ON A DECOMPOSITION OF C-HARMONIC FORMS IN A COMPACT SASAKIAN SPACE

Shun-ichi Tachibana

(Received January 16, 1967)
0. Introduction. Let M be a compact regular Sasakian space, $\pi: M \rightarrow B$ the fibering of M. Recently S . Tanno [10] discussed relations between the Betti numbers of M and B by making use of the exact sequence of Gysin. On the other hand it is well known that any harmonic p-form ($p \leqq m+1$) in a compact Kählerian space $M^{2 m}$ is written in terms of effective harmonic forms and the fundamental 2 -form of $M^{2 m}$. The work by Tanno suggests that an analogous theorem is expected in a compact Sasakian space.

In this paper, first we fix our notations in $\S 1$ and introduce a notion of a C-harmonic form in a compact Sasakian space in §4. The decomposition theorem for C-harmonic form will be given in the last section. We shall give only outline of proofs by the following two reasons: (1) the discussions in $\S 2$ and $\S 5$ are similar to that of an almost Hermitian space and a Kählerian space, (2) the results in $\S 4$ are based on straightforward computations though they are rather complicated and it is expected to have a reformulation by Y. Ogawa in a forthcoming paper [4].

1. Preliminaries. ${ }^{1)}$ Consider an n dimensional Riemannian space M^{n} and let $\left\{x^{\lambda}\right\}, \lambda=1, \cdots, n$, be its local coordinates. Denoting the positive definite Riemannian metric by $g_{\lambda \mu}$, the Riemannian curvature tensor and the Ricci tensor are given by

$$
\begin{aligned}
R_{\lambda \mu \nu}^{\omega} & =\partial_{\lambda}\left\{\begin{array}{c}
\omega \\
\mu \nu
\end{array}\right\}-\partial_{\mu}\left\{\begin{array}{c}
\omega \\
\lambda \nu
\end{array}\right\}+\left\{\begin{array}{c}
\omega \\
\lambda \alpha
\end{array}\right\}\left\{\begin{array}{c}
\alpha \\
\mu \nu
\end{array}\right\}-\left\{\begin{array}{c}
\omega \\
\mu \alpha
\end{array}\right\}\left\{\begin{array}{c}
\alpha \\
\lambda \nu
\end{array}\right\}, \\
R_{\mu \nu} & =R_{\varepsilon \mu \nu}{ }^{\varepsilon}
\end{aligned}
$$

where $\left\{\begin{array}{c}\boldsymbol{\nu} \\ \lambda \mu\end{array}\right\}$ means the Christoffel symbol and $\partial_{\lambda}=\partial / \partial x^{\lambda}$.
Components of a skew-symmetric tensor $u_{\lambda_{1} \ldots \lambda_{p}}$ are considered as coefficients of a differential form :

1) As to notations we follow S. Tachibana [8].

$$
u=\frac{1}{p!} u_{\lambda_{1} \cdots \lambda_{p}} d x^{\lambda_{1}} \wedge \cdots \wedge d x^{\lambda_{p}}
$$

so we shall represent this fact by

$$
u:(u)_{\lambda_{1} \cdots \lambda_{p}}=u_{\lambda_{1} \cdots \lambda_{p}} .
$$

The exterior differential $d u$ and codifferential δu are given by the following formulas:

$$
(d u)_{u_{1}+\ldots \lambda_{p}}=\nabla_{\mu} u_{\lambda_{1}, \ldots \lambda_{p}}-\sum \nabla_{\lambda_{t}} u_{\lambda_{1}, \ldots \lambda_{2}-\mu \mu_{1+1}+\cdots \lambda_{p}},{ }^{2}
$$

or

$$
\begin{aligned}
(d u)_{\lambda_{1} \ldots \lambda_{p, 4}} & =\sum(-1)^{i+1} \nabla_{\lambda_{1}} u_{\lambda_{1}, \ldots \hat{\lambda}_{1}, \ldots \lambda_{2, u}}, \quad p \geqq 1, \\
(d u)_{\lambda} & =\nabla_{\lambda} u, \quad p=0,
\end{aligned}
$$

where $\hat{\lambda}_{i}$ means that λ_{i} is omitted,

$$
\begin{aligned}
(\delta u)_{\lambda_{2} \ldots \lambda_{p}} & =-\nabla^{\alpha} u_{\alpha \lambda_{2} \ldots \lambda_{p}}, \quad p \geqq 1,^{3)} \\
\delta u & =0, \quad p=0 .
\end{aligned}
$$

About the Laplacian operator $\triangle=d \delta+\delta d$, we know the following formulas :

$$
\begin{aligned}
&(\Delta u)_{\lambda_{1} \ldots \lambda_{p}}=-\nabla^{\alpha} \nabla_{\alpha} u_{\lambda_{1} \ldots \lambda_{p}}+\sum R_{\lambda_{1}}^{\sigma} u_{\lambda_{1} \ldots \lambda_{1-1} \sigma \ldots \lambda_{p}}+\sum_{j<i} R_{\lambda_{2}, \lambda_{1} \sigma} u_{\lambda_{1} \ldots \lambda_{j-1} \rho \ldots \lambda_{1-1} \sigma \ldots \lambda_{p}}, \\
& p \geqq 2, \\
&(\Delta u)_{\lambda}=-\nabla^{\alpha} \nabla_{\alpha} u_{\lambda}+R_{\lambda}^{\alpha} u_{\alpha}, \quad p=1, \\
& \Delta u=-\nabla^{\alpha} \nabla_{\alpha} u, \quad p=0 .
\end{aligned}
$$

A p-form u is called to be harmonic, if it satisfies $d u=0$ and $\delta u=0$. Thus $\Delta u=0$ holds good for a harmonic form u.

The inner product of p-forms u and v is given by

$$
<u, v>=\frac{1}{p!} u_{\lambda_{1} \ldots \lambda_{p}} v^{\lambda_{1} \ldots \lambda_{p}}
$$

where $v^{\lambda_{1} \ldots \lambda_{p}}$ are contravariant components of v.
2) ∇ means the operator of covariant derivation.
3) We remark that δu has the opposite sign of that in [8].

