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1Introduction. In 1947 D.V.Widder showed [6] that the convolution
transform

o) = f ) G(x—1t) @(t) dt

—o0

can be inverted by a linear differential operator of infinite order for a restricted
class of kernels G(x). In 1949 I.I. Hirschman, Jr. and D.V.Widder [1], [2]
greatly enlarged the class of admissible kernels. Further, in 1950 D. V. Widder
[7] enlarged the class of admissible kernels so far as their bilateral Laplace
transforms are meromorphic functions F(x) with real zeros and poles only and
obtained the inversion formula. This case, however, was so complicated
that the properties of the transform was not explained clearly enough and it
was necessary to assume an order condition for ¢(z).

Instead of the condition for @(z) if we restrict the kernel in some sense,
then the properties shall be determined completly [5].

In this paper we shall study the inversion and representation theory for
the class of convolution transforms

(1) f@) = [ Ga—tyetdalt) (ciread,
for which the kernel G(¢) is of the form
(2) G(t) = ﬁ LFTeds.

Here

¢ 11 (1—s/a)e’™ T[ (1—s/dy) e
( 3 ) F(S) — k=1 k=1 s

i 1- s/ci) e
k=1
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where b, {a;}7, {ci}t, {di}T are constants such that for all %
(4) awx >0, ardi <0, |av|=lcel, Doai* < oo, D e < oo, D di? < oo
1 1 1

and satisfies the condition: for some positive & and any positive number R,

1 1 .
) | Fo + i7)| :O(|712+“) |7|—> o0, s = o+ir,

uniformly in the strip |e| = R.

This form is the one in which E(s), Ey(s) are reciprocals of the generating
functions of kernels of class I and I1[1], [2], respectively, and F(s)=E,(s)/Es(s)
satisfies the conditions (4) and (5).

However, when we assume that E,(s) be the reciprocal of the generating
function of the kernel of class 1 or class III, we may similarly discuss.

In these cases we shall know that the behavior of the transform (1) is
similar to the one of the convolution transform with the class 1 kernel.

9. Properties of the kernel. Let us define

akeakt_l (— oo <t << 1/ak)
{ if [44% > 0
g @) =
if ay < 0 s

—ae™t (1/ay <t < o)

g(t) as the function ¢{*(¢) in which we put d; for a;,

and

hb(@) = I(l—— ai/ce) gllu+1/c) du + ?—:j[t—(l/ak—l/ck)] s

he(t) = f 42() du

where j(¢) is the standard jump function, that is j(¢) =1 for £ >0, 1/2 for
t=0 and O for £ <O0.

It is easily verified that A((¢) is a normalized distribution function with
mean 0 and variance a;’—cz?, and
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” st 75004\ — (1_5/Clc) e
f e dhkl (t) = (l—s/ak) e“/“" s

~—oo

the bilateral Laplace transform converging absolutely for fs <a; if a,>0 and
for Rs> a; if a, <0 and that AP(#) is a normalized distribution function with
mean 0 and variance d;? and

” 1
f et dh;@(t) = (_1—'5/dk) P

—oo

the bilateral Laplace transform converging absolutely for Rs <d; if d; >0 and
for Rs>d, if d,<O.
Let us define the constants

dp<0 ag>0

maxd, if a;,>0 mina, if a,>0
alz{ ag—{

maxa, if a,<0, mind; if a.<O.
ax <0 a,>0

THEOREM 1. If

1. F(s) is defined by (3) and (4) of 81 and satisfies the condition (5) of §1,

2. w, =multiplicities of a, as a zero of F(s),
we=multiplicities of a, as a zero of F(s),

_1 Mo o -
3. G(t)_%if_imF(s)e ds  (—oco <t < o),

then :

A. G@) is a frequency function with mean b and variance
(Zar- zc,:z) P
1 1 1

B. f G@)e s dt =1/F(s), the bilateral Laplace transform converging

absolutely in the strip o, < Rs < a,;

C. G(t)e C'(—o0,00);

D. G@®)=p(t)e + R.(t), G(t)=g(t)e + R(2),
where p(t), q(t) are real polynomials of degree p,—1, p,—1, respectively
and
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[R.(D)]™ = O(e“™®") ¢ — oo (n=0,1)
[R-(&)]™ = O(e“®) t— —o0 (n=0,1)

for some &> 0.

