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ON A CLASS OF CONVOLUTION TRANSFORMS
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l.Introduction. In 1947 D. V. Widder showed [6] that the convolution

transform

= / G(χ-t)φ(t)dt

can be inverted by a linear differential operator of infinite order for a restricted

class of kernels G(x). In 1949 1.1. Hirschman, Jr. and D. V. Widder [1], [2]

greatly enlarged the class of admissible kernels. Further, in 1950 D. V. Widder

[7] enlarged the class of admissible kernels so far as their bilateral Laplace

transforms are meromorphic functions F(x) with real zeros and poles only and

obtained the inversion formula. This case, however, was so complicated

that the properties of the transform was not explained clearly enough and it

was necessary to assume an order condition for φ(t).

Instead of the condition for φ(t) if we restrict the kernel in some sense,

then the properties shall be determined completly [5].

In this paper we shall study the inversion and representation theory for

the class of convolution transforms

(1) /(*) = / G(x-1) ect dait) (c : real),
— oo

for which the kernel G(t) is of the form

( 2 ) G(ί) = ̂ / [F(s)Γe°> ds.

Here

ebs Π (l-
( 3 ) F(s) = k=l
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where b, {ak}?, {ck}?, {dk}T are constants such that for all k

( 4 ) akck > 0, akdk < 0, \ak \ ^\ck\ , Σ<2k

2 < 00, ^Ck

2 < 00, ^dk

2 < 00
1 1 1

and satisfies the condition: for some positive a and any positive number R,

uniformly in the strip |σ | ̂ R.
This form is the one in which E^s), E2(s) are reciprocals of the generating

functions of kernels of class I and II [1], [2], respectively, and F(s) = Eί(s)/E2(s)
satisfies the conditions (4) and (5).

However, when we assume that E2(s) be the reciprocal of the generating
function of the kernel of class I or class III, we may similarly discuss.

In these cases we shall know that the behavior of the transform (1) is
similar to the one of the convolution transform with the class I kernel.

2. Properties of the kernel. Let us define

(-oo<t<l/ak)
if ak>0

0 (l/ak <t<oo)

0 ( - oo < t < l/ak)
if ak<0,

— ake
a]S>~λ (l/ak < t < oo)

gk\t) as the function gk

v (f) in which we put dk for ak ,

and

= \ ( 1 - ak/ck) gk(u+l/ck) du

where j(t) is the standard jump function, that is j(f) = 1 for t > 0, 1/2 for
t=0 and 0 for t < 0.

It is easily verified that hηPty) is a normalized distribution function with
mean 0 and variance ak

2—ck

2, and
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the bilateral Laplace transform converging absolutely for 9ΐs < ak if ak > 0 and
for tfls> ak if αfc < 0 and that hk\t) is a normalized distribution function with
mean 0 and variance dk

 2 and

the bilateral Laplace transform converging absolutely for 9ΐs < dk if dk > 0 and
for 3 Ϊ 5 > ^ if <4<0.

Let us define the constants

Imax die if ak > 0
cr*<oI
max ^ if ak < 0 ,

ak<o

min (2fc if α^ > 0
ak>0

min Jfc if ak < 0 .

THEOREM 1. / /

1. .F(s) ίί defined by (3) α^J (4) of$l and satisfies the condition (5) of §1,
2. μλ—multiplicities of ax as a zero of F(s),

μ2

 = multiplicities of oi2 as a zero of F(s),

3. GM^-L-j^^Js (_oo<ί<oo))

then:

A. G(t) is a frequency function with mean b and variance

B. J G(t)e~st dt = 1/F(s), the bilateral Laplace transform converging

absolutely in the strip ax < 3ΐs < a2

C. GO^CH-0 0,0 0);
D. G(t)=p(t)έ« + Λ+(f), G{t)=q{t)^ + Λ.(ί),

where p{t\ q(t) are real polynomials of degree μλ — 1, μ2— 1, respectively
and
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[R+(t)Yn) - O(e^

[i?_(ί)]U) = O(e(a^ε)t)

/or some £ > 0.