Especially the norm $|u|$ of u is given by

$$
|u|^{2}=<u, u>, \quad|u| \geqq 0 .
$$

Let $\eta=\eta_{\lambda} d x^{\lambda}$ be a 1 -form and we identify η with the vector field $\eta^{\lambda}=g^{\lambda \alpha} \eta_{\alpha}$. The operator $i(\eta)$ is defined by

$$
\begin{aligned}
(i(\eta) u)_{\lambda_{2} \ldots \lambda_{p}} & =\eta^{\alpha} u_{\alpha \lambda_{2}} \ldots \lambda_{p}, \quad p \geqq 1, \\
i(\eta) u & =0, \quad p=0
\end{aligned}
$$

Let $\boldsymbol{\varphi}=(1 / 2) \boldsymbol{\varphi}_{\lambda_{\mu}} d x^{\lambda} \wedge d x^{\mu}$ be a 2 -form and we define an operator $i(\boldsymbol{\varphi})$ by

$$
\begin{aligned}
(i(\boldsymbol{P}) u)_{\lambda_{\mathfrak{p}} \ldots \lambda_{p}} & =(1 / 2) \varphi^{\alpha \beta} u_{\alpha \beta \lambda_{\mathrm{g}} \ldots \lambda_{p}}, \quad p \geqq 2, \\
i(\boldsymbol{\varphi}) u & =0, \quad p=0,1
\end{aligned}
$$

The exterior product of η or φ and a p-form u are given explicitly by the following formulas:

$$
(\eta \wedge u)_{\alpha \lambda_{1} \cdots \lambda_{p}}=\eta_{\alpha} u_{\lambda_{1} \cdots \lambda_{p}}-\sum \eta_{\lambda}, u_{\lambda_{1} \ldots \lambda_{-1} \alpha \cdots \lambda_{p}}
$$

or

$$
\begin{aligned}
& (\eta \wedge u)_{\lambda_{1} \ldots \lambda_{p+1}}=\sum(-)^{i+1} \eta_{\lambda_{\imath}} u_{\lambda_{1} \ldots \hat{\lambda}_{\iota} \ldots \lambda_{p+1}}, \quad p \geqq 1 \\
& \quad(\eta \wedge u)_{\lambda}=u \eta_{\lambda}, \quad p=0, \\
& (\varphi \wedge u)_{\alpha \beta \lambda_{1} \ldots \lambda_{p}}=\phi_{\alpha \beta \beta} u_{\lambda_{1} \ldots \lambda_{p}}-\sum \phi_{\alpha \lambda_{1}} u_{\lambda_{1} \ldots \lambda_{t-1} \beta \ldots \lambda_{p}} \\
& \quad-\sum \varphi_{\lambda_{\lambda \beta}} u_{\lambda_{1} \ldots \lambda_{j-1} \beta \ldots \lambda_{p}}+\sum_{j<i} \varphi_{\lambda_{,} \lambda_{\iota}} u_{\lambda_{1} \ldots \lambda_{j-1} \alpha \ldots \lambda_{t-1} \beta \ldots \lambda_{p}},
\end{aligned}
$$

or

$$
\begin{aligned}
& (\varphi \wedge u)_{\lambda_{1} \cdots \lambda_{p+2}}=\sum_{j<i}(-1)^{i+j+1} \varphi_{\lambda_{,} \lambda_{1}} u_{\lambda_{1} \ldots \hat{\lambda}_{j} \ldots \hat{\lambda}_{t} \cdots \lambda_{p+2}}, \quad p \geqq 1, \\
& (\boldsymbol{\rho} \wedge u)_{\lambda \mu}=u \boldsymbol{\varphi}_{\lambda \mu}, \quad p=0 .
\end{aligned}
$$

Now suppose that M^{n} is compact orientable. Then the global inner product of p-forms u and v is defined by

$$
(u, v)=\int_{M}<u, v>d V
$$

where $d V$ maens the volume element of M^{n}. We shall denote the global norm of u by $\|u\|$, i.e., $\|u\|^{2}=(u, u),\|u\| \geqq 0$.

Let u, v, w, φ and η be any $p, p-1, p-2,2$ and 1 form respectively, then the following integral formulas are well known:

$$
\begin{aligned}
(d u, v) & =(u, \delta v) \\
(i(\eta) u, v) & =(u, \eta \wedge v), \quad(i(\boldsymbol{p}) u, w)=(u, \varphi \wedge w),
\end{aligned}
$$

$$
\begin{equation*}
(\Delta u, u)=\|d u\|^{2}+\|\delta u\|^{2} \tag{1.1}
\end{equation*}
$$

Here we state the following lemmas which are useful for the later discussions.

Lemma 1.1. For a skew-symmetric tensor $u^{\lambda_{\mu \nu}}$ we have

$$
R_{\lambda_{\mu \nu v}} u^{\lambda_{\mu \nu}}=0 .
$$

Lemma 1.2. For a skew-symmetric tensor $u^{\lambda_{\mu}}$ we have

$$
R_{\lambda \mu \alpha \beta} u^{\alpha \beta}=-2 R_{\lambda \alpha \beta \mu} u^{\alpha \beta} .
$$

2. Almost contact metric space. An n dimensional Riemannian space is called an almost contact metric space, if it admits a 1 -form $\eta=\eta_{\lambda} d x^{\lambda}$ and a 2 -form $\varphi=(1 / 2) \boldsymbol{\varphi}_{\lambda_{\mu}} d x^{\lambda} \wedge d x^{\mu}$ satisfying

$$
\begin{gather*}
|\eta|=1: \quad \eta_{\lambda} \eta^{\lambda}=1, \tag{2.1}\\
i(\eta) \varphi=0: \quad \eta^{\alpha} \varphi_{\alpha \lambda}=0, \tag{2.2}\\
\boldsymbol{\varphi}_{\alpha}^{\lambda} \boldsymbol{\varphi}_{\mu}^{\alpha}=-\delta_{\mu}^{\lambda}+\eta_{\mu} \eta^{\lambda}, \tag{2.3}
\end{gather*}
$$

where we have put

$$
\boldsymbol{\varphi}_{\alpha}{ }^{\lambda}=g^{\lambda \mu} \boldsymbol{\varphi}_{\alpha \mu}
$$

It is known that an almost contact metric space is orientable and its dimension n is necessarily odd : $n=2 m+1$.

