.(05.0) = 3 ey,

ta(6) = (65 f) = ne, €™,

o5(0) = 0%(0; )= (C, a) mean of the sequence {s,(6)}

= fia 2 Ains(0)  for a> -1,
n y=0

and



ON THE ABSOLUTE SUMMABILITY FACTORS 61

(0) = 7:(¢; ) = (C, @) mean of the sequence {¢z,(#)}

= Ala > ASa6) for a>0,
7 p=0
where
a __ n+ao ~ n*
= () =y e

Then we have
74(6) = n{c¥(l) — ox_(6)} = af{oz () — o(6)} .
Further we put and

[FOIRE
n

ha(®) = b3 )= | T

and

gu(®) = g2(6; 1) = U;l (I—ry«dr fﬂ%?#d‘p}%‘

Then for f(z)e H? (0 < p << o), we have the following relation ;

gx(6)

Aa é ha(e) é Ba s

where A, and B, are positive constants depending only on «.

If a=1, ¢gi(f) reduces to the function ¢*(#) of Littlewood and Paley
excepting constant factor. It is known that ¢*(f) is a majorant of many
important functions in the theory of Fourier series.

T. M. Flett [3], G. Sunouchi [5], [6] and A.Zygmund [8] have proved the

following theorems.
THEOREM (L.1). If fz)c H? (0 <p=2), then for a > %,

27

(i) [teowas=a,.[ | reras,

97

(i) [noras=a,. [ e a.

THEOREM (1.2). If flz)e H? (0 < p=2), then for a= _;;,
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2z 1 rZa(l r)za Zzlfz(rei(s+¢))|2 % 27 o~
) f[ Tog@=P= ¥ ), “i—rev d¢] dﬂéApfo | fle”)|? db.

27 - oo

’ mor_ 1F
@ [ [Z e a=a, ] 1ren) @,

Y n=1
where

o |m@®)*
2 n{log(n+1)}*

A= r(1— r)l fewms = Bes
f logl—r)|= ¥ f —rer|= 9P
for a >0 (see, G. Sunouchi [5]).
THEOREM (L.3). If fz)c H? (0< p=1), then for a= _;.,
W Aflgoraf = au[ireral”, o<p<,
(i) { f h®) P a8 = A, fo [ fle)r o™, 0<p<1.

A.Zygmund [8] proposes the problem whether Theorem (1.3) holds for
1< p<2. For p=2, it fails.

Concerning this conjecture, we shall prove the following theorem.

THEOREM L. If flz)e H? (1 < p<2), then for o = —

N[

(][5 rmatetyems]” aof = aoe{[ e aof” o<,

Next, we pass to application to the absolute Cesiro summability factors
of power series of the class H?. If the series

8

|0%(6) — o%.(8)] = i \_7;5@

n

converges, we say the series

oo

Z Ca einﬂ

n=0
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absolutely Cesaro summable with order @ and write

2o c.éme|C al.

n=0

H. C. Chow [1] [2] has proved the following theorem.

THEOREM (1.4). () If flz)e H» (0 < p=1), then

% fogar e <[ Gy | ae 80,

(ii) If fl®) e H? (1 < p=2), then for a>%,

S (logtur i ™ < 1Cal ae, 830

(i) If flz) e H? (1< p=2), then

7

e 1
& {log(n+1)j+t ¢ E[C’ pl ae, 8>0.

REMARK. In (i) and (ii), the 8§ > 0 cannot be cancelled, and moreover in
(i) when p=2 the inequality a > _;f‘ cannot be replaced by a=—;~. However

for (iii), the only case when p = 2 is best possible by T. Tsuchikura [7]. It is
remarkable that if Theorem (1.3) holds for 1 < p << 2, then

. fogirrppes ¢ |G| ae

H.C. Chow [1] proposes the following problem; if f(z)e H? (1< p= 2),
then

S S ?
Z {log(n+1)}””+a cn€ ‘C a.e. !

In the case p =1, this problem is not well-proposed because of Theorem (1.4)
(i), and when p = 2, it does not hold by Theorem (1.4) (ii).

