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1. Introduction. In a previous paper [4] we defined almost analytic vector
fields in an almost complex space and generalized some of well known
results for analytic vector fields in a Kihler space to those for almost analytic
vector fields in the most general almost Hermitian space.

To define a contravariant almost analytic vector field we proceeded as
follows :

In a complex manifold M covered by a system of neighborhoods U with
complex coordinates (2%, 2¥), a self conjugate contravariant vector field
(v, v%), that is, a contravariant vector field (v*, v*) satisfying v* =v*, is said
to be analytic when the components ¢ and v* are analytic functions of z
and Z respectively :

1.1) v =v(2), v =v(Z).
The condition (1.1) is equivalent to

(1.2) R =0, 9vF=0,

where 9y means 9/02" and 9, means 9/0z".

On the other hand, we have, in a complex manifold, a numerical tensor
F of type (1,1) given by

=18 0 2
1.3) Fj = ( )

0 -1

and consequently, putting

1) Here and in the sequel the Greek indices &, A, g, +++ run over the range {1,2,+++,7} and
KA, g, oo the range {1,2,, .., 7}.
2) Here and in the sequel, the Roman indices A, %, j, « « + run over the range 1, 2, « + «, n;

1,2, 00,7
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O = (A1A} = FPFP),
1. 4)
*Opt = é— (A AL+ FPFP,

where A} is the unit tensor, we can write (1.2) in the form

or

1.5) *0% 9, v" = 0
(1.6) £ Fr =v'0,F — Flov* + Fo,0' =0,

which is easily verified to be a tensor equation, where £ denotes the Lie
v

derivation with respect to v.

Thus, we define a contravariant almost analytic vector field v"* in an
almost complex space with structure tensor F;* to be a contravariant vector
field which satisfies (1. 6).

Similary, a self-adjoint covariant vector field (wy, wx) in a complex space
is said to be analytic when the components w, and wj are analytic functions
of z and Z respectively :

1.7 wy = wa(?), wr = wi(2).

The condition (1.7) is equivalent to

(1.8) %wr =0, Dwri=0
or

1.9) *043,w, = 0

or

(1.10) (@,F — 3,F) w, — Fyd,w, + F9,w, =0,

which is also easily verified to be a tensor equation.

Thus we define a covariant almost analytic vector field w; in an almost
complex space to be a covariant vector field which satisfies (1. 10).

On the other hand I Sato [1] and one of the present authors [3] found
another way of defining a covariant almost analytic vector field.

We suppose that a manifold M is covered by a system of coordinate
neighborhoods {U; 2"} where 2" is a system of local coordinates in the
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neighborhood U. Let (p,) be the system of Cartesian coordinates in each
cotangent space “T»(M) of M at a point P in U with respect to the natural
base dx'. Then we can introduce, in the open set = '(U) of °T(M), local
coordinates (x", p;,) for a point in *T(M), = being the projection °T(M) — M.
We recall (=%, p;) the induced coordinates in = '(U).

Suppose that the manifold M has an almost complex structure F, then we
can prove that the cotangent bundle “7(M) has an almost complex structure

F whose components in the induced coordinate system (x", p;) are given by

"

(1.11) 1
Pr(aiFhT - ahFiT + _2—NitTFh,l) Fni ’

where N,,” is the Nijenhuis tensor of F':
(1.12) Ny" = Fj'o,F\" — Fi' 0, F* — (0, F! — 0, Fy") F*.

We also can prove that the cross-section in °*T(M) determined by a
covariant vector field w; in M is almost analytic, that is, the tangent plane
to the cross-section is invariant with respect to the almost complex structure
defined above, if and only if w, satisfy

(1. 13) (81Fhr—8hFiT) w, — Fila;wh -+ th 9iwt + _%‘Mtth.twr =0.

Thus, we define a covariant almost analytic vector field w, to be a vector

field which satisfies (1.13).
The main purpose of the present paper is to study the properties of
covariant almost analytic vector fields in this sense.

2. Covariant almost analytic vector fields. We consider an almost
Hermitian space with almost complex structure F;* and almost Hermitian

metric ¢y :

2.1 F"F’ = —A}, FtE g = gus
2.2 Fy, = —Fy, F;, = Figu,

and we denote by Y, the covariant differentiation with respect to ¢;.
In an almost Hermitian space, the equation (1.13) may be written as

(2.3) *OF(V F =V F)w, — Ff*V,w, + F*V;w, =0
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or

(2.4) *OWV F* =V F* w, — 2F; *0%, 7 ,w, = 0

or

(2' 5) *Otjsi{(vtha—VsFta) Wy — 1;‘t'z Vaws + Fsa V:‘wa} =0 .
Taking the symmetric part of (2.5) with respect to j and 7, we find

(2.6) *OF(V ws — Vsw) = 0.