In this section we shall concern ourselves with an $n(=2 m+1)$ dimensional almost contact metric space M^{n}.

We introduce an operator L by

$$
L u=\varphi \wedge u
$$

for any form u.
It is evident that if a p-form u satisfies $i(\eta) u=0$ then we have $i(\eta) L u=0$ and $i(\eta) i(2 \varphi) u=0$.

First we can get
Lemma 2.1.4) If a p-form u_{p} satisfies $i(\eta) u_{p}=0$, then we have

$$
i(2 \varphi) L^{k} u_{p}=L^{k} i(2 \varphi) u_{p}+k(n+1-2 p-2 k) L^{k-1} u_{p}
$$

where k is any non-negative integer and $L^{-1} \equiv 0$.
We shall call a p-form u to be effective if $i(\eta) u=0$ and $i(2 \varphi) u=0$ hold good. A 0 -form is always effective. From Lemma 2.1 we can get

Lemma 2.2. For an effective p-form u_{p} we have

$$
\begin{aligned}
i(2 \varphi)^{k} L^{k+s} & u_{p}=(s+k)(s+k-1) \cdots(s+1) \\
& \times(n+1-2 p-2 s-2) \cdots(n+1-2 p-2 s-2 k) L^{s} u_{p}
\end{aligned}
$$

where k is any positive integer and s non-negative integer.
Especially we have
Lemma 2.3. For an effective p-form u_{p} we have

$$
i(2 \varphi)^{k} L^{k} u_{p}=k!(n+1-2 p-2) \cdots(n+1-2 p-2 k) u_{p}
$$

where k is any positive integer.
From this lemma for a large k we get
THEOREM 2.1. In a $2 m+1$ dimensional almost contact metric space, there does not exist an effective p-form other than 0 for $p>m$.

By virtue of Lemma 2.2 and the mathematical induction, we obtain the following

LEMMA 2.4. If $\phi_{p-2 k}, k=0,1, \cdots, r$, are effective $(p-2 k)$-forms and satisfy

[^0]$$
\sum L^{k} \phi_{p-2 k}=0, \quad r=\left[\frac{p}{2}\right]^{5)}
$$
then we have $\phi_{p-2 k}=0$ for $p \leqq m+1$.
From these lemmas we have the following theorem which corresponds to Hodge-Lepage theorem in an almost Hermitian space.

ThEOREM 2.2. In a $2 m+1$ dimensional almost contact metric space, if a p-form $u_{p}(p \leqq m+1)$ satisfies $i(\eta) u_{p}=0$, then it is written uniquely in the form

$$
u_{p}=\sum_{k=0}^{r} L^{k} \phi_{p-2 k}, \quad r=\left[\frac{p}{2}\right]
$$

where $\phi_{p-2 k}$ are effective ($p-2 k$)-forms.
Proof. The cases $p=0$ and $p=1$ are trivial. Assuming its validity for p such that $2 \leqq p \leqq m^{\prime}<m$, we shall prove that for $p+2$. Let u_{p} be a p-form such that

$$
i(\eta) u_{p}=0, \quad p \leqq m^{\prime},
$$

then there exists a p-form v_{p} uniquely such that

$$
\begin{equation*}
i(2 \varphi) L v_{p}=u_{p}, \quad i(\eta) v_{p}=0 \tag{2.1}
\end{equation*}
$$

In fact, by the assumption of the induction there exist uniquely effective forms $\psi_{p-2 k}$ such that

$$
u_{p}=\sum L^{k} \psi_{p-2 k}
$$

By Lemma 2.1 we know that

$$
v_{p}=\sum L^{k} \phi_{p-2 k}
$$

is the unique solution of (2.1), where

$$
\phi_{p-2 k}=\frac{1}{2(k+1)(m-p+k)} \psi_{p-2 k} .
$$

5) $[a]$ means the integer part of a.

Now let u_{p+2} be a $(p+2)$-form such that $i(\eta) u_{p+2}=0$ and put

$$
i(2 \mathscr{P}) u_{p+2}=u_{p},
$$

then we have that $i(\eta) u_{p}=0$. For this u_{p} we consider the v_{p} of (2.1) and put

$$
\phi_{p+2}=u_{p+2}-L v_{p}
$$

Then ϕ_{p+2} is effective and we have the form

$$
u_{p+2}=\phi_{p+2}+\sum L^{k+1} \phi_{p-2 k} .
$$

The uniqueness follows from Lemma 2.4.
Let $A^{p}(M)$ be the vector space of p-forms on M^{n} satisfying $i(\eta) u_{p}=0$. Then we can get the following two theorems.

ThEOREM 2.3. $i(2 \varphi) L$ is an automorphism of $A^{p}(M)$ for $p \leqq m-1$.
THEOREM 2.4. L: $A^{p-2}(M) \rightarrow A^{p}(M)$ is an into isomorphism for $2 \leqq p \leqq m+1$.

