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ON THE EXISTENCE OF O-CURVES®
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Introduction. In early this century, Perron [5] (also, cf. [1]) has shown
the followings: There exists a k-parameter family of solutions, which tend
to zero as time increases infinitely, of the system

(E) &= Az + £(t, 2),

under the conditions

(c;) & characteristic roots of the constant matrix A have negative real
parts

and

(c,) f(¢ x) is continuous and of the class o(||z|) for |x|| small and ¢
large, that is, for any € > 0 there exist 7'=0 and & > 0 such that

I/, o)l = &l
if t=7T and |x|| =9, where ||x| denotes a Euclidean norm.
Moreover, if the condition '
(c;) for given &>0, there exist 8 > 0 and 7°=0 such that
I/, x) — ft, ) = Elz—yl
if t=T, |z =3, [y =3

is satisfied, then for any given solution x*(¢) of the system
= Ax

remaining near the trivial solution, we can find a solution () of (E)
satisfying

*) This work was partly supported by the Sakko-kai Foundations.
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|lx(t) — x*(@)|| —0 as t — oo

In this article, a solution which tends to zero as ¢ — oo will be called
an O-curve, and we shall discuss a similar problem to the above, that is,
the existence of O-curves of the system (E) by replacing the conditions (c;)
and (c;) by the condition

(c,) there exists a continuous function M#, &) such that
[/t D) =\t a), if x| =a

and that

(L) ff ---f),(tp,d)dtpdtp_l°'-dtl<00
0 21

2%

for any a =0,

where p is some positive integer which will be given in theorems. Here,
we shall apply similar arguments to those used in the previous paper [3].

As was stated in [1], under the conditions (c,), (c;) and (c;), such k-
parameter family of O-curves consists a k-manifold, and moreover, it is
obvious that if A has a characteristic root with the positive real part, then
the trivial solution of (E) is unstable under the condition (c;). However, in
our case, even if A has a characteristic root with the positive real part,
and even if f(2,0)=0 for all £=0, the trivial solution of (E) is not
necessarily unstable (see Example).

We can discuss the same problem for more general systems by assuming
the existence of Liapunov functions. IHowever, for simplicity, we shall only
consider a linear system and its perturbed system.

1. We shall consider a linear system of differential equations with
constant coefficients

dx
1 _ = ASL‘
( ) lt ’

where x is an n-vector and A is a real (n, n)-matrix.
First of all, we shall prove the following lemma.

LEMMA 1. There exists a real non-singular matrixz P(t) such that both
of P(t) and P(t)™' are continuous and bounded on [0, =) and that by the
transformation x=P(t)y, the system (1) is transformed into a system
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where A" = diag(A,, -+, Ay), A; is an (kj, k;)-matriz of the form

d,~00 ...... 0
16!,-0 ...... 0 )

(2) A.i= (]:17"'77”)
Qececeos ()]_a]

(if k;=1, A;=a;), ky+ +++ +k, = n, and a; is the real part of a charac-
teristic root of A.

PROOF. By well-known normalization, there exists a real non-singular
constant matrix P, such that

PI_IAPJ = diag(Al,. b 1A31A;+1,' ® .,A-’T)'

Here, A; is an (kj, k;)-matrix of the form (2), where «; is a real characteristic
root of A (j=1,+++,s), and Aj is an (&}, £j)-matrix of the form

00---0ES,

where £ is even (if k; =2, A;=S,), E and O are the unit and the zero,
respectively, (2, 2)-matrix,
7 B;
S i=

—B; a;

and a; =+ iB8; (B; # 0) are characteristic roots of A. Let Qj(#) be defined by

cos(B;t) sin(B;t) )

Q) = ( —sin(B;t) cos(B;t)

and let Q,(¢) be the (%}, kj)-matrix of the form
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Q,(t) = diag(Qj(e), - -+, Qi) (J =s+1,+++,7).
Putting