P R O O F . If we set

Hn{t) = M1} # M2) # Λίυ # M2

t -* 00 (Λ = 0,1)

t-*-oo (n = 0,1)

# /#> # TO- 6),

159

where operation # denotes the Stieltjes convolution for distribution functions,
then by the convolution theorem [8] Hn(t) is a distribution function with

( n n \ n

Σ a*2 ~~ Σ c * 2 ) + Σ ^ 2 a n d with the bilateral Laplace
/

Σ
1transform

Je-'dHΛ(t) =

converging absolutely for oiln<
(Sis<a1^ where

max dk if ak > 0

max ak if ak < 0 ,

We have

min ak if ak > 0

min <ifc if afc < 0 .

lim

-s/ak) ~s/dt) es/a*

uniformly for s in tfj < dis < cc2.
By the well known theorem [2, p. 41] 1/F(iτ) (s=σ-hiτ) is the characteristic

function of a distribution function H(t) = lim Hn(t). Moreover, by the Levy's
7Z->oo

theorem [2, p. 51],
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From the condition (5) of §1 for F(s), it follows that Hit) is twice

differentiable and G(t) = -—H(t)9 so G(t) is a frequency function and G(t)
at

By use of a theorem of Hamburger [8, p. 265] we see that

( 1 )

the integral converging absolutely for ax < 9Ϊ5 < a2.
Differentiating equation (1) with respect to s and setting 5=0 we see that

/ O O CO \ CO

the mean of G(t) is b and the variance is I Σ ak2 — Σ clλ I +

Now, let us choose S > 0 so small that no zeros of F(s) lie in the interval
oί1— β^σ<a2. L e t T > 0 and define D as the rectangular contour with
vertices at ±iT, aι—£±iT. Integrals about D proceed counterclockwise.

The integral

snest

dSf
2τπ 4 F(s)

is by Cauchy's residue theorem equal to the ?zth derivative of the residue of
est/F(s) at s=aλ.

Let F(5) = (5-Λ1)
μiF1(5). The expansion

is valid in some circle about aγ. Thus

It follows that the residue of est/F(s) at aλ is

/it — 1

eaιt Σ -
k=0
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We write

*-£--ds= / + I + I + I
D F\S) * _ i Γ J Uι-ε+lT J %T Jax-Z-iT

By the condition (5) of §1 we have

lim J3 = lim 74 = 0 .

Hence

If we apply the condition again, we obtain

[R+(t)]in) = 0{e^~ε)t) (t -* oo).

Similar arguments serve to establish the other part of conclusion D. Thus we
complete the proof.

Let us define

&) = ebs j (ls/ak)e>'a* J (ls
k=i k=i

The following two theorems are well known. [2, p. 55, p. 107]

THEOREM 2. A. Gλ(t) is a frequency function with mean b and variance
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B. j e~st G^t) dt = l/E1(s), the bilateral Laplace transform converging

absolutely in the strip ax < 9?s < a2

C. G^O^CC-00,00);

D.

+ O(e(«2+ε^) (ί-> -00) ( Λ = o , 1,2, ),

for some Sι > 0, where pλ{t\ q£t) are real polinomials of degree μΛ — 1, μ2 —1>

THEOREM 3. A. G2(t) is a frequeny function with mean 0 and variance

ί>*2;
1

B. J e~stG2(t)dt = 1/E2(s), the bilateral Laplace transform converging
—00

absolutely in the half strip max (c^, — 00) < 3ΐs < min(cfc, +°°)
Ck<0 Ck>Q

C. G2(ί)^C°°(-oo,oo).

From Theorem 1 and Theorem 2 we see that the properties of kernel
function G(t) are similar to the one of Gx(t) and if G(t) satisfies the condition (5)
of §1 for any positive a then G(t)z C°°( — 00, 00).

3. Convergence. We can now determine the convergence behavior of the

transform j G(x-t)ect daίt).

00—

THEOREM 4. If a{t) is of bounded variation in every finite interval

and \ G(xo—t)ect da{t) I I G^x^— t)ect da{t)\ converges {conditionally), then
J-00 V_^ /

JG(x-t) ect da{i) ΠG^x-i) ect da{t)

converges uniformly for x in any finite interval.

PROOF. It is well known that the theorem is valid for the transform in
the parenthesis. [2, p. 124]

For the proof it is necessary to show that the function G(t) ^ 0 for t
with sufficiently large absolute value.