Taking use of Theorem I, we can prove the following theorem.
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THEOREM II. If f(e)e H? (1 = p = 2), then

- . 1
Z — T Ca ein€ c C, ~ | ze.
n=1 {log(n+1)}@-vm+s2 3 l 5 ,
This result is better than Theorem (1.4) (iii). Moreover, when p=1, it

is best possible, and for p = 2, it is so, too. However we could not decide
whether for 1 < p <2 it is best possible or not.

2. To prove Theorem I, we need the following well-known interpolation
theorem.

LEMMA (2.1). Let B be the class of all polynomials and (M, i) a measure
space, where M 1is the point set and p the measure. Suptose that the
family of linear operators T, depending on the complex parameter 2 satisfies
the following properties

(a) for each z (0 =R(z) =1), T, is a linear transformation mapping B into
L'(M, p),

(b) for each P and ge L*(M, ),
Ge) = [ TuP) gdn

is analytic in 0 < R(z) <1 and continuous on the closed strip 0 = R(z) =1,
and

(c) suplog|G(x+iy)| = Ae™™ for —oo<y <co, where a<m.
0=x=1
Now let p,, P, qo and q, be positive numbers and assume that for all

IT:u(P)lla = Ao¥) | Pll5,

1T (P)lo = AP Pl

for all P e, where log A)(y) = B;e”", B; >0 and 0 <C; <m for j=0,1.
Then, for each t satisfying 0 =t =1, we have
IT(P)lo = AcllPll5,

for all PeB, where p, and q, are given by the relations
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and A, depends only on t, p;, q;, B;, C;, (j =0,1), but not on P.

For the proof of this lemma, we shall refer to E. M. Stein and G. Weiss [4].

We next define the Cesaro mean ¢3(#) of complex order A = a+iB8 of
the series

oo
z Cn etno .
n=0

Let us denote

5.(6) =" ¢, e,
v=0

) = r 2 Ards(0) = 4 Z VNP
and
m(6) = Mon7H(6) — an®)} ,
where

_ A+ (M)
A= a0 .

LEMMA (2.2). () If a> —1, then there exists a constant B, such that

{(n+1)* for n=0.
(1) If a>—1 and —oo < B < oo, then

Aa+iﬂ

1|4

‘/C e? for n=0,
where C, depends only on .

For the proof, we refer to E. M. Stein and G. Weiss [4].

Now we shall prove the following inequalities;

@3 | f[i L;g;fﬁ‘f)]de}%g e | f | f(e’)]*dﬁ}% for flz)e H?,
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en ([ (SO wl a0 [ fenias

for f(z)eH1 and 0<p<1l.
We shall begin with (2.3). Since

1 n

0.;1/2+iﬂ(0) — a.}‘/2+iﬂ(0) — A;l{‘,2+fﬁ vc, e‘iw s

that is
1 n
7.}'/2+iﬁ(0) — _A_m Z A;%za—ts Ve, e
v=0

using Parseval’s identity and Lemma (2.2) we obtain

27

\ l.r}l/2+1ﬁ(0)|2 dg Aﬂ/2+w‘2z ‘A 1/1+1/3]2 vZICV\2

n

1 1
<< = AR 2 2
__An 1€ > ] vvlc,,l .

v=0
Hence,
o 27 9
|Ta @) | g 1 1 5
(2.5) g o nlog(n+1) df = Ae’ Z:n(n+1)log(n+1) vzl n+l—v lel?
462
éAe Z 2log(n+1)§ n+1 ﬂlCUIZ
— AT =[c[2 L
—~ v 2log(n+1) n+l—v
= Ae"‘”z v’|c,|? [Z + Z } A 3" 12, | (S, +S,)  say.
v=1 n=2w+1 v=1
Since
S, =3 1 1 1 &1

E n’log(n+1)  n+l—v = »log(v+1) E n+l—v

1
= Bl m log(v+1) = —0
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oo

_ 1 1 _ 1
$:= 2 gt D) nri=s = o+ 1) log@+2) Z n’
1 1 = 1 1 B2 1
. < =2 -
= log4 v Z 712 _B2 v 2 + = 2 V2 >

n=2+1

the last term (2.5) is majorized by

Be® > |¢,|* = Bewf | fe?)|* db .
v=1 0

Therefore by exchanging the order of summation and integration in the first
term of (2.5), we get the estimate (2. 3).
Next we pass to (2.4). If we can prove

a+i9(0) l

(2.6) ) < Ae™ (g5(0)}® for a>0,
n=1

where A does not depend on a and B, then the estimate (2.4) follows imme-
diately from Theorem (1.3) (i) for p=1. For the sake of the proof of (2.6)
we write