The following lemmas are necessary for the discussion in the later sections.
Lemma 2.5. If u satisfies $i(\eta) u=0$, then we have $|\eta \wedge u|=|u|$.
As a special case of Lemma 2.1 we have
Lemma 2.6. For any ($p-2$-form v such that $i(\eta) v=0$, we have

$$
i(2 \boldsymbol{\varphi}) L v=L i(2 \boldsymbol{\varphi}) v+(n-2 p+3) v
$$

Now we introduce an operator Φ by

$$
\stackrel{*}{u}=\Phi u:\left\{\begin{aligned}
\stackrel{*}{u_{\lambda_{1}} \ldots \lambda_{p}} & =\sum \boldsymbol{\varphi}_{\lambda_{s}}^{\alpha} u_{\lambda_{1} \ldots \lambda_{t-1} \alpha \ldots \lambda_{p}}, \quad p \geqq 1 \\
& =0, \quad p=0,
\end{aligned}\right.
$$

then $\stackrel{*}{u}$ is again a p-form for a p-form u.
Lemma 2.7. For any p-form u such that $i(\eta) u=0$, we have

$$
i(2 \boldsymbol{\varphi}) \Phi u=\Phi i(2 \mathscr{P}) u .
$$

3. Identities in a Sasakian space. An n dimensional Sasakian space is a Riemannian space which admits a unit Killing vector field η^{λ} such that

$$
\begin{equation*}
\nabla_{\lambda} \nabla_{\mu} \eta_{\nu}=\eta_{\mu} g_{\lambda \nu}-\eta_{\nu} g_{\lambda \mu} . \tag{3.1}
\end{equation*}
$$

In the following we shall consider an n dimensional Sasakian space M^{n}.
If we put $\boldsymbol{\varphi}_{\mu}{ }^{\nu}=\nabla_{\mu} \boldsymbol{\eta}^{\nu}$, then $\boldsymbol{\varphi}_{\mu \nu}=\boldsymbol{\varphi}_{\mu}{ }^{\alpha} g_{\alpha \nu}, \eta_{\lambda}$ and $g_{\lambda_{\mu}}$ give an almost contact metric structure to M^{n} and hence M^{n} is orientable and n is odd : $n=2 m+1$. As (3.1) becomes

$$
\begin{equation*}
\nabla_{\lambda} \boldsymbol{\varphi}_{\mu \nu}=\boldsymbol{\eta}_{\mu} g_{\lambda_{\nu}}-\boldsymbol{\eta}_{\nu} g_{\lambda_{\mu}}, \tag{3.2}
\end{equation*}
$$

we can get

$$
\nabla^{\lambda} \boldsymbol{\varphi}_{\lambda \nu}=-(n-1) \boldsymbol{\eta}_{\nu}, \quad \nabla^{\lambda} \nabla_{\lambda} \boldsymbol{\varphi}_{\mu \nu}=-2 \boldsymbol{\varphi}_{\mu \nu} .
$$

Applying the Ricci's identity to η_{λ} we have

$$
\nabla_{\nu} \nabla_{\mu} \eta_{\lambda}-\nabla_{\mu} \nabla_{\nu} \eta_{\lambda}=-R_{\nu \mu \lambda}{ }^{\alpha} \eta_{\alpha},
$$

from which it follows that

$$
\begin{aligned}
R_{\nu \mu \lambda}{ }^{\varepsilon} \eta_{\varepsilon} & =\eta_{\nu} g_{\mu \lambda}-\eta_{\mu} g_{\nu \lambda}, \\
R_{\nu}^{\varepsilon} \eta_{\varepsilon} & =(n-1) \eta_{\nu} .
\end{aligned}
$$

Next, applying the Ricci's identity to $\boldsymbol{\varphi}_{\lambda}{ }^{\alpha}$ we have

$$
\nabla_{\rho} \nabla_{\sigma} \boldsymbol{\varphi}_{\lambda}^{\alpha}-\nabla_{\sigma} \nabla_{\rho} \boldsymbol{\varphi}_{\lambda}^{\alpha}=R_{\rho \sigma \varepsilon}{ }^{\alpha} \boldsymbol{\varphi}_{\lambda}^{\varepsilon}-R_{\rho \sigma \lambda}{ }^{\varepsilon} \boldsymbol{\varphi}_{\varepsilon}^{\alpha},
$$

from which we can get the following formulas :

$$
\begin{aligned}
& R_{\rho \sigma \varepsilon}{ }^{\alpha} \boldsymbol{\varphi}_{\lambda}{ }^{\varepsilon}-R_{\rho \sigma \lambda}{ }^{\varepsilon} \boldsymbol{\varphi}_{\varepsilon}{ }^{\alpha}=\boldsymbol{\varphi}_{\rho \lambda} \delta_{\sigma}{ }^{\alpha}-\boldsymbol{\varphi}_{\rho}{ }^{\alpha} g_{\sigma \lambda}-\boldsymbol{\varphi}_{\sigma \lambda} \delta_{\rho}{ }^{\alpha}+\boldsymbol{\varphi}_{\sigma}{ }^{\alpha} g_{\rho \lambda}, \\
& \boldsymbol{\varphi}_{\lambda}{ }^{\varepsilon} R_{\varepsilon \mu \rho \sigma}=-R_{\rho \sigma \lambda \varepsilon} \boldsymbol{\varphi}_{\mu}{ }^{\varepsilon}+\boldsymbol{\varphi}_{\rho \lambda} g_{\sigma \mu}-\boldsymbol{\varphi}_{\rho \mu} g_{\sigma \lambda}-\boldsymbol{\varphi}_{\sigma \lambda} g_{\rho \mu}+\boldsymbol{\varphi}_{\sigma \mu} g_{\rho \lambda}, \\
& (1 / 2) \boldsymbol{\varphi}^{\alpha \beta} R_{\alpha \beta \lambda \mu}=R_{\lambda \varepsilon} \boldsymbol{\varphi}_{\mu}{ }^{\varepsilon}+(\mathrm{n}-2) \boldsymbol{\varphi}_{\lambda \mu}, \\
& R_{\mu \varepsilon} \boldsymbol{\varphi}_{\lambda}{ }^{\varepsilon}=-R_{\lambda \varepsilon} \boldsymbol{\varphi}_{\mu}{ }^{\varepsilon}, \quad R_{\mu}{ }^{\varepsilon} \boldsymbol{\varphi}_{\varepsilon}{ }^{\lambda}=R_{\varepsilon}^{\lambda} \boldsymbol{\varphi}_{\mu}{ }^{\varepsilon} .
\end{aligned}
$$

