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ON THE EXISTENCE OF O CURVES^
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Introduction. In early this century, Perron [5] (also, cf. [1]) has shown
the followings: There exists a ^-parameter family of solutions, which tend
to zero as time increases infinitely, of the system

( E) x = Ax + fit, x),

under the conditions

(Ci) k characteristic roots of the constant matrix A have negative real
parts

and

( O βf^x) is continuous and of the class O(||Λ:||) for \x\ small and t
large, that is, for any 8 > 0 there exist T g: 0 and δ > 0 such that

\\f(t,x)\\^ε\\x\\

if t^T and \\x\\ ^ δ, where ||.x|| denotes a Euclidean norm.

Moreover, if the condition

(c3) for given £>0, there exist δ > 0 and T ^ 0 such that

\\f(t,x)-f(t,y)\\^e\\x-y\\

if t^T, | | * | | ^ δ , \\y\\^S

is satisfied, then for any given solution x*(t) of the system

x = Ax

remaining near the trivial solution, we can find a solution x(t) of (E)
satisfying

*) This work was partly supported by the Sakko-kai Foundations.
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\\x{t) - x%t)\\ ->0asί-^oo.

In this article, a solution which tends to zero as t —• °o will be called
an O-curve, and we shall discuss a similar problem to the above, that is,
the existence of O-curves of the system (£) by replacing the conditions (c2)
and (c3) by the condition

(c4) there exists a continuous function λ(ί, oί) such that

\\f(t,x)\\^X(t,a), if \x\\^a

and that

(L) f f . . . f λ(ίJ,,Λ)ώpώJ,_1...ώ1<oo

for any <2 ̂  0,

where >̂ is some positive integer which will be given in theorems. Here,
we shall apply similar arguments to those used in the previous paper [3].

As was stated in [1], under the conditions (cχ)9 (c2) and (c3), such k-
parameter family of O-curves consists a ^-manifold, and moreover, it is
obvious that if A has a characteristic root with the positive real part, then
the trivial solution of (E) is unstable under the condition (c2). However, in
our case, even if A has a characteristic root with the positive real part,
and even if fit, 0) = 0 for all t g: 0, the trivial solution of (25) is not
necessarily unstable (see Example).

We can discuss the same problem for more general systems by assuming
the existence of Liapunov functions. However, for simplicity, we shall only
consider a linear system and its perturbed system.

1. We shall consider a linear system of differential equations with
constant coefficients

where x is an ^-vector and A is a real (n, n)-matrix.
First of all, we shall prove the following lemma.

LEMMA 1. There exists a real non-singular matrix P(t) such that both
of P(t) and P(t)~ι are continuous and bounded on [0, oo) and that by the
transformation x=P(t)y, the system (1) is transformed into a system
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dy _ Δ'
dt

where A = diagCAj, , Am), Aj is an (k}, k})-matrίx of the form

51

( 2 )
1 -a, 0

0

0

0 0 1 ctj >

0" = 1, , m)

(if kj = 1, Aj = ctj), ki+ +km = n, and a5 is the real part of a charac-
teristic root of A.

PROOF. By well-known normalization, there exists a real non-singular
constant matrix Px such that

Px"1 APλ = diagCΛ, , As, A's+1, , A'r) .

Here, Aj is an (kj9 ^^-matrix of the form (2), where CLj is a real characteristic
root of A O'== l, ,5), and A} is an (k'j9^y)-matrix of the form

\SS O "

E S} O

O

O

O O O E Sj ι

j = 5 + l, , r ) ,

where }̂ is even (if k) = 2, A} = 5^), E and O are the unit and the zero,
respectively, (2, 2)-matrix,

and ctj ± iβj (β, Φ 0) are characteristic roots of A. Let Q)(t) be denned by

/ cos(βjt) sin(βjt)
Q'jif) =

\ -s\n(βji) cos(βjt)

and let Q/ί) be the (k'j9 ̂ })-matrix of the form
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Qi(t) = diag(QXί), » ΩX*)) 0' = s + 1 , , r) .