PROOF. If we set
H,(t) = h{" #£ h® # hP - hPFE - « - 4 hD # hP(t—b),

where operation # denotes the Stieltjes convolution for distribution functions,
then by the convolution theorem [8] H,(¢) is a distribution function with

mean b and variance (Z ai* — Zc;") + > di* and with the bilateral Laplace
1 1

1
transform

f[ A—s/ci)

>

f e dH,(t) = _
o e Il A—s/ar)e’™ 1] (1—s/dy) e’

converging absolutely for a,,<#s<a,,, where

maxd; if a,>0 mina, if a.,>0
1=k=n 1=k=n
ay g, = X oy, = . .
maxa, if a,<O0, mind, if a,<0.
1<k=n 1=k=n
We have

n

1T A—s/ck)e™™
].im ! = 1/F(5) )

o0 n n

e M1 A—s/ap)e’™ T A—s/d;) e’

uniformly for s in a, <RAs < a,.
By the well known theorem [2, p. 41] 1/F(ir) (s=o+i7) is the characteristic
function of a distribution function H(¢) = lim H,(¢). Moreover, by the Lévy’s

theorem [2, p. 51),

oo eth— e

B
sF(s)

2mi J_

H(t) — H(t) = ds.

oo
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From the condition (5) of §1 for F(s), it follows that H(¢) is twice
differentiable and G(¢) = —dd?H(t), so G(¢) is a frequency function and G(¢)

e Ct (— oo, oo)
By use of a theorem of Hamburger [8, p. 265] we see that

(1) f e G@t)dt = 1/F(s),

—o0

the integral converging absolutely for a, <Hfs < a,.
Differentiating equation (1) with respect to s and setting s=0 we see that

the mean of G(¢) is b and the variance is <Z a;z—Zc;2> + > di*.
1 1 1

Now, let us choose &€ > 0 so small that no zeros of F(s) lie in the interval
a,—E=oc<a, Let T>0 and define D as the rectangular contour with
vertices at =7, a;,—€=+¢T. Integrals about D proceed counterclockwise.

The integral

1 f s"e’t
omi ) Fs) ¥
is by Cauchy’s residue theorem equal to the nth derivative of the residue of

e'/F(s) at s=a,.
Let F(s)=(s—a,)*F(s). The expansion

1/F(s) = 2 A(s—a,), Ayx0
j=0
is valid in some circle about «,. Thus

SUF(s) = (s—at,) ™ [ éAj(s—a,)j] [ ot é—;’.j!—(s—a,)f]

-

Jj=0

J tk )
S A k—‘> (s—a,) w9,

k=0

It follows that the residue of e''/F(s) at a, is

-1

tk
5 Ay b = eip(0).
k=0 *
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We write

shest a,—&—iT a;—€+iT —iT
) d"“f Y Y

@ —E+iT a,—e—iT'

:II+IQ+13+I4,
By the condition (5) of §1 we have

liml, =limI, =0.

T—oo T—oo

Hence

(L) G@) = 1o pe) "+ [RAOI , Ro(t) = s %s)ds

ay—e+iT

If we apply the condition again, we obtain

[R.(£)]™ = O~ (£ — oo).

161

Similar arguments serve to establish the other part of conclusion D. Thus we

complete the proof.

Let us define
E(s)=eé" ﬁ A—s/ay) e’ f[ (1—s/d,) e,
k=1 k=1
Es) = [ A—s/cp)e™,
k=1
G(t)——l—fim 45 (e class 1
B =%mi ) EG Y class 1),

Git) = o f . (8) (e class 11).