If t = t0 is a zero of G(t), then from the conclusion D of Theorem 1, we
have
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(1) l/<ίo)e"'Ί = |Λt(ίo)l if V > 0 ,

AIH#-(ίo)l if ίo<o.

However, by the orders of R+(t) and R-(t)

\p(t)^\>\R+(t)\ or \q(t)e'»t\>\R-(t)\

for all t with sufficiently large absolute value.
Therefore, the equation (1) is valid only for tQ in some finite interval.
Now, we must show that

(2) lim f G(x-t) ect da{t) = 0 ,
A,B-* + o° J .

( 2 ) ' lim

uniformly for x in any finite interval. By Theorem 1 we have

i [ ^ ] — )•
uniformly for x in any finite interval. If we set

L(t)= [G(xo-u)ecuda(u),

then L(t) is bounded and

( 4) L(i) = o(l) as t -> oo .

We have
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Using the equations (3) and (4) we see that the equation (2) holds uniformly
for x in any finite interval. We may similarly establish (2)'.

From this theorem we know that the convergence behavior of our
transform is similar to the one with a kernel of class I.

THEOREM 5. The transform I G(x — t)ect da{t) converges if, and only

if, the transform \G^x — t)ect doi{t) converges.
J - o o

PROOF. If the first transform converges for x = xQ, by Theorem 1 and
Theorem 2, we have

ro- ί ) = O(l) ( | ί | -+ oo),

-^-[G{x-t)
at

From this it follows by the arguments similar to Theorem 4 that the
nd transform converges. We may similarly establish the only-if part.

4. Inversion theorem. We suppose that we are given a sequence {bn}™
of real numbers such that bo=b, lim&n=0. We define, as usual,

λ : = l

where D stands for differentiation and we interpret elD the operation of trans-
lation through distance /.

On the other hand, by virtue of the equation in Theorem 3 we define

whenever this integral coverges [7, p. 121].

T H E O R E M 6. / /

1. f(x) = I G(x—t)ect da{t) converges,

2. a{t) is of bounded variation in every finite interval and continuous
at xu x2, then:
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A. ax < c < a2 implies that

lim fe-cxEhn(D)([E2(D)Γf(x)) dx = a{x2) - a{xλ)

B. c^a2 implies that α:( + °°) exists and that

lim fe-c*Ehn(D)([E2(D)Γf(x))dx = tf( + oo) - Λ ( ^ ) ;

C. ί: ̂  ĉ j implies that ci(— oo) exists and that

lim fe-c*EU^)([£2Φ)rV(^)) ώ : = Λ(x2) - tf(- oo).

PROOF. From Theorem 1 and Theorem 3 it follows that the bilateral
Laplace transform of G{t) and G2{t) have a common region of absolute con-
vergence ccx < dis < α:2 and hence the product theorem [8] implies that

ik) w ϊ W ) i s t G l i t ) dt'Uι < σ < a"s = σ+ίτ'
(1)

\ - t) Git) dt - oo < x < oo ,

both integrals converging absolutely.
From the equation (1) and the definition of operator [£2(-D)]~1 we have

(2) - ί \\G{x-u-t)Gli)di\^da{u)
•/-ooV-oo /

The change of the order of integration here employed is justified by the
following argument.

From Theorem 4 for arbitrary finite numbers A, B we have
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(3) fΊjG(x-t-u)ecu da{u)\Glt)dt = j Ij G(x-t-u)G2(t)dt)ecu da(u).

Given £ > 0, by Theorem 5 we can choose Uo > 0 so that C < — Uo, D>UQ

imply

( 4 ) u) - j Glx-u)eouda(u)

If we choose To such that 11 \ ^ T o implies e"* \ t \ ^-gΛit>T0), eatt 11 \ ^~uSl{t< - To),

Γ
then by the argument similar to Theorem 4 the integral I G(x—t — u)ecu da(u)
converges for such t(\t\^T0).

Then, by Theorem 1 we can choose f/j >> 0 independent of A, B
( | A | r . | B | > T 0 ) so that

( 5 ) J / B ΛOO ΛB /*

1 Glt)dt \ G(x-t-u)ecuda(u)- I G,(ί)ίft

Therefore, if we set £/2 = max(ί70,C/i), then (4), (5) are both hold for
C<-Uly D>U2 independently of A,B(\A\, \B\^Ta).