Putting

Fa(ί) = diagC^, • - . , £ . , Q.+1(ί), > Qr(f)),

where £j is the unite (kj, &j)-matrix, the transformation :r = PχP2(f)z trans-

forms the syetem (1) into a system

dz ^

dt

where C = diag(A1? , As, As'+i, , A'r') and A- is the (£}, ^^ )-matrix of

the form

oLjE O O

E cCjE O

= (j = 5 + 1 , . . . , r ) .

O E cίjl

Finally, we can find a non-singular matrix Rj such that

R?A; RJ = diag(A;, A*), j - 5 + 1 , . . . , r,

where A* is of the form (2) and the order of A* is k)/2. Let P 3 = diag(JEj,

• • . , £ , , Rs+ι, , JRr). Then, the matrix P(t) = PλP2(t)Pz is the required

one.

By Lemma 1, we can find a non-singular real (n, n)-matrix P(t) such that

both of P(t) and P(t)~ι are continuous and bounded on [0, °°) and that by

the transformation

( 3 ) x=P{t)y

the system (1) is transformed into a system

( 4 )

where δ is a constant real (n, n)-matrix of a form
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Here, Bv is an (nV9 w^-matrix of the form

0 0

1 0

01

0

0 0 1 0

(if nv=l, Bv = 0), C is a (g, g)-matrix and D is a (k9 &)-matrix,
-\-k= n. All characteristic roots of C have positive real parts and those of D
have negative real parts. Let y be decomposed in the following way:

y = (3Ί, •• ,yι,z>u)

and

where JΊ, is an v vector (i/= 1, , I), z is a g-vector, u is a ^-vector and yj
is a scalar (7' = 1, , nv v = 1, , I). Now, assuming that nλ ^ n2 ^
^ /2Z, we shall put

( 5 )

u — u

- (3V + 1
, 3

+1
) C ; = i >

where πij is the largest integer v such that Z ^ v ^ l and nv^j-{-l. Morover,
we put mo = l + q and wo = v. Obviously, this transformation is non-singular
and tranforms the system (4) into a system

( 6 ) ~

Here, A* = Z), -B* is the (mO9mo)-matrix diag (O "̂, C) and C* is the
matrix (£j, O )̂ (j = 1, — , 7ix — 1), where O* is the zero (/, Z)-matrix, E5 is
the unit (WJ, mj)-matrix and Oj is the zero (m j 5 m^ λ — mj)-matrix (it must be
noted that m0 ^ Z ^ πιx ^ §: mWl_i). In the case where Z = 0 (or Wj = 1),
the system (6) becomes
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where A*= D and 5 * = C (or £ * = diag(O*, C)) &nά v = z (or t; = (y,1 , ,

2. We consider a perturbed system

(7) -g- = A*+./(*,*)

of the system (1). It is the purpose of this article to prove the following
theorem.

THEOREM 1. We shall denote by p the maximum degrees of the
elementary divisors of characteristic roots of A with zero real parts if such
a root exists, and otherwise we shall put p — \. Suppose that f{t,x) is
continuous on [0, °o) x Rn (i?n represents the Euclidean n-space) and satisfies
the condition (c4).

Then, there exists at least one O-curve of (7).
Furthermore, if A satisfies the condition (cλ), then there exists a k-

parameter family of O-curves of (7).

In the proof of this theorem, we shall apply the following lemma (for
the proof, see [4]).

LEMMA 2. Suppose that f(t, x, y) and g(t, x, y) are continuous and
bounded on [a,b]xRnxRm. Then, for given (x0,y0) £ Rn x R m there exists
a solution (x(t), y(t)) of the system

such that x{a) — x0 and y{b) = y0.