The following two theorems are well known. [2, p. 55, p.107]

THEOREM 2. A. G(t) is a frequency function with mean b and variance

Za +de ;
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B. f e 'G(t)dt=1/E(s), the bilateral Laplace transform converging

absolutely in the strip o, <Hs < da,;
C. Gl(t)e Ceo(_ooy OO);

D. (L) 60 =B + 0™ (t—) (1=0,1,2,:--),

(???)"Gg(t) = [q:(£) e*]™ + O(e*) (t > —o0) (n=0,1,2,--+),
for some & >0, where p\(t), q(t) are real polinomials of degree p,—1, p,—1,

respectively.

THEOREM 3. A. Gy(¢) is a frequeny function with mean 0 and variance
>kt
1
B. fe“" W(t)dt = 1/Ey(s), the bilateral Laplace transform converging
absolutely in the half strip max(cy, —oo) << Rs < min (ci, +0);
Ce<0 >0
C. Gz(t)é C”(—oo, oo) .

From Theorem 1 and Theorem 2 we see that the properties of kernel
function G(¢) are similar to the one of G\(¢)and if G(#) satisfies the condition (5)
of 81 for any positive @ then G(¢)e C*(— oo, o)

3. Convergence. We can now determine the convergence behavior of the

transform ,‘G(x —t)e” da(t) .

THEOREM 4. If a(t) is of bounded wvariation in every finite interval
and fG(xo—t)e” da(t) (fGl(xo—t) et doz(t)) converges (conditionally), then

fmG(x—t)e” da(t) (fa(x-t)e” da(t))

converges uniformly for x in any finite interval.

PROOF. It is well known that the theorem is valid for the transform in
the parenthesis. [2, p. 124]

For the proof it is necessary to show that the function G(¢) = 0 for ¢
with sufficiently large absolute value.

If £=¢, is a zero of G(¢), then from the conclusion D of Theorem 1, we
have
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(1) | p(to) e | =|R.(t,)| if ¢,>0,
lq(t,) e | = |R_(¢,)| if 2, <O0.

However, by the orders of R.(¢) and R_(¢)
|p()e™| > |R.(t)] or [g(t)e| > |R(2)]
for all ¢ with sufficiently large absolute value.

Therefore, the equation (1) is valid only for #, in some finite interval.
Now, we must show that

(2) Jim G(x £) et dat) =
(2y Al;&nm G(x t)e' da(t) =0,

uniformly for x in any finite interval. By Theorem 1 we have

G(x—t) _ e
G =0m (==,
(3) Cemn
xr—t = 2 —> 00
€ [G(O t)}—ou/t) (1£] = o),

uniformly for x in any finite interval. If we set

L(t\= ﬁz;(xo—u) et da(u),

then L(¢) is bounded and
(4) L(t)=0(1) as t— 0.

We have

f Gla—t)e da(t) = f GG(f 5 ar)

:[ g((f —t) L(t)] fB[—dd? g&:’g]w)dt.
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Using the equations (3) and (4) we see that the equation (2) holds uniformly
for x in any finite interval. We may similarly establish (2).
From this theorem we know that the convergence behavior of our

transform is similar to the one with a kernel of class L

THEOREM 5. The transform f G(x—t)e da(t) converges if, and only

if, the transform f Glx—t)e? da(t) converges.

PROOF. 1If the first transform converges for x=x,, by Theorem 1 and
Theorem 2, we have

G —1)/Glay—t) = O1) (It] > =),
LG (= 1)/ Gla—t)]) = OWL/8) (Jt] = o2).

From this it follows by the arguments similar to Theorem 4 that the
second transform converges. We may similarly establish the only-if part.

4. Inversion theorem. We suppose that we are given a sequence {b,}7
of real numbers such that b,=0, lim b,=0. We define, as usual,

N—ro0

E, (D) = """ I (1—D/ay)e”*(1—D/dy)e”™,
k=1

where D stands for differentiation and we interpret e'” the operation of trans-
lation through distance /.
On the other hand, by virtue of the equation in Theorem 3 we define

Eipy @ = [ a6,

whenever this integral coverges [7, p.121].