P2(t) = diag(Eb ) Es ’ Qs+1(t), ) Qr(t)) >

where E; is the unite (k;, k;)-matrix, the transformation x = P,Py(t)z trans-
forms the syetem (1) into a system

dz

az _

dt z
where C = diag(A,,++-,A,,Al4,-++,A)) and A} is the (&}, kj)-matrix of
the form

oaGE O «---- O
EQE-«++- 0

A} = (j =s+1, ,7)
Oeoeee E a,E

Finally, we can find a non-singular matrix R; such that
R;* A R; = diag(Af, A}), j=s+1,+«-,7,
where A} is of the form (2) and the order of A} is kj/2. Let P, = diag(k,,
e« ,E Ry, -+, R,). Then, the matrix P(¢) = P,P,(t)P, is the required
one.
By Lemma 1, we can find a non-singular real (n, n)-matrix P(¢) such that

both of P(t) and P(¢)-' are continuous and bounded on [0, o) and that by
the transformation

(3) x = Pt)y

the system (1) is transformed into a system
(4) 4y — By,

where B is a constant real (n, n)-matrix of a form
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B = diag(B,,-- -, B,,C, D).

Here, B, is an (n,, n,)-matrix of the form

00 «ceeee0
10 ceenns 0

B, = w=1,---.])
00-=--- 10

(if n,=1, B,=0), C is a (g, ¢)-matrix and D is a (&, k)-matrix, n,+ «++ +n,+q
+k=n. All characteristic roots of C have positive real parts and those of D
have negative real parts. Let y be decomposed in the following way:

y=(y1,"',_’)’uz,u)
and
yv:(yvl""vyvnv) (V:L"',l),

where v, is an n,vector (v=1,-++,0), 2 is a g-vector, # is a k-vector and y,’
is a scalar (j=1,+++,n,; v=1,-+-,l). Now, assuming that n,=n,=-.-.
= n,, we shall put

u=u
(5) 7’2(3’11,3’21,"'»3’:1,2)

w; = (yljﬂ’ °s ’ym;j“) (j:l’ ct n1_1)>
where m; is the largest integer v such that /=»2z=1 and »n,=j+1. Morover,

we put m,=I+q and w,=v. Obviously, this transformation is non-singular
and tranforms the system (4) into a system

(6) L—pr, _pr, L, (=10
Here, A*=D, B* is the (m,, m,)-matrix diag (O*,C) and C} is the (m;, m;_,)-
matrix (E;,0;) (j =1,+++,n,—1), where O* is the zero (/,/)-matrix, E; is
the unit (m;, m;)-matrix and O; is the zero (m;, m;_,—m;)-matrix (it must be
noted that my=I{=m, =+++ =m,_;). In the case where /=0 (or n, = 1),
the system (6) becomes

du _ pw, 4V _ Bxy
dt
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where A*¥=D and B* = C (or B* = diag(O*,C)) and v=2 (or v = (y,",*++,
yll, z))'

2. We consider a perturbed system

(7) %”%-—-Ax+f(t,x)

of the system (1). It is the purpose of this article to prove the following
theorem.

THEOREM 1. We shall denote by p the maximum degrees of the
elementary divisors of characteristic roots of A with zero real parts if such
a root exists, and otherwise we shall put p=1. Suppose that f(t,x) is
continuous on [0, 00) X R™ (R™ represents the Euclidean n-space) and satisfies
the condition (c,).

Then, there exists at least one O-curve of (7).

Furthermore, if A satisfies the condition (c,), then there exists a k-
parameter family of O-curves of (7).

In the proof of this theorem, we shall apply the following lemma (for
the proof, see [4]).

LEMMA 2. Suppose that f(t, x, y) and ¢, x,y) are continuous and
bounded on [a,b]X R"XR™. Then, for given (X, 7y,) € R"XR™ there exists
a solution (x(t), y(t)) of the system

dy _

dx _
W’"f(t,x:y)’ —dt——!](t,x,y)

such that x(a) = x, and y(b) = y,.