3. Now, we shall prove Theorem 1.
As was stated in 1, the system (1) can be transformed into a system of

the form (6) by transformations of the forms (3) and (5). By these trans-
formations, the system (7) will be transformed into a system

( 8 )

4 ^ = A*u + F(t, u, v, w)
at

dv
~dt

~~dt

= B*v + G(t, u, v, w)
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where w = (wu ,wv_λ). In the above, if p — \ the system (8) is considered
to be

4 ^ - A*u + F(t, u, v)
at

4 = B*v + G(t, u, v).4
at

By the properties of these transformations, the condition (c4) implies that

F(t, u, v, w), G(t, u, v, w) and Hj(t, u, v,zv) (j = 1, , p — 1) are continuous

on the domain

D = [0, oo) x Rk x R™ x Rn-k-m 9 m = z mθ9

and that there exists a continous function λ*(£, α) satisfying

J J J λ*(ί p , a)dtpdtp-.1 ---dtx<oo (for any Λ ̂  0)
0 ίj ίp_!

and

|| F(t9 u, v, w)\\9 \\G(t, u, v, w)l \\Hj(t, u, v, w)\\ ̂  λ*(f, a)

(7 = 1, ,/) —1) for any (ί, w, τ;, w) such that ί € [0, 00) and max{||w||, ||t;||, \\w\\]

Since all characteristic roots of A* have negative real parts, we can find
a Liapunov function V(t, u) which is continuous in (t, u) on [0, 00) x Rk and
which satisfies the conditions

i) \\u\\^Vit,u)^K\\u\\,

ii) \V(t,u)-V(t,u)\^K\\u-u\\,

iii) V(t, u) = lim -f- {V(t+h, u + SA*u) - V(t,«)} ̂  - cV(t, u),
δ->+0 0

where K and c are positive constants. On the other hand, the real part of

each characteristic root of B* is positive or zero and in the latter case, the

corresponding elementary divisor is linear, and hence there exists a continuous

Liapunov function W(t, v) defined on [0, 00) x Rm and satisfying the similar

conditions to (i) and (ii) with the constant K and the condition

iv) W(t, v) = lim JL {W(t+δ, v + lE*v) - W(t, v)} ^ 0 .
δ + o 0
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For any given oί> 0 we can find a constant T = T(ά) Ξ Ϊ 0 such that

A,(T)< Λ, έ I XA^T) + E Λ,(T) Γ < 4K2 Λ2,
j = 2 I y = l J

where

/ί) = I f I λ*fo

Let us define F*(£, w, t>, w), G*(ί, u, v, w) and ί/*(ί, u, v, w) by replacing
(ί, w, τ;, w) in F(ί, w, v, w), G(ί, u, v, w) and f/j(ί, u, v, w), respectively, by
(t,φ(\\u\\)u,φ(\\v\\)v, φ(\\w\\) zv), where

1 ( r = 0 ) .

Obviously, F*(t9 u, v, zv), G*(t, u, v, zv) and Hj(t, u, v, zv) (j = l, , p — 1) are
continuous, and the norms of those are bounded by X*if, 2Kcc) on Zλ

If we set

fit, u, v, w) = p(M|) A*M + F*(ί, M, v, w)

g(t, u, v, w) = ^(ll^ll) B*v + G*(£, w, t;, w)

and

hj(t,u,v,w) = (̂Hte IDQw^! + Hf(t9u,v,w) ( i = l , ,/> —1),

these functions are continuous and bounded on D if t is restrained in a finite
interval. Therefore, by applying Lemma 2, for any given constants a, b
(b > a ^ 0) and u0 € Rk, we can find a solution (u(t)9 v(t\ w(t)) of the system

—3— = /(£, u, v, zv), —j- = git, u, v, zv),
at at

such that

w(α) = u0, v(b) = 0 and w(b) = 0.

If we can see that
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( 9 ) \\u(t)\\,\\v(t)\\,\\w(t)\\^2Ka on [a,b],

then (u(t), v(t), w(t)) is obviously a solution of the system (8) on [a, b].
Assuming that \\uo\\ <cί and a^T(ά), (9) will be easily shown: So long as
WOil, \\v(t)\\^2Ka, we have