THEOREM 6. If
1. f(x)zf G(z—t) e da(t) converges,

2. a(t) is of bounded variation in every finite interval and continuous
at X, x,, then:
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A. a, <c<a, implies that
Ty
lim [ =B, (DXE(DII" flz) dz = a(z:) — al);
B. c=a, implies that a(+ ) exists and that
lim fe‘“EL,,(D)([Ez(D)]'If(x)) dx = a(+) — alx,);

C. c¢=a, implies that a— ) exists and that
lim [¢E, ( DXED))" f() dx = ) — al(~<0).

PROOF. From Theorem 1 and Theorem 3 it follows that the bilateral
Laplace transform of G(¢) and G,(¢) have a common region of absolute con-
vergence a; << fs < a, and hence the product theorem [8] implies that

1 11
F(s) E(s) N EI(S) -

f e—“G1(t)dt, a<o<da, s=oactir,
(1)
Gi(x) = fG(x—t) G()dt —cc<zx<oo,

both integrals converging absolutely.
From the equation (1) and the definition of operator [E,(D)]' we have

(EDN ) = [Gieydt [Glat-w)e datu
(2) = fw (feé(x— u—1t)Gyt) dt) & dou)
= fz;l(x— w)e™ do(u).

The change of the order of integration here employed is justified by the
following argument.
From Theorem 4 for arbitrary finite numbers A, B we have
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(3) fB (fonG(x_t_“) e d“(”)> G(t)dt = fo (fB G(x—t—u)Gyt) dt) e da(u).

Given & > 0, by Theorem 5 we can choose U, >0 so that C < —-U,, D>U,
imply

(4) fz;,(x—u) e da(u) — fDG,(x—u) e da(u)! < &/3.

If we choose T, such that |¢| =T, implies e** |¢ |# =1t >T,), e |t |+ =1 < —T,),
then by the argument similar to Theorem 4 the integral f Glxz—t—u)e™ dau)

converges for such #([¢|=T).
Then, by Theorem 1 we can choose U,>0 independent of A, B
(]Alr |B|>T0) SO that

(5)

f " Guydr f Clz—t—w)e dalu) — f "Gt de f DG(x—t—u)e“‘da(u)i
/3.

Therefore, if we set U, = max(U,,U,), then (4),(5) are both hold for
C<-U,, D>U, independently of A, B(|A|, |B|=T,).
On the other hand, by Theorem 1 and Theorem 3

lim fBG(x—t—u) Gy(t)dt = fBG(x—t—u) G,¢t)dt = G(x—u),

uniformly for ue (—oo, ). Then, there exists T, (=T,) such that A< —-T,,
B> T, implies

(6)

fD Glx—u)e da(u) — fD <fB G(x—t—u)Gy2) dt) e dd(u); < &/3.

Combining (4), (5),.(6) we find that A < —T,, B> T, imply
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f f G —u)e™ dalu) — f Gi(t) dt f Gla—t—u)e da(u)§<8.

In other words, (2) holds.

Thus obtained (2) is the convolution transform with class I kernel G(¢)
and appealing the familiar theorem [2, p.135], we obtain our desired result.

The proof of the following theorem goes exactly as preceding theorem.

COROLLARY. If
1. @(t) is integrable on every finite interval,
2. f(x)sz(x—t)<p(t)dt converges,

3. @lt) is continuous at x,
then

lim £, (DX(E(D)]"* f(z)) = ¢(=).

5. Applications. (a) J. M.C. Joshi [3] discussed a generalized Stieltjes
transform ~

_ D(B+n+l) T(B+D1) [T s
Pls) = I‘(a+/31n+1) s j; (&/9)

X F(/8+n+1, B+1; a+B8+n+1; —f-})f(y)dy

where f(y)e L(0,0), 8=0, >0, 0 <s < oo,
That is, after some calculation and after an exponential change of variable,
this becomes putting &(s) = —e'@'(e®), {(s) = fle*),

&(5) — F(B+77+1)F(B+2) —(s-y)(,@+1)

Na+B+n+1)

—o0

x F(B+n+1,B+2;a+B+n+1; —e * ") y)dy.