3. Now, we shall prove Theorem 1.

As was stated in 1, the system (1) can be transformed into a system of
the form (6) by transformations of the forms (3) and (5). By these trans-
formations, the system (7) will be transformed into a system

du _ a4
9L = A%u 4 F(t,u,v,w)
(8) @:B‘X‘U—FG(t’u’v,w)
dt
%chwf-l‘FHj(t,u,v,w) (G=1,++,p-1),
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where w=(w,,+++,w,_,). Inthe above, if p=1, the system (8) is considered
to be

du _ px

(E_A u + F(t,u,v)
dv _ ps

z}lt = B*v + G(¢,u,v).

By the properties of these transformations, the condition (¢,) implies that
Fit,u,v,w), G, u,v,w) and H,t,u,v,w) (j=1,+++,p—1) are continuous
on the domain

D =1[0,0) X R¥ X R™ X R** ™ m=m,,

and that there exists a continous function A*(¢, @) satisfying

f f .. f N (2, )dt,dt, , +«-dt, < oo (for any a = 0)
0 t topa

and

| F @, u, v, w)|, |G, u, v, w)|, | Hyt, u, v, w)| = N2, a)

(j=1,+--,p—1) for any (¢,u, v, w) such that <0, o) and max {||u||, [v|, [w]]}
=a.

Since all characteristic roots of A* have negative real parts, we can find
a Liapunov function V(#,u) which is continuous in (¢,%) on [0, ) X R* and
which satisfies the conditions

i) lu| =V, u) = Klul|,
ii) \V(t,u) — V(t,u)| = Kllu—u|,
iii) V(t,u) = Tim %— V48, u + 8A%) — V(t,0)} = — Vit w),

where K and ¢ are positive constants. On the other hand, the real part of
each characteristic root of B¥ is positive or zero and in the latter case, the
corresponding elementary divisor is linear, and hence there exists a continuous
Liapunov function W(¢,v) defined on [0, 0)X R™ and satisfying the similar
conditions to (i) and (ii) with the constant K and the condition

V) W) = lim L (W8 v+ 8B) — W 0)} =0,
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For any given @ > 0 we can find a constant 7 = T(a) = 0 such that

v=1

AN < a, i {KAj(T) + 5 A,,(T)}2 <4K?a?,

=2

where
A,-(t)zf f f A¥(t5, 2Ka) de;dt;_y o+« dt, .
t t tsa

Let us define F*(¢, u, v, w), G¥(, u,v,w) and H}(, u,v, w) by replacing
& u,v,w) in F@,u,v,w), Gt u,v,w) and Ht u,v,w), respectively, by
& @(lu])u, p(|v]) v, @(|wl)w), where
min{l, AK—a} (r#0)
P(r) = r
1 (r=0).

Obviously, F*(¢, u, v, w), G*(t,u, v, w) and Hj(t, u,v,w) (j=1,+++,p—1) are
continuous, and the norms of those are bounded by A*(¢,2Ka) on D.
If we set

&, u, v, w) = p(|lu]) A*u + F*@¢, u, v, w)
(&, u, v, w) = @(||v]|) B*v + G*(¢, u, v, w)
and
bt u, v, w) = p(lwlDCiw;_y + Hi @t u,v,w) (J=1,+-+,p—1),

these functions are continuous and bounded on D if ¢ is restrained in a finite
interval. Therefore, by applying Lemma 2, for any given constants a, b
(b > a=0) and u, € R*, we can find a solution («(2), v(¢), w(t)) of the system

du _ dv _
_d—t '_f(t, u; ‘Z}, 'ZU), gt‘_‘ - g(t’ u; v, ‘ZU),

dwj
dt

= hy(t, u, v, w)

(j———l,"',j)—l)
such that
u(a) =u,, v(b)=0 and w(b)=0.

If we can see that
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(9) @), lv@ll, |[w(®)]| = 2Ka on [a,b],
then (u(2), v(¢), w(t)) is obviously a solution of the system (8) on [a,bd].