Lemma 3.1. For any skew-symmetric tensors $u^{\alpha \beta}$ and $w^{\lambda_{\mu}}$ we have

$$
\boldsymbol{\varphi}_{\lambda}{ }^{\sigma} R_{\sigma \alpha \beta \mu} u^{\alpha \beta} w^{\lambda_{\mu}}=R_{\beta \lambda \mu \sigma} \boldsymbol{\varphi}_{\alpha}^{\sigma} u^{\alpha \beta} w^{\lambda_{\mu}} .
$$

Now we define two differential forms φ and η by

$$
\boldsymbol{\varphi}=(1 / 2) \boldsymbol{\varphi}_{\lambda_{\mu}} d x^{\lambda} \wedge d x^{\mu}, \quad \eta=\eta_{\lambda} d x^{\lambda}
$$

then we have

$$
d \eta=2 \varphi
$$

About harmonic tensors in a compact Sasakian space the following theorems are known [8].

Theorem A. In an $n(=2 m+1)$ dimensional compact Sasakian space, a harmonic p-form u is orthogonal to η, i.e., $i(\eta) u=0$, if $p \leqq m$.

ThEOREM B. In an n dimensional compact Sasakian space, if u is a harmonic p-form $(p \leqq m)$, then so is Φu.

Theorem C^{6}. The $(2 p+1)$-th Betti number of an n dimensional compact Sasakian space is even, if $0<2 p+1 \leqq m$.

From Theorem A we have
Lemma 3.2. Any harmonic p-form $(p \leqq m)$ in a compact M^{n} is effective.
4. C-harmonic form in a compact Sasakian space. Let M^{n} be an n $(=2 m+1)$ dimensional compact Sasakian space. We shall call a p-form u in M^{n} to be C-harmonic, if it satisfies

$$
\begin{align*}
i(\eta) u & =0 \tag{i}\\
d u & =0 \tag{ii}\\
\delta u & =\eta \wedge i(2 \varphi) u .{ }^{7} \tag{iii}
\end{align*}
$$

By definition, a C-harmonic form of degree 0 or 1 is nothing but harmonic. It is easily seen that the form φ itself is a C-harmonic 2 -form.

By virtue of Theorem A and Lemma 3.2, we have
6) S. Tachibana and Y. Ogawa, [9]. S. Tanno [10].
7) Y. Ogawa [4] proved that if $p \leqq m$ then (i) is a consequence of (ii) and (iii).

TheOrem 4.1. In a $2 m+1$ dimensional compact Sasakian space, a p-form $(0 \leqq p \leqq m)$ is harmonic if and only if it is effective C-harmonic.

Next we have
Lemma 4.1. If u is a C-harmonic p-form, then $v=i(2 \boldsymbol{\varphi}) u$ is a C harmonic ($p-2$)-form, $(p \geqq 2$).

Proof. $i(\eta) v=0$ is trivial. Putting

$$
w=i(2 \boldsymbol{P}) v \quad: \quad w_{\lambda_{\sigma} \ldots \lambda_{p}}=\phi^{\alpha \beta} v_{\alpha \beta \lambda_{s} \ldots \lambda_{p}},
$$

we can get

$$
\delta v=\eta \wedge w=\eta \wedge i(2 \boldsymbol{\varphi}) v
$$

by a straightforward computation.
Next we shall prove that $d v=0$. At first we have

$$
\boldsymbol{\varphi}^{\lambda_{1} \lambda_{2}}(\Delta u)_{\lambda_{1} \cdots \lambda_{p}}=A_{1}+A_{2}+A_{3},
$$

where

$$
\begin{aligned}
& A_{1}=-\phi^{\lambda_{1} \lambda_{2}} \nabla^{\alpha} \nabla_{\alpha} u_{\lambda_{1} \ldots \lambda_{\phi}} \\
& =-\nabla^{\alpha} \nabla_{\alpha} v_{\lambda_{s} \ldots \lambda_{p}}+2 v_{\lambda_{\mathcal{p}} \ldots \lambda_{p}}, \\
& A_{2}=\phi^{\lambda_{1} \lambda_{2}} \sum R_{\lambda_{t}}{ }^{\sigma} u_{\lambda_{1} \ldots \sigma} \ldots \lambda_{p} \\
& =2 \boldsymbol{\varphi}^{\lambda_{1} \lambda_{2}} R_{\lambda_{1}}{ }^{\sigma} u_{\sigma \lambda_{2} \ldots \lambda_{p}}+\sum R_{\lambda_{t}}{ }^{\sigma} v_{\lambda_{3} \ldots \sigma} \ldots \lambda_{p}, \\
& A_{3}=\varphi^{\lambda_{1} \lambda_{2}} \sum_{j<i} R_{\lambda_{1} \lambda_{i}^{\rho \sigma}} u_{\lambda_{1} \ldots \rho \ldots \sigma \ldots \lambda_{p}} \\
& =\varphi^{\lambda_{1} \lambda_{2}} R_{\lambda_{1} \lambda_{2}} u_{\rho \sigma \lambda_{2} \ldots \lambda_{\rho}}+\varphi^{\lambda_{1} \lambda_{2}} \sum R_{\lambda_{1} R_{\mathrm{s}}^{\rho \sigma}} u_{\rho \lambda_{2} \ldots \rho} \ldots \lambda_{\rho} \\
& +\varphi^{\lambda_{1} \lambda_{2}} \sum R_{\lambda_{2} \lambda_{i}}{ }^{\rho} u_{\lambda_{1} \rho \ldots \sigma \ldots \lambda_{p}}+\varphi^{\lambda_{1} \lambda_{2}} \sum_{j<i} R_{\lambda_{1} \lambda_{1}}^{\rho \sigma} u_{\lambda_{1} \ldots \rho \ldots \sigma \ldots \lambda_{\rho}} \\
& =\left\{-2 \mathscr{\varphi}^{\lambda_{1} \lambda_{2}} R_{\lambda_{1}}{ }^{\sigma} u_{\sigma \lambda_{2} \ldots \lambda_{p}}+2(n-2) v_{\lambda_{2} \cdots \lambda_{p}}\right\}-2(p-2) v_{\lambda_{3} \ldots \lambda_{p}} \\
& -2(p-2) v_{\lambda_{s} \ldots \lambda_{p}}+\sum_{2<j<i} R_{\lambda_{\lambda} \lambda_{1}^{p \sigma}} v_{\lambda_{2} \ldots \ldots \sigma \ldots \lambda_{p}} .
\end{aligned}
$$