The inversion function of this convolution transform is

AE(x) _ N(B+7+1I(B +2)

—ZI(B+I+1) —p Y
T(a+B+n+1) F(B+n+1,8+2;a+B8+n+1; —e¥)dy

—o00

I‘(n ) I(B+x+1)P1— x)
Na+n—x)
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provided that & %0, —1, —2,+++, R(1—x) >0, R(p—x) >0 and R(B+x+1)
> 0. From this fact, he obtained the inversion theorem by infinite product
expansion of E(x).

In this case, E(x) has zeros at the points 7, n+1, n+2,+++; 1,2,3,-++;
—(B+1), —(B+2), —(B+3), --- and poles at a+z, a+y+1, at+np+2,---.

If @=0, then E(x) has only zeros and the kernel function is the one of
class I originally. Now, we assume a >0 and we take {n+k—1}7 as {a:}7,
{a+n+k—1}7 as {c;}, the other zeros as {d;}7.

By Stirling’s formula

D(o+it)~ /2w e ™| 7|72 (|7| > o),
we see that
E(o+it)~ 2w e 7|21 (|7]| — oo0) for all o,
so E(x) satisfies the condition (5) of §1.

Hence, our general theorem is applicable to this transform.
In this case, we can interpret the meaning of [Ey(D)]™" as

[E2(D)]‘1f(x) = ‘[;mf(x_t)e—e‘ et Jt ,

because

00

F(a+q—s):fe‘e'e(“+’7)‘ edtdt Rs<a+qg.

—o0

(b) D.V.Sumner [4] pointed out that for the inversion formula of integro-
differential type the operating order of the integral and the differentiation is
essential using the convolution transform

flx) = f_ oeH(:I:-t) @(t)dt (x: complex),

where
H(x) =[e*+2¢*cosmB+1]"!, 0<B<1.

After the differentiation this becomes the convolution transform with the
kernel

2(e **+e* cos mR)

H(z) = (e72*+2e7* cos mB +1)?
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4 cosmBs

- , so this case is some modified one of
sin s

and the inversion function —

ours.

(¢) The integral transform
—1/2 ” —XT/2 1
F(X)= /f e /Iv<—XT)<I>(T)dT
o 2

(v:real, > 1/2, I,: modified Bessel function of order ») becomes, after an ex-

ponential change of variables, the convolution transform with the kernel G(z)
I(1+v—s)

T(1/2—s)[(s+)

=7 exp{ ——;—e“ }Iv(e“‘/ 2) and the inversion function F(s)=
(d) The integral transform
F(X) — f e—X'l'/z Mk,“( Xﬂ( XT)k—l/z (I)(T) dT
0

(k, p:real, p+1/2> k>0, M,,: Whittaker’s function) becomes, after an ex-
ponential change of variables, the convolution transform with the kernel G(¢)

L } M, [(e™") and the inversion function

2
~ I’(;L—F%—}-k)P(p,—F %——5)

F(s) = :
g r(2p+ )T+ é« +5)(k=s)

=exp{—

(¢) The modified Meijer transform

FX) = [ e W XY YXY ) 0(Y) 4Y

0

(k,m : real, 3k—m—1 > 0) becomes, after an expontial change of variables, the
convolution transform with the kernel G(¢) = exp{ — —;——e‘}Wk“,g,m(e‘) e ® and

with the inversion function

l‘(—s—2k+ %)

)= I‘(m—s— k+ %)I‘(—m—s—k+ —%—)
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These integral transforms (c), (d), (e) are discussed by our general theorems.