Assuming that ||u,| <a and a = T(a), (9) will be easily shown: So long as
lu@ll, |v@)| = 2Ka, we have

(10) %V(::, WD) = — Vit (o)) + KN¥(t, 2Ka)
—j? W, o)) = —Ka*(t, 2Ka)

for almost everywhere, and hence, these inequalities and the assumptions

lw@l <a, a=T(@), v(b) =0

imply that [u(2)], |v(¢)| = 2Ka on [a, b] and that
b

(1) [0l = K [ %G, 2Ka) ds = KA.
t

Further, from the inequalities (11) and

sl éf lw;-i(s)llds +f MG, 2Kayds (j=1,-++,p—1),

it follows that

(12) lws @ = KApr®) + AL G =1ee,p—1),

v=1

and hence we have ||w(t)| = 2Ka on [a,b].

For given a and u, such that a=7T(a), 4, € R* and |ul <a, let
(u(t;s),v(t;s), w(t;s)) be a continuous function defined on [a, o) such that
it is a solution of the system (8) on [a, s] satisfying the conditions

ula;s) = uy, v(s;s) =0 and w(s;s)=0
and that

u(t;s)=u(s;s), v(s;s)=0 and w(;s)=0 for all t=s

for any given s =a. Since we have
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lae(t 5 ), o9, llw;s)| =2Ka on [a, o)

by (9), the family {(u(z;s), v(¢;s), w(t;s));s =a} are uniformly bounded and
equicontinuous on any bounded subinterval of [a, o). From this, it follows
that there exists a divergent sequence {s,}, for which the sequence
{(u(t ;s,), v(t;s,), w(t;s,))} converges a solution (u(t), v(¢), w(¢)) of the system
(8). Obviously, it satisfies the conditions u(a) = 4, and

@), Ho@l, lw®)| =2Ka on [a,co).

Moreover, since each (v(¢;s), w(t;s)) satisfies the conditions (11) and (12) on
[a, =), so does (v(¢),w(t)). Hence, we obtain

v(@t) =0, wit)—0 as t— oo,

because A;(t) >0 as t > o (j=1,---,p—1). Referring the inequality (10),
we can easily see that

u(t) >0 as t— oo,
Thus, (u(2), v(¢), w(t)) is an O-curve of the system (8). Hence, by the
properties of transformations of the forms (3) and (5), we completely prove

Theorem 1.

4. Let x*() be any bounded solution of the system (1) (or (7)), and
consider the transformation

x=x*t)+y

in the system (7) (or (1), respectively). Then, we have

7. Ay + g(t7y) ’

where ¢(¢,y) = f(¢, 2%() + y) (or —f(¢, 2*())). I f(¢ x) in (7) satisfies the

condition (c,), then g¢(¢,y) also satisfies the condition (c,), where Az, @) will

be replaced by Mt, a+M) (or Az, M), respectively) and M is a bound of x*(¢).
Thus, the following theorem is an immediate consequence of Theorem 1.

THEOREM 2, Under the same assumptions in Theorem 1, for any
bounded solution x*(t) of one of the system (1) and (7) there exists a
solution x(t) of the other system such that
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|lx(t) — x*@)| =0 as &t— 0.

Furthermore, if A satisfies the condition (c,), then there exists a k-
parameter family of such solutions.

5. The results above can be extended for functional differential equations.
For a fixed constant > 0, let C* be the space of all continuous R"-valued
functions defined on [—7, 0], and let

i@l = sup{lle®)]; 6 < [—7, 0]

for a p ¢ C*. For any continuous R"-valued function x(t), we shall denote by
x, the function of C* such that

z(0) = x(t + 6), 6 <[~r,0],

and by i(z) the right-hand derivative of x(2).
In the system

(13) (t) = flx,) + X(¢, x0),

we assume that f{(@) is a continuous linear function of C" into R" and that
X(¢, @) is a completely continuous R™-valued function defined on [0, o) X Cm.
Let U be a linear operator such that

p6) -—-r=6<0

[ﬂ¢K®=={

fp) 6=0

for @ € C*, for which the right-hand derivative @(6) exists for each 6 € [—r, 0).
By referring Hale’s result in [2], we can prove the following theorem by

using the arguments similar to those in the proof of Theorem 1. The proof

is omitted (refer [3)).