The equation (2.6) shows that V,w,—V,w; is pure® for a covariant almost
analytic vector w; in an almost Hermitian space. Transvecting ¢’* to (2.5),
we find

(2.7) Fjiij,;—'———O

for a covariant almost analytic vector field w;.
Now we define tensors P;; and Qj; by

(2° 8) Pii = *Offsi(vtha - vs Fta) Wgq,
and
(2' 9) th = (Fja vawi - Fia ija)

respectively. Then for a covariant almost analytic vector field w;, we have
(2.10) Py =Qy.
In an almost Kihler space, we have
ViFw+ ViFo + V. F, =0,
and consequently, from (2. 8),
(2.11) P, = *O5(V.Fy5) v,
which is zero because of the pureness of Y F;, with respect to ¢ and s. Thus,

for a covariant almost analytic vector field in an almost Ké#hler space, we
have

3) See, e.g. [2].
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Qi=0,
which is equiva ent to
2.12) *08 V,w, = 0.

On the other hand, Nj,, =2F/(V,F;,) is valid in an almost Kihler space.
Therefore the equation (1.13) reduces to

2w'V, Fy; — Q; =0,
from which we have

w', F;; =0,

for a covariant almost analytic vector in an almost Kihler space.
Conversely, if we have

Q;; =0 and w*V,.F;=0
for a covariant vector field w; in an almost Kihler space, then w,; is a
covariant almost analytic vector.
In an almost Tachibana space?, we have
ViFwu+ V.F;, =0,
and the similar argument shows that
P;; =0 and w*V. F;=0,
if we take account of the equations
N;* = —A(V;F*) Fo!
in an almost Tachibana space. Thus we have
THEOREM 1. A necessary and sufficient condition for a covariant

vector field w,; in an almost Kihler or in an almost Tachibana space to be
covariant almost analytic is that

(2.13) w' Vo F; =0,

4) See, e.g. [2].
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(2. 14) FfvVew, — F*V,w, =0. (*05V,w,=0)

If we suppose that w" = g"w, is a contravariant and w,; is a covariant
almost analytic vector field in an almost Hermitian space, then adding

W'V I — FAwh + F;w* =0

or
W'V F — FAVow, — Fi* YV w, =0
and
*O5(V Fyu— Vs Fp)w* — FfV,w;, + F*V;w, =0,
we find
(2.15) *O0f Fsow® + w*V Fy — 2F* V,w; =0.

In an almost Kihler space, equation (2.15) reduces to
F ja Va. w; = 0

by virtue of (2.13).
In an almost Tachibana space, (2.15) is written as

3wa*o‘t;sl VaFLs + wa VaFji - 2FJCL vawi == 0
or
Fia Va w; = 0
because of *O% YV, F;; = 0 and (2.14). Thus we have

THEOREM 2. If, in an almost Kihler or almost Tachibana space, w,
is a contravariant and at the same time covariant almost analytic vector
field, then it is covariantly constant.

The equation (2.3) is written as

(2.16) *O(V,w,— V,w,) = Ff *05(V w, — V,w),

where

~

(2. 17) w; = Fia Wy -
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The equation (2.16) may also be written as
(2’ 18) _*O‘tlsl(vt W — vs wt) = Fja *szsi(VL %s - Vs ‘Z&t) .
The equations (2.17) and (2. 18) give

THEOREM 3. If a vector field w, in an almost Hermitian space is
covariant almost analytic, then the vector field w;, = Fi*w, is also covariant
almost analytic.

If vectors w; and w,; are both closed, or more weakly, V;w;— V,w; and
V,;w;—V,;w; are both pure, then the equation (2.16) is satisfied. Thus we
have

THEOREM 4. If vectors w; and w, = Fi¢w, in an almost Hermitian

space are both closed, or more weakly V;w,—,w; and ,w,—<,w; are
both pure, then they are both covariant almost analytic vectors.

The equation (1.13) reduces to

Viw, — Viw; — %Nnth = Fit(vﬂzj - Vﬂ;c)

in an almost Hermitian space. Thus we have

THEOREM 5. If, in an almost Hermitian space, a covariant almost
analytic vector w, and w, are both closed, then w, satisfies

N;*w, =0.
Applying ¢V, to Ffw, = —w;, we find
—g"Viw; = Flw, — F*V,w,, (F*=g"V,F*)
from which, together with Theorem 3 and (2.7), we have

THEOREM 6. If, in an almost Hermitian space with F'=0, a covariant
almost analytic vector field w; is closed, then it is harmonic.