(10) 4 - V(t9 u(i)) ̂  - cF(*, u(t))
at

4τW(t,
at

for almost everywhere, and hence, these inequalities and the assumptions

\\u(a)\\ <a, a^T(a\ v(b) = 0

imply that W O II, M O II = 2 K a o n [«»&J a n d t n a t

(11) KOH ^ X f λ*(5,

Further, from the inequalities (11) and

δ δ

llw/011^ f Ilwj-.WHΛ + Γ λ*(5,2Kα)Js 0 = 1. •••./»-!),

it follows that

(12) uncoil ^ κxs+1(t) + Σ A,(0 0* - l, , P - Ϊ ) ,

and hence we have ||w(OII 1=k2Kcί on [a,b].
For given <2 and u0 such that a~^T(ά), u0 € i?fc and ||z/oll < #, let

(w(ί 5), z;(ί 5), tf(ί s)) be a continuous function defined on [α, 00) such that
it is a solution of the system (8) on [a, s] satisfying the conditions

u(a s) = u09 v(s s) = 0 and w(s s) = 0

and that

w(ί 5) = w(s 5), v(s 5) = 0 and w(ί 5) = 0 for all t^s

for any given s ^ a. Since we have
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\\u(t;s)\l\\v(t;s)\\,\\w(t;S)\\^2KcC on [a, co)

by (9), the family {(u(t 5), v(t s), w(t ;s));s^ a] are uniformly bounded and
equicontinuous on any bounded subinterval of [a, 00). From this, it follows
that there exists a divergent sequence {sμ}, for which the sequence
{(u(t sμ), v(t sμ), w(t sμ))} converges a solution (u(t), v(t), w{t)) of the system
(8). Obviously, it satisfies the conditions u(ά) = u0 and

\\u(t)\\,lv(t)\\, \\w(t)\\^2Ka on [a, 00).

Moreover, since each (v(t s), w(t 5)) satisfies the conditions (11) and (12) on
[α, 00)? so does (v(t\ iv(t)). Hence, we obtain

v(t) -> 0 , w(t) -^0 as t -> 00 ,

because Λ/ί)-^0 as ί->oo (^"=1, ,/>—1). Referring the inequality (10),
we can easily see that

u(t) —> 0 as t —> 00 .

Thus, (w(ί), v(ί), ^ ( 0 ) is an O-curve of the system (8). Hence, by the
properties of transformations of the forms (3) and (5), we completely prove
Theorem 1.

4. Let x\t) be any bounded solution of the system (1) (or (7)), and
consider the transformation

X = χ*(t) + y

in the system (7) (or (1), respectively). Then, we have

= Ay + g(t,y),

where g(t,y) = flt9x*(t) + y) (or —f(t,x*(t))). If f(t,x) in (7) satisfies the
condition (c4), then g(t, y) also satisfies the condition (<r4), where λ(ί, Λ) will
be replaced by λ(ί, Λ+M) (or X(t,M), respectively) and M i s a bound of x%t).

Thus, the following theorem is an immediate consequence of Theorem 1.

THEOREM 2, Under the same assumptions in Theorem 1, for any
bounded solution x*(t) of one of the system (1) and (7) there exists a
solution x{t) of the other system such that



ON THE EXISTENCE OF (̂ -CURVES 59

\\x(t) - x*(t)\\ -> 0 as t -> oo .

Furthermore, if A satisfies the condition (c^), then there exists a k-

parameter family of such solutions.

5. The results above can be extended for functional differential equations.

For a fixed constant r > 0, let Cn be the space of all continuous i?n-valued

functions defined on [ — r, 0], and let

Mr = sup{||^)|| θe[-r,0]}

for a φ € Cn. For any continuous Rn -valued function x(t), we shall denote by
xt the function of Cn such that

and by i:(ί) the right-hand derivative of x(t).

In the system

(13) x(t)=f{xt) + X{t9xt),

we assume that f(φ) is a continuous linear function of Cn into Rn and that
X(ί, >̂) is a completely continuous i?w-valued function defined on [0, oo) x Cn.
Let Si be a linear operator such that

t φ(θ) — r Ξ̂ θ < 0

(9 = 0

for >̂ € Cw, for which the right-hand derivative φ(θ) exists for each θ € [ — r, 0).
By referring Hale's result in [2], we can prove the following theorem by

using the arguments similar to those in the proof of Theorem 1. The proof
is omitted (refer [3]).