THEOREM 3. Let p be the maximum dimensions of the eigen spaces of
the spectra of W with zero real parts if such a spectrum exists, and let
p=1 otherwise.

Suppose that there exists a continuous function Nt,a) satisfying the
inequality (L) in the condition (c,) and

IXt Pl =M, @), if e, =a
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Sor any t€[0, ) and a =0 and that k spectra of U have negative real
parts.

Then, there exists a k-parameter family of O-curves of the system (13).
Moreover, for any given bounded solution x*(t) of the system (13) or

(14) a(t) = flz,) ,
we can find a k-parameter family of solutions x(t) of the system (14) or (13)
satisfying
|lx(@) — 2*@)| =0 as t—oo.
6. In the case where f(¢,0) = 0 and A has at least one characteristic root

with positive real part, the condition (¢,) is not sufficient for the instability
of the trivial solution of the system (7).

EXAMPLE. We consider a equation

(15) id@t_ — az+ft, ),

where
Jit, ) = —(a+b+1) e’ sin [P'x]

and a, b are positive constants. Obviously, f{(¢,0) = 0 and f{¢, x) satisfies the
condition (c,) and the Lipschitz condition

LAt x) — [, )] = (@a+b+ D]z —y].

However, the trivial solution of the system (15) is asymptotically stable. In
fact, let y=e"x. Then, we have

(16) % =(a+b)y — (a+b+1)siny = ¢(y).

Since g(y) = —y+O(»?*), the trivial solution of the system (16) is asymptotically
stable, and hence so is that of the system (15).
However, we shall obtain the following theorem.

THEOREM 4. Under the assumptions (c,) with p=1 and

(c5) f&,0 =0 forall t=0,
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if there exists a characteristic root of A with the positive real part, then
the trivial solution of the system (7) is not uniform-stable.

PROOF. Let a be the real part of a characteristic root of A with the
positive real part. Then, by Lemma 1 there exists a non-singular matrix
P(¢t) such that P(¥) and P(¢)"' are continuous and bounded on [0, o) and
that the transformation x :P(t)< y) , where y is a scalar and 2 is an (n—1)-

P

vector, transforms the system (7) into a system

dy _ dz _ 4 (Y
a”) D — ay + gt,3,2), 22 = A + bty 2).

Clearly, there exists a continuous function A*(¢, @) such that
f Nt @) dt < oo (for all a=0)

and that if |y| =a and |z] =a, then |¢(z,y,2)] =N, a) and ||A(Z, y, 2)|
=N, a) for all £ =0.

Now, suppose that the trivial solution of the system (7) is uniform-stable.
Then, the trivial solution of the system (17) also is uniform-stable. Hence,
for any &> 0, there exists a 8(€) > 0 such that for any ¢, =0, if |y,| <& and
l=oll <8, then |[y(#;¥0 20, L) <& and ||2(¢; Vo, 20, L) <& for all t=t¢,,
where (¥(£; Yo, 205 £0), 2(£; Y0, 20, o)) is a solution of the system (17) through
(20> ¥o, Zo). Since

¢
y(t > Yos %o tO) = M- {yO + f A g(S, y(s > Yos %o, tO)’ 2(5 s Yos Ros tO)) ds} >
t

0

we have

¢
| ¥(E 5 Yo, Zos o) | = €79 {| o] — f | g(s, ¥(5 5 Yo» 205 o), 2(5 5 Yo, 2o, £0)) | S}
f

For a given y,,y, # 0, we can find a 7(|y,|) =0 such that

f N odt < 1Yl

Z(l4ol) 2

Hence, if 0 < |y,| < 8(&), |20l <€) and £, = T(|y,|), then we have
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|9 300 20, £0)] = 1201 %"\ e,

Hence, there arises a contradiction. Thus, the trivial solution of the system (7)

is not uniform-stable.
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