Thus we can get

$$
\begin{equation*}
i(2 \varphi) \Delta u=\Delta v+2(n-2 p+3) v . \tag{4.1}
\end{equation*}
$$

On the other hand, operating d to $\delta u=\eta \wedge v$ we have

$$
\triangle u=2 \varphi \wedge v-\eta \wedge d v
$$

from which it follows that

$$
\begin{align*}
i(2 \boldsymbol{\varphi}) \Delta u & =2 i(2 \boldsymbol{\varphi}) L v-i(2 \boldsymbol{\varphi})(\eta \wedge d v) \tag{4.2}\\
& =2(n-2 \phi+3) v+2 \boldsymbol{\varphi} \wedge i(2 \boldsymbol{\varphi}) v-\eta \wedge i(2 \boldsymbol{\varphi}) d v
\end{align*}
$$

Comparing (4.1) and (4.2) we have

$$
\Delta v=2 \varphi \wedge i(2 \varphi) v-\eta \wedge i(2 \varphi) d v
$$

Consequently we obtain

$$
<\Delta v, v>=<2 \boldsymbol{\varphi} \wedge i(2 \boldsymbol{\varphi}) v, v>
$$

Integrating the last equation we have

$$
\begin{equation*}
(\Delta v, v)=(2 \boldsymbol{\varphi} \wedge i(2 \boldsymbol{\varphi}) v, v)=\|i(2 \boldsymbol{\varphi}) v\|^{2} . \tag{4.3}
\end{equation*}
$$

On the other hand we have

$$
\begin{equation*}
\|\delta v\|^{2}=\|i(2 \varphi) v\|^{2} \tag{4.4}
\end{equation*}
$$

by taking account of Lemma 2.5. Thus by (4.3), (4.4) and (1.1), we have $\|d v\|^{2}=0$.
Q.E.D.

Lemma 4.2. If u is a C-harmonic p-form, then so is Φu.
Proof. Put $\stackrel{*}{u}=\Phi u$. $i(\eta) \stackrel{*}{u}=0$ is evident. We put $v=i(2 \varphi) u$ and calculate $\delta \stackrel{*}{u}$, then we have

$$
\begin{aligned}
\left(\delta u_{\lambda_{2} \ldots \lambda_{p}}\right. & =-\nabla^{\lambda_{1}}\left(\sum \boldsymbol{\varphi}_{\lambda_{t}}{ }^{\alpha} u_{\lambda_{1} \ldots \alpha \ldots \lambda_{p}}\right) \\
& =B_{1}+B_{2}+B_{3}+B_{4}
\end{aligned}
$$

where

$$
\begin{aligned}
& B_{1}=-\nabla^{\lambda_{1}} \varphi_{\lambda_{1}}{ }^{\alpha} u_{\alpha \lambda_{2} \ldots \lambda_{p}}=0, \quad(\because i(\eta) u=0), \\
& B_{2}=-\boldsymbol{\varphi}_{\lambda_{1}}{ }^{\alpha} \nabla^{\lambda_{1}} u_{\alpha \lambda_{2} \ldots \lambda_{p}}=0, \quad(\because d v=0), \\
& B_{3}=-\sum_{i=2}^{p} \nabla^{\lambda_{1}} \boldsymbol{\varphi}_{\lambda_{1}}{ }^{\alpha} u_{\lambda_{1} \ldots \alpha \ldots \lambda_{p}}=0, \\
& B_{4}=-\sum_{i=2}^{p} \boldsymbol{\varphi}_{\lambda_{t}}{ }^{\alpha} \nabla^{\lambda_{1}} u_{\lambda_{1} \cdots \alpha \cdots \lambda_{p}}=(\eta \wedge \stackrel{*}{v})_{\lambda_{2} \ldots \lambda_{p}} .
\end{aligned}
$$

Hence we get

$$
\delta_{\delta^{*}}^{*}=\eta \wedge \stackrel{*}{v}=\eta \wedge \Phi v=\eta \wedge i(2 \boldsymbol{\mathcal { P }}) \stackrel{*}{u} .
$$

To prove that $\stackrel{*}{u}$ is closed, we calculate $<\Delta \stackrel{*}{u}, \stackrel{*}{u}>$. At first we have

$$
\begin{aligned}
\nabla^{\alpha} \nabla_{\alpha}{ }_{\alpha}^{*} u_{\lambda_{1} \ldots \lambda_{p}}= & \sum\left\{\boldsymbol{\varphi}_{\lambda_{t}}{ }^{\alpha} u_{\lambda_{1} \ldots \alpha \ldots \lambda_{p}}+\eta_{\lambda_{t}} \nabla^{\alpha} u_{\lambda_{1} \ldots \alpha \ldots \lambda_{p}}\right. \\
& \left.+\nabla^{\alpha} \boldsymbol{\varphi}_{\lambda_{s}}{ }^{\sigma} \nabla_{\alpha} u_{\lambda_{1} \ldots \sigma \ldots \lambda_{k}}+\boldsymbol{\varphi}_{\lambda_{t}}{ }^{\sigma} \nabla^{\alpha} \nabla_{\alpha} u_{\lambda_{1} \ldots \sigma} \ldots \lambda_{p}\right\}
\end{aligned}
$$