THEOREM 3. Let p be the maximum dimensions of the eigen spaces of

the spectra of SI with zero real parts if such a spectrum exists, and let

p = l otherwise.
Suppose that there exists a continuous function λ(ί, cί) satisfying the

inequality (L) in the condition (c4) and

\\X(t,φ)\\^λ(t,ά), if IMIr^α
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for any t <Ξ [0, oo) and oί^O and that k spectra of 21 have negative real

parts.

Then, there exists a k-parameter family of O-curves of the system (13).
Moreover, for any given bounded solution x*(t) of the system (13) or

(14) x{t) = f[xt) ,

we can find a k-parameter family of solutions x(t) of the system (14) or (13)
satisfying

II < 0 * ( ) I I > o as t-*oo.

6. In the case where fit, 0) = 0 and A has at least one characteristic root

with positive real part, the condition (c4) is not sufficient for the instability

of the trivial solution of the system (7).

EXAMPLE. We consider a equation

(15) 4*
at

where

fit, x) = - ( α + 6 + 1) e~ht sin [ebtx]

and a, b are positive constants. Obviously, fit, 0) = 0 and fit, x) satisfies the

condition (c4) and the Lipschitz condition

\fit,x) -f(t,y)\^(a + b + l)\x-y\ .

However, the trivial solution of the system (15) is asymptotically stable. In

fact, let y=ebtx. Then, we have

(16) ^ - (a + b)y - (α+& + l)sin3> - g(y).

Since #(3/) = — y + O(yz), the trivial solution of the system (16) is asymptotically

stable, and hence so is that of the system (15).

However, we shall obtain the following theorem.

THEOREM 4. Under the assumptions (c4) with p = 1 and

(c5) Λt,0) = 0 for all t^O,
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if there exists a characteristic root of A with the positive real part, then
the trivial solution of the system (7) is not uniform-stable.

PROOF. Let a be the real part of a characteristic root of A with the
positive real part. Then, by Lemma 1 there exists a non-singular matrix
Pit) such that P(i) and Pip)'1 are continuous and bounded on [0, <χ>) and
that the transformation x—Pip)fy\, where y is a scalar and z is an (n — ί)-

\z)
vector, transforms the system (7) into a system

(17) Jg=ay + g(t,y,z), ^ = A.(j) + h(t,y,z) .

Clearly, there exists a continuous function λ*(ί, a) such that

λ*(f, a)dt<oo (for all a ^ 0)Γ

and that if \y\^a and \\z\\ ^ a, then | g(t, y, z) | ^ λ*(ί, ά) and \\h(t,y,z)\\

^ λ*(f, Λ) for all ί ^ 0.
Now, suppose that the trivial solution of the system (7) is uniform-stable.

Then, the trivial solution of the system (17) also is uniform-stable. Hence,
for any S > 0, there exists a δ(£) > 0 such that for any t0 ^ 0 , if \yo\ < δ and
|| *o II < δ , then \y(t ;yo,zo,to)\ <S and \\z(t y0, z0, to)\\ < € for all t^t0,
where (y(t y0, zQ, t0), z(t 3̂ 0, Zo, t0)) is a solution of the system (17) through
(to,yo,Zo)- Since

y(t y0, z0, t0) = <!»<'-'•> {y0 + J eaίt°~s) g(s, y(s y0, * „ ί0), z(s y0, z0, ί0)) ̂ 5},

we have

f
I y\ι ? ̂ o? -^OJ f o ; I == £ 113Ό I I l y ^ y j ' v 5 J ^ O ? -̂ o> ί-oΛ z w > 3̂ 0? s 0 , i

For a given j>0, yo ^ 0, we can find a T(|j>0 |) ^ 0 such that

J 2

Hence, if 0 < |j>o|<δ(£), \\zQ\\ < δ(£) and ί0 = T'Cl̂ o I), then we have
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Hence, there arises a contradiction. Thus, the trivial solution of the system (7)
is not uniform-stable.
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