6. Representstion theorem. In this section we shall have necessary and
sufficient conditions for f(x) to be represented as convolution transform

flz) = f Glz—t) da(t)

with a(z) in some class, where the kernel G(¢) is defined as in §1.
If f(¢) is integrable on every finite interval, then from the definition of
operator [E,(D)]™?,

[EDT fi2) = [ Gt fi) at,

whenever the integral converges.
This transform is a convolution transform of class II (or III) [2], so if we

interpret the operator E,(D) as lim [[ (1—D/cy)e”*, then from the familiar
n—ee
theorem [2, p. 131, 132] E,(D)[ Ey(D)]™! f{x)=f(x) at all continuity point x of f(x).

THEOREM 7. Necessary and sufficient conditions that

f@ = [ Ga-ndat),

where a(t)e 1 are:
A. [E(D)] ' flx)e C*(—o0,0);
B. [E(D)]" flzx) = o(e*) T —> + o0
= O(Balx) xr— —oo;

C. E . (D(EMDN'flx)=0 (—oo < x<<oo; n=0,1,2,++-).

PROOF. By the well known theorem [2, p.158] the necessity of A, B,C
is obvious, noticing

[EDT fiz) = [ Glz—-t)datt), a@®e 1

and G,(¢) < class 1.
Conversely, we have to establish their sufficiency. Again, by the same
theorem there exists a(¢) non-decreasing
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[E(D)"* f(z) = f Gi(z—t) dao).

It is familiar [2, p.52] that G(x)e C*(—o0 < x < =) and that for any
positive number p and R

|E1(¢rl+i'r)l :O<1711p)

uniformly in the strip |¢| = R.
Hence, for all positive integer 7 the integral

1" k]iIl(l—s/ck)e’/c*
() i J E(s)

. e dS
2mi

coverges uniformly for x.
If D stands for differentiation with respect to x and we define E, (D)

= ]I A—D/cy)e”*, then, using the equation E,,(D)e’*=e** E,,(s), we have
k=1

oo f[ (1—=s/cp) e’
EZH(D) G,(x) = — 1 k=1

i) Ee ¢ 4T K sy

Differentiation under the integral sign is justified by the uniform conergence
of the integral (1).
By the condition (5) of §1, we have

|G(x)—K,(2)| = fff\/: TF(IZT) | dr < oo.

Hence, by Lebesgue’s dominated convergence theorem we obtain
lim K, (x) = G(x)

uniformly for x e (—o0, c0). _
As the proof of Theorem 5 it is shown that for all n the transform

f K, (x—t)da(t) converges, if and only if the transform f G(x—t)da(t) con-

verges and that the transform converges uniformly for x in any finite interval.



172 Y. TANNO

From this fact and Theorem 5 we have
Ax) = lim E, (D)[Ey(D)]"* f{z)) =lim f K, (x—t)da(t)

() - f _E(x—t> da(t)

as desired.
It was shown in this proof that

lim [G(e) = K,(®)ll- = 0.

It is evident that
fG(t)dt —1, fKn(t)dt ~1,

so by the Lebesgue’s theorem we obtain
lim |G(@#) — K@), = 0.
Since
IG@® — K@), = |G() — K.@®I”IGE) — Ku0)]="? (1= p= )

we have

lim [G@) — K.@)l, =0 (1=p= ).

THEOREM 8. Necessary and sufficient conditions that
fi2) = [Ga—t) g0yt

with @), =M, 1< p=co, are:

A. [ED)]'flx)eC (— 0 <z < );
B. |E.(D(ED)"'fleDl, =M n=0,1,2,---.

PROOF. This theorem may be established just as in the preceding theorem
except the relation (*). However, by the preceding result, we have
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la'l

\ [16G-0-K (@0} 90 dt| = 1G-K,lpl, = MIG-K,fl, a5 n->o=

Thus we have our desired resut.

The proof of the following theorem goes exactly as the preceding theorem.

THEOREM 9. Necessary and sufficient conditions that

fa) = f Glz—1) datt)

with A(t) of total variation not exceeding M are:

A. [ED)'fx)eC (—o0 <z < o0);
B. |E.D(ED)"' fla)ly=M 2=0,1,2,---.
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