from which we can get

As u is C-harmonic, we have

$$
\Delta u=d(\eta \wedge v)=2 \varphi \wedge v-\eta \wedge d v
$$

and hence

$$
\begin{aligned}
& -\nabla^{\alpha} \nabla_{\alpha} u_{\lambda_{1} \ldots \sigma \lambda_{\rho}}=-\sum_{j \neq i} R_{\lambda_{\rho}{ }^{\rho}} u_{\lambda_{1} \ldots \rho \ldots \sigma \ldots \lambda_{\rho}}-R_{\sigma}{ }^{\rho} u_{\lambda_{1} \ldots \rho \ldots \lambda_{\rho}} \\
& -\sum_{k<j} R_{\lambda_{k} \lambda_{j}}{ }^{\alpha \beta} u_{\lambda_{1} \ldots \alpha \ldots \sigma \ldots \beta \ldots \lambda_{p}} \\
& -\sum_{j>i} R_{\sigma \lambda_{j}}{ }^{\alpha \beta} u_{\lambda_{1} \ldots \alpha \ldots \beta \ldots \lambda_{p}}-\sum_{k<i} R_{\lambda_{6} \sigma}{ }^{\alpha \beta} u_{\lambda_{1} \ldots \alpha \ldots \beta \ldots \lambda_{p}} \\
& +(2 \boldsymbol{\varphi} \wedge v-\eta \wedge d v)_{\lambda_{1} \cdots \sigma \lambda_{\rho}} .
\end{aligned}
$$

Thus complicated computations show that we can have

$$
<\triangle \stackrel{*}{u}, \stackrel{*}{u}>=|\stackrel{*}{v}|^{2} .
$$

On the other hand, we have $\left|\delta u^{*}\right|^{2}=|\stackrel{*}{v}|^{2}$, because of $\delta \stackrel{*}{u}=\eta \wedge \stackrel{*}{v}$. Hence it follows that $\left\|d{ }_{u}^{*}\right\|^{2}=0$ by (1.1), from which $\stackrel{*}{u}$ is closed. Q.E.D.

Lemma 4.3. If v is a C-harmonic ($p-2$)-form, then $u=L v$ is a C harmonic p-form.

Proof. It is evident that $i(\eta) u=0$ and $d u=d(\varphi \wedge v)=0$ hold good. As we have

$$
\begin{aligned}
u_{\alpha \beta \lambda_{1} \ldots \lambda_{p-2}}= & \varphi_{\alpha \beta} v_{\lambda_{1} \ldots \lambda_{p-2}}-\sum \boldsymbol{\varphi}_{\alpha \lambda_{1}} v_{\lambda_{1} \ldots \beta \beta \lambda_{p}} \\
& -\sum \varphi_{\lambda_{\beta} \beta} v_{\lambda_{1} \ldots \alpha \ldots \lambda_{p-2}}+\sum_{j<i} \boldsymbol{\varphi}_{\lambda_{s} \lambda_{1}} v_{\lambda_{1} \ldots \alpha \ldots \beta \ldots \lambda_{p}},
\end{aligned}
$$

$\nabla^{\alpha} u_{\alpha \beta \lambda_{1} \ldots \lambda_{p-2}}$ is the sum of the following eight terms C_{1}, \cdots, C_{8} :

$$
\begin{aligned}
& C_{1}=\nabla^{\alpha} \varphi_{\alpha \beta} v_{\lambda_{1} \ldots \lambda_{p-2}}=-(n-1) \eta_{\beta} v_{\lambda_{1} \ldots \lambda_{p-2}}, \\
& C_{2}=\phi_{\alpha \beta} \nabla^{\alpha} v_{\lambda_{1} \ldots \lambda_{p-2}}=-\sum \nabla_{\lambda_{1}}\left(\mathscr{P}_{\beta}^{\alpha} v_{\lambda_{1} \ldots \alpha \ldots \lambda_{p-2}}\right)+(p-2) \eta_{\beta} v_{\lambda_{1} \ldots \lambda_{p-2}}, \\
& C_{3}=-\sum \nabla^{\alpha} \boldsymbol{\phi}_{\alpha \lambda_{t}} v_{\lambda_{1} \ldots \beta \ldots \lambda_{p-2}}=(n-1) \sum \eta_{\lambda_{t}} v_{\lambda_{1} \ldots \beta \ldots \lambda_{p-2}}, \\
& C_{4}=-\sum \boldsymbol{\varphi}_{\alpha \lambda_{4}} \nabla^{\alpha} v_{\lambda_{1} \ldots \beta \ldots \lambda_{p-2}}=\sum \boldsymbol{\varphi}_{\lambda_{4}}{ }^{\alpha} \nabla_{\alpha} v_{\lambda_{1} \ldots \beta \ldots \lambda_{p-2}} \\
& =-\sum\left\{\nabla_{\lambda_{j}}{\stackrel{*}{\nu_{1} \ldots \ldots \beta} \ldots \lambda_{p-2}}-\nabla_{j}\left(\boldsymbol{G}_{\beta}^{\alpha} v_{\lambda_{1} \ldots \alpha \ldots \lambda_{p-2}}\right)\right\} \\
& +\nabla_{\beta} \stackrel{*}{v_{1} \ldots \lambda_{p-2}}-(p-2) \sum \eta_{\lambda_{1}}, v_{\lambda_{1} \ldots \beta \beta \lambda_{p-2}}, \\
& C_{5}=-\sum \nabla^{\alpha} \boldsymbol{\varphi}_{\lambda_{j \beta} \beta} v_{\lambda_{1} \ldots \alpha \ldots \lambda_{p-2}} \\
& =(\eta \wedge v)_{\beta \lambda_{1} \cdots \lambda_{p-2}}+(p-3) \eta_{\beta} v_{\lambda_{1} \cdots \lambda_{p-2}}, \\
& C_{6}=-\sum \varphi_{\lambda_{\beta \beta}} \nabla^{\alpha} v_{\lambda_{1} \cdots \alpha \cdots \lambda_{p-2}} \\
& =\sum(-1)^{j} \boldsymbol{\varphi}_{\beta \lambda_{j}}(\delta v)_{\lambda_{1} \ldots \hat{\lambda}, \ldots \lambda_{p-2}}, \\
& C_{7}=\sum_{j<i} \nabla^{\alpha} \varphi_{\lambda_{1} \lambda_{1}} \nabla_{\lambda_{1} \ldots \alpha \ldots \beta \beta \lambda_{p-2}} \\
& =(p-3)\left\{(\eta \wedge v)_{\beta \lambda_{1} \ldots \lambda_{p-2}}-\eta_{\beta} v_{\lambda_{1} \ldots \lambda_{p-2}}\right\}, \\
& C_{8}=\sum_{j<i} \phi_{\lambda_{j} \lambda_{i}} \nabla^{\alpha} v_{\lambda_{1} \ldots \alpha \ldots \beta \ldots \lambda_{p-2}}=\sum_{j<i}(-1)^{j} \boldsymbol{\varphi}_{\lambda_{j} \lambda_{i}}(\delta v)_{\lambda_{1} \ldots \hat{\lambda}} \ldots \beta \beta \ldots \lambda_{p-2} .
\end{aligned}
$$