Now transvecting *Ojy(V™F'*+ /' F™) to the equation (2.3), we have

— F(V aw) *Of(V " F e+ V™) + FA(V jw,) *Of(V ™ + 7'F™) = 0.,
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A straightforward computation shows that the first term of the equation
above is zero.
Consequently we have

(2.19) FH(Viw®) *O% Gy w® = 0

for a covariant almost analytic vector in an almost Hermitian space.
Applying F,'\/? to (2.5) and changing indices, we have

(2. 20) VeV, — ¥ + (V'w)(FiaVoF + FluFy)
+ % W (F*Fya + Fy Ft Fyy 7 FY)
— F*0% <V (Fppuw®) = 0.
For T, defined by
(2.21) T = *O5{(V, F* — V. FYw,—F*V,w, + F*V,w,.},
we have the identity
(2.22) VT uFlw®) + [VV qw; — K;*w’ + Ff *05 7 (Fyaw®)
+ (V') FouV,Fe + FyoFy) + _12_ WH(F? Fya+ FAF, Fu V' F )] w
— FA7w®) 0% G w* + % T,T" =0.
Thus, in a compact almost Hermitian space, we have
2.29) [ [[V*Vawi— K¥,00'+ Fe ¥ 05N Fte®) + (Vo) Fua V0 Ff + FiaF)
+ %w“(F”Fm + FtFyF, ' FY)
—FXV ") *04G 1) w' + —;- TyT do =0,
and consequently

THEOREM 7. A necessary condition for a vector field w; in an almost
Hermitian space to be covariant almost analytic is that (2.19) and (2.20)
are satisfied and a sufficient condition for w; in a compact almost Hermitian
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space to be covariant almost analytic is
(2.24) VeVaew;, — K¥jw! + Ff*05 V' (Fyaw®)
+ (V@)oo Vo Fi + FuF) + £ w0 (F Fouat FLF Fua V' F)
— FA(V w)*05%G,,, = 0.

COROLLARY 1. A necessary condition for a covariant wvector field w,
in an almost Kdhler space to be covariant almost analytic is that

(2. 25) F(V'w*) w, *05G,» = 0
and
(2. 26) VeV aw; — K*;0 + (V'w®) F,,V,Fy =0

are satisfied and a sufficient condition for w; in a compact almost Kihler
space to be covariant almost analytic is

(2. 27) V“Vawi _ K*jiwj + (V”w“) Fcavatc — Fab(vcwa) *Oz%Gt” = 0 .
The equation (2.26) can be written as
ViVew; — W FY.V;F* — Kjyw + (V'w) F,. V,F° =0.

On the other hand, we have
w F*V.V;F* + (V'w®) F,, V, Fy°
= Fi(V.w)(V; F®) + (VPw®) F,, V, Ff
= (VPw)Foo Vo Fe + F* o Fuy)
= —(V'w") F* V. Fya

and consequently, taking account of Theorem 3 and (2.13),
(VeVew; — Kjw) w' =0.

Thus the integral formula (K. Yano [2])

(2.28) f,, (VY i~ Kyw!) ' + —— (V' ) (V jawy— Viaw,)

+ (Vaw)(Viwh)] do = 0
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shows that

Viw, — Viyw; =0, V,w' =0,
that is, w; is harmonic. Thus we have

COROLLARY 2. A covariant almost analytic vector in a compact almost
Kéhler space is harmonic.

For a covariant almost analytic vector field w; in an almost Tachibana
space, we have, taking account of (2.13),

(2~ 29) (vb w*) F Y, Fyy = K*;w’ — Ky w’,
from which we find

COROLLARY 3. A necessary condition for a vector field w; in an almost
Tachibana space to be covariant almost analytic is that

(2. 30) va Va'wi - ZK*jiwj + Kjiwj = 0

are satisfied and a sufficient condition for w; in a compact almost Tachibana
space to be covariant almost analytic is

VeVew' — K*;,w’ + (V2w F,, V, Ff

n % W Vo Fyy VP Ff — 3F? %04 (Y, Fraw®) = 0.

From (2.29) we have
(K*;; — Kj) ww' =0
and consequently, taking account of (2.28) and (2.29), we have

COROLLARY 4. A covariant almost analytic vector in a compact almost
Tachibana space is harmonic.
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