On the other hand, by Theorem 1 and Theorem 3

im f G{x-t-u)Glt)dt= ί G(x-t-u)G,{t)dt = Gίx-u)

uniformly for we ( — 00,00). Then, there exists TΊ (S TΌ) such that A<— T,,
B> Tι implies

( 6 ) I Glx-Uγuda{u) - \ I G{x-t-u)Gli)dt\ecuda{u

Combining (4), (5), (6) we find that A < -Tl9 B>Tί imply
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ίGx{x-u)ecuda(u)- I G2(t)dt ΪG(x-t-u)ecuda{u)

In other words, (2) holds.
Thus obtained (2s) is the convolution transform with class I kernel G^

and appealing the familiar theorem [2, p. 135], we obtain our desired result.
The proof of the following theorem goes exactly as preceding theorem.

COROLLARY. / /

1. φ{t) is integrable on every finite interval,

2. f(x)= \G(x—t)φ(t)dt converges,

3. φ(t) is continuous at x,
then

lim Ehn{D)([E2(D)Γf(x)) = φ(x).
71

5. Applications, (a) J. M. C. Joshi [3] discussed a generalized Stieltjes
transform

_ _ n β + η + i ) ΓQ9+D r
- ΊXa + β+η+l) s Jΰ

(y/S)
ΊXa + β+η+l) ΰ

( , β + 1; a+β + η+1; -

where /(y) e L(0, oo), β ^ 0, η > 0, 0 < s < oo.
That is, after some calculation and after an exponential change of variable,

this becomes putting |(s) = —esφ'(es), ξ(s) = f(es),

1 f" (.-w«.+«

X

The inversion function of this convolution transform is

E(x) = ^

T(a+η-x)
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provided that b ̂  0, - 1 , - 2 , , 91(1-.z) > 0, fR(η-x) > 0 and ϊR(β +
> 0. From this fact, he obtained the inversion theorem by infinite product
expansion of E(x).

In this case, E(x) has zeros at the points η, η + 1, η + 2, — 1,2,3,
-(/9 + 1), -(/9+2), — (£ + 3), ••• and poles at a + η, a + η + 1, a + η+2, •••.

If a=0, then E(x) has only zeros and the kernel function is the one of
class I originally. Now, we assume a> 0 and we take {η + k — 1}Γ as {ak}?,
{a + η+k — 1}Γ as {ck}, the other zeros as [dk}T

By Stirling's formula

V27Γ β-«M/»| τ |σ-v* ( | τ | _ ^ o o ) ,

we see that

27re-*lτl\τ\β-«-1 ( | τ | -> oo) for all σ,

so E(x) satisfies the condition (5) of §1.
Hence, our general theorem is applicable to this transform.
In this case, we can interpret the meaning of [E2{D)]"1 as

[E2{D)Γf(x) = ί f(x-t)e-ete^dt,
•J-oo

because

Γ t
Γ(ct + η—s) = I e~e e(a+η) e~st dt ms <a + η.

(b) D. V. Sumner [4] pointed out that for the inversion formula of integro-
differential type the operating order of the integral and the differentiation is
essential using the convolution transform

= I H{x-i)φ{t)dt (x: complex),
• ' - o o

where

H(x) = [e-2x-\-2e-χcosτrβ + l]-1, 0 < β

After the differentiation this becomes the convolution transform with the
kernel
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and the inversion function — —cos πμs ^ g Q ^jg c a g e j g s o m e m o c [ i n e c l o n e of
5Sill 7Γ5

ours.

(c) The integral transform

F(X)= 7r-v* j e~XT'Uv (~γXτ) Φ(T) dT

(v: real, > 1/2, Iv: modified Bessel function of order v) becomes, after an ex-

ponential change of variables, the convolution transform with the kernel G(t)

=τr-1/2expj —ί-*-* Uθ-72) and the inversion function F{s)= Γ ^ + v~5^

(d) The integral transform

F(X)=

(k, μ :real, / A + 1 / 2 > ^ > 0 , MkilL\ Whittaker's function) becomes, after an ex-

ponential change of variables, the convolution transform with the kernel G(t)

= exp j — e~t j. M^μie"1) and the inversion function
( 2 J

(e) The modified Meijer transform

F(X)= [ e'^Wk+1/

(k,m : real, 3k—m — 1 > 0) becomes, after an expontial change of variables, the

convolution transform with the kernel G(t) — expj — — e ι \Wk^λι%Ίΐi{ei~) e~u and

with the inversion function
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These integral transforms (c), (d), (e) are discussed by our general theorems.