Drislr, ) = 3 | A5 |54(8) | r2n

n=1

Then
1 oo 1

@.7) f (A== Do, 0) dr = 3 | As+8]2|25+5(6) |2 f (L—ry=rn dr
[1] n=1 0

1
2n+2a+1) A%

— Z lAZ+ialzl,T:+tﬁ(0)|2
n=1

On the other hand, since

- a+if ja+if n — M
E AnrP g (0)2 (l_z)aHB >

we have by Parseval’s theorem,

Lo [N gy < Lo [TIL D
(2 8) a+1ﬂ(r’e)< 271_ € 0 ll__reW|2a d¢= 277.6 0 ll —7re 9’l2a d
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Therefore by Lemma (2. 2), (2.7), and (2. 8), we get

S im0 = AT o -
' n T2 (2n+22+1) AR n

1

1
a+iB a+iB 2 — )2
éAZ | Agvie |2 r2r4(6)| (2n+2a+1)A§:‘Afo(1 P Duis(r, 6) dr

<Be47zﬁf A—r)=dr fﬁz |f(rei(a+qa))\2 dp = Be"”ﬁ{Ja(@)}2

[1—re?]*

Thus (2.6) and consequently (2.4) are proved.
Now we consider the family of operators defined by

_3 7(6)
Tz(f) - "Zﬂ N/?{Iog(n+l)}1"s“’ ¢n(6) ’

1

where 8(z) = —l—z + 5 and {¢,(6)} n=1,2,--- is a sequence such that

{Z | (6’)\2]2 =1 for all #, but is arbitary otherwise. Since by Schwarz’s

inequality,

SO
sz(f)l § [g n‘ {1Og(n+1)}2(1—8(2)),} ’

we have by (2. 3) and (2.4), for each P e,

ITw(P)], < Ae?™|P],
IT (P, = AeM|P],, 0<pu<1.

For any given p (1 < p < 2), we first choose ¢ such that

L S S
pn 2 ro 14 _L1=2
72— p)




ON THE ABSOLUTE SUMMABILITY FACTORS 69

Therefore by Lemma (2.1), for each P <, we have

1T P)llon = Arall Pll,

that is,
e 20(f 1L
15 e ol o = aimt

n=1

Since now
1 1 _1/2 1 _ 1

8(t)—2t+2—2<P 1)+2_P,

and

oo

/(9) _[s |77(6)|* T
20| T gt 7 $O) = | iog ey )

n=1 n=1

we get Theorem I in the case when f{z) is a polynomial.
The general case follows by a standard limiting process.

3. To prove Theorem II, we need the following lemma.

LEEMA (31). Let a>0 and {\,} be a sequence of positive numbers
such that

(a) RIZINE non-increasing,
n
_ - Ay
A’A, = AAN, = O(%Z)

AP, = AAMN, = O( Ay )

h
n+1

where h is the integral part of a when a is fractional and h=a—1 when
a is an integer, and

© > JT';%Q)L N, is convergent.

n=1

Then

D N é™e |Coal.

n=1
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For the proof, we refer to H. C. Chow [2].

We can now prove Theorem II. The cases when p=1 and p=2 are
well-known. If f(z)c H? (1 < p< 2), then from Theorem I, it follows that

c |T/7(0) !
1§ n{log(n+1)}**-v»

converes almost everywhere. On the other hand, if we put

1

M= {log(n+1)}* ’

7»=<1—%)+%+8,8>0,

then by Schwarz’s inequality, we have

SO, [ O (s 1 T
8.2) g n x"é[g n{log(n+1)}2(1“/”’] Lzﬂ n{log(n+1)}2"”(“1/")] ’

The second term of the right hand side converges, since
1
2 — 2(1—7> —1+25, 8>0.

Hence the left hand side converges almost everywhere. Therefore from Lemma
(3.1) we get Theorem II.
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