Thus we can get

$$
\begin{aligned}
\delta u & =(n-2 p+3) \eta \wedge v+\varphi \wedge \delta v \\
& =\eta \wedge\{(n-2 p+3) v+\varphi \wedge i(2 \varphi) v\} \\
& =\eta \wedge i(2 \varphi) u .
\end{aligned}
$$

Q.E.D.

5. Main theorems.

Theorem 5.1. In an $n(=2 m+1)$ dimensional compact Sasakian space, any C-harmonic p-form $u_{p}, 0 \leqq p \leqq m+1$, can be written uniquely in the following form:

$$
u_{p}=\sum_{k=0}^{r} L^{k} \phi_{p-2 k}, \quad r=\left[\frac{p}{2}\right],
$$

where $\phi_{p-2 k}$ are harmonic $(p-2 k)$-forms.
Proof. We use the notations in the proof of Theorem 2.2. Assuming its validity for $p, 2 \leqq p \leqq m^{\prime}<m$, we shall prove it for $p+2$. Let u_{p+2} be C-harmonic, then

$$
i(2 \mathscr{P}) u_{p+2}=u_{p}
$$

is C-harmonic (\because Lemma 4.1). By the assumption of the induction, u_{p} is written uniquely in the form:

$$
u_{p}=\sum L^{k} \psi_{p-2 k}
$$

where $\psi_{p-2 k}$ are harmonic. The equation

$$
i(2 \varphi) L v_{p}=u_{p}, \quad i(\eta) v_{p}=0
$$

admits unique solution

$$
v_{p}=\sum L^{k} \phi_{p-2 k},
$$

where

$$
\phi_{p-2 k}=\frac{1}{2(k+1)(m-p+k)} \psi_{p-2 k}
$$

are harmonic, so v_{p} is C-harmonic by virtue of Lemma 4.3. By putting $\phi_{p+2}=u_{p+2}-L v_{p}$, the proof is completed.
Q.E.D.
$A^{p}(M)$ is the vector space of p-forms such that $i(\eta) u=0$. Let $C^{p}(M)$ and $H^{p}(M)$ be the vector space of C-harmonic p-forms and harmonic p-forms respectively. Then we have

$$
A^{p}(M) \supset C^{p}(M) \supset H^{p}(M), \quad p \leqq m
$$

The p-th Betti number b_{p} is $\operatorname{dim} H^{p}(M)$. Now we introduce c_{p} by

$$
c_{p}=\operatorname{dim} C^{p}(M), \quad p \leqq m .
$$

Then we can obtain the following theorem by the analogous way as that of Kählerain spaces.

THEOREM 5.2. In an $n(=2 m+1)$ dimensional compact Sasakian space, we have

$$
\begin{aligned}
& b_{0}=c_{0}=1, \quad b_{1}=c_{1}, \\
& c_{2 k} \geqq 1, \quad k=1, \cdots,\left[\frac{m}{2}\right], \\
& b_{p}=c_{p}-c_{p-2} \geqq 0, \quad 2 \leqq p \leqq m, \\
& c_{p}=b_{p}+b_{p-2}+\cdots+b_{p-2 r}, \quad 2 \leqq p \leqq m, \quad r=\left[-\frac{p}{2}\right] .
\end{aligned}
$$

Bibliography

[1] S. S. Chern, Complex manifolds, Univ. of Chicago, Mimeographed Notes, 1956.
[2] S. I. Goldberg, Curvature and Homology, Academic Press, New York, 1962.
[3] A. Lichnerowicz, Theorie globale des connexions et des groupes d'holonomie, Ed. Cremonese, Rome, 1955.
[4] Y. Ogawa, On C-harmonic forms in a compact Sasakian space, to appear.
[5] M. OKUMURA, Some remarks on space with certain contact structure, Tôhoku Math. Journ., 14(1962), 135-145.
[6] S. SASAKI, On differentiable manifolds with certain structures which are closely related to almost contact structure, I, Tôhoku Math. Journ., 12(1960), 459-476.
[7] S. SASAKI AND Y. HATAKEYAMA, On differentiable manifolds with contact metric structures, Journ. of Math. Soc. Japan, 14(1962), 249-271.
[8] S. Tachibana, On harmonic tensors in compact Sasakian spaces, Tôhoku Math. Journ., 17(1965), 271-284.
[9] S. Tachibana and Y. Ogawa, On the second Betti number of a compact Sasakian space, Nat. Sci. Rep. of the Ochanomizu Univ., (1966), 27-32.
[10] S. TanNo, Harmonic forms and Betti numbers of certain contact Riemannian manifolds, to appear in Journ. of Math. Soc. Japan.

Department of Mathematics, Ochanomizu University, TOKYO, JAPAN.

[^0]: 4) Proofs of lemmas in this section are analogous to that of an almost Hermitian space, see, for example, S.I. Goldberg, [2], p. 179-180.