6. Representstion theorem. In this section we shall have necessary and
sufficient conditions for f(x) to be represented as convolution transform

= fG(x-t)da(t)

with a(t) in some class, where the kernel G(t) is defined as in §1.
If f(t) is integrable on every finite interval, then from the definition of

operator [E2(D)]'\

[E2(D)Yif(x)= [G*(x-t)f(t)dt,

whenever the integral converges.
This transform is a convolution transform of class II (or III) [2], so if we

n

interpret the operator E2(D) as lim JJ (1 — D/ck)eD/Ck, then from the familiar

theorem [2, p. 131, 132] E2(D)[E2(D)]'1f(x)=f(x) at all continuity point x oίf(x).

THEOREM 7. Necessary and sufficient conditions that

f(x) = ΪG{x-i)da(t),
J -oo

where <x(t) € f are :
A. [£2φ)r/(x)£C~(-oo,oo);
B. {E2(D)yι f(x) =

C. E

PROOF. By the well known theorem [2, p. 158] the necessity of A, B, C
is obvious, noticing

and Gx(t) £ class I.
Conversely, we have to establish their sufficiency. Again, by the same

theorem there exists a(t) non-decreasing
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[E2(D)Γf(x) =

It is familiar [2, p. 52] that Gx(x)z C°°( — oo < x < oo) and that for any
positive number p and R

\Ex(σ+iτ)\ ~

uniformly in the strip |σ| rg R.
Hence, for all positive integer n the integral

( 1) - L J^l esx ds

coverges uniformly for x.
If D stands for differentiation with respect to x and we define E2,n(D)

n

= Π (l-D/ck)eD/Ck, then, using the equation E2!n(D)esx = esx E2,n(s), we have

say.

Differentiation under the integral sign is justified by the uniform conergence
of the integral (1).

By the condition (5) of §1, we have

Hence, by Lebesgue's dominated convergence theorem we obtain

lim Kn(x) = G(x)
7i-+oo

uniformly for xe ( — oo, oo).

As the proof of Theorem 5 it is shown that for all n the transform

I Kn(x—t)da(t) converges, if and only if the transform I G(x — t) da(t) con-

verges and that the transform converges uniformly for x in any finite interval.
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From this fact and Theorem 5 we have

f(x) = lim E2,n(D)([E2(D)Γf(x)) = lim fκn(x-t) da{t)
n-» oo n—*oo J _ o o

00 = ΪG(x-t)da(t)

as desired.

It was shown in this proof that

It is evident that

(at) dt = ι,

so by the Lebesgue's theorem we obtain

Since

\\G(t) - Kn(t)h ^ \\G(t) - Kn(t)\\l/p\\G(t) - KMWl-1'" <

we have

lim \\G(t) - Kn(t)\\P = 0 (l^P^oo).

THEOREM 8. Necessary and sufficient conditions that

βχ)= ΓG(x-t)φ(t)dt

with \\φ{t)\\p ^ M, 1< p^oo, are:

A. [E2(D)Γf(x) e C- (- oo < x < oo)

B. \\ExAmKlV)rγAx))\» ^M » = 0,1,2, .

PROOF. This theorem may be established just as in the preceding theorem

except the relation (*). However, by the preceding result, we have
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[{G(x-t)-Kn(x-t)}φ(t)dt ^ \\G-Kn\\Q'\\<P\\P ^ M\\G-Kn\

Thus we have our desired resut.

The proof of the following theorem goes exactly as the preceding theorem.

THEOREM 9. Necessary and sufficient conditions that

f(x) = fG(x-t) da(t)

with oί(t) of total variation not exceeding M are:

B. WEUDXlE^DY'fixM, =g M n=θ'l, 2,....
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