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1. The purpose of the present paper is to prove some theorems concerning
continuations of analytic functions across simple open arcs. Here, a simple
open arc means a topological image of the open interval [t 0 < t < 1}.

Let Dx and D2 be Jordan domains in the 2-plane having no point in
common and / be a simple open arc lying on the non-empty common boundary
of Di and D2. Then there arises the following

PROBLEM. Given two analytic functions fx and f2 in Dγ and D2

respectively, we set f — .fγ in Dι and f — f2 in D2. Under what condition do
there exist an open subset /* of I and an analytic function F(z) in Dί[jIγ']J D2

such that F(z) = fj(z) for z£ Dό (j = 1,2) ? In other words, under what
conditions on f and / can f be extended analytically to an open subset I* of
I?

This problem was investigated by some authors, e.g., Carleman [5], Wolf
[14], Meier [8] and from cluster-sets-theoretic viewpoint, Bagemihl [3] gave an
answer to this problem under the restriction of / being an open interval on a
straight line. Recently, Noshiro [9] gave an improvement of Bagemihl's
theorem [3] (cf. also [10]).

First in §2 we shall prove an analogous theorem to Bagemihl-Noshiro's in
the case where / is an open locally rectifiable arc. Instead of the condition
(c) in Theorem 6 in [9] we shall give a global restriction to f. In §3 we
assume that / is a simple open smooth arc. We give an answer to the
problem under the condition that f3 belongs to the Hardy class Hp(Dj) for
p> 1 (y=l, 2). In §4 we assume that / is a simple open analytic arc. Under
the weaker condition that f5 is in the class HX{D3) (7 = 1,2), we shall give
another answer to the problem. Finally in §5 we shall state some remarks on
null-sets for the class Hp, p^l, as applications of two theorems in §3 and
in §4.

2. By an open locally rectifiable arc / we mean a simple open arc such
that every point of / has a neighbourhood which is a rectifiable subarc of /.
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We remark that a rectifiable simple arc must be a topological image of the
closed interval [t O^t^l}. We also remark that a rectifiable arc has a
tangent at every point except for a set of linear measure zero. Here a subset
E of an open locally rectifiable arc / is said to be of linear measure zero if
for any £ > 0, there exists a countable number of open subarcs {In} of / such
that \JlnZ)E and £ r a / n < £, where πi denotes the linear measure (the length).

An analytic function / in a plane domain D is said to be in the class S(D)
provided that the subharmonic function log+ I /1 = max(log | / 1 , 0) admits a
harmonic majorant in D which is quasi-bounded, i.e., the limiting function of
a monotone non-decreasing sequence of non-negative bounded harmonic functions
in D(cί. e.g., [15])-

An analytic function / in D is said to be in the Hardy class HP(D)
( 0 < / » < o o ) if the subharmonic function \f\p admits a harmonic majorant in
D.

Both classes S(D) and HP(D) have local property, i.e., if / is in the class
X(D), then / is in X(U) for any subdomain D'cD. Furtermore, HpdHQ(zSy

for p^L q.
We state the definition of another class Eλ{D). Let D be a Jordan domain

with the rectifiable boundary and z = z(w) be a one-to-one conformal map of
the disc U: \w\ < 1 onto D. An analytic function f(z) defined in D is said
to belong to the class E^D) if the function f(z{w)) z\w) is in the class HX(JJ).
It is shown that this definition is independent of the choice of a map z(τv)
(cf. [6]).

The following lemma will play a fundamental role.

LEMMA. Let DuD^Iyfuf2 and f be as in the problem. Assume that
the boundaries of Dx and D2 are rectifiable and DιyjI\jD2 is a Jordan
domain {with the rectifiable boundary). Let E be a subset of I of linear
measure ze?Ό. For every ζe I—E, let L£ be a simple arc in D5 terminating
at ζ O"=l,2). Suppose that

( * ) Mvafiiz) = 1 im/Xz) (^00) at every point ζ of I—E;
zζ zζ

(**) f> is in the class EX{DS) (J = 1, 2).

Then f can be extended analytically to the whole I in the sense stated in
the problem.

PROOF. By the condition (**) we obtain

= 0 if
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where ff(ζ) is the non-tangential limit of fj at the point ζedDj except for
a set of linear measure zero, the integration is taken to the positive sense, and
bar means the closure (j = 1,2) (cf. chap. 10, §5 in [6]). By (*) and by
BagemihFs ambiguous-point theorem [2], we have f*(ζ) = ft (?) except for a set
of linear measure zero in /. Now we set

where D= A u / u A and /*(£) = /f(ξ% £ e 9 A (j = 1, 2). Then F is analytic
in D and

F(z)= i Γ £
27rί Λ», ^-

= //«) if 2 € A O' = i ,2) .

This completes the proof of the lemma.
Now we are ready to prove

THEOREM 1. Let Dl9 D2,1,fι,f2 and f be as in the problem. Assume
that I is an open locally rectifiable arc and let E be a subset of I of linear
measure zero. For every ξz I—E, let LJ

ζ be a simple arc in Dj terminating
at ζ C/ = l, 2). Suppose that

(a) \ϊmfι(z) = lim/2(2) = ωζ (Φ°°) for every point ξ of I—E;

(b) the function φ(ξ) = ωζ defined on I—E is bounded in some neighbour-
hood of every point ζ of I—E;

(c) fj is in the class S(Dj) (7 = 1,2).

Then there exists a closed set e relative to I such that e is a subset of E
and f can be extended to be analytic in the open set I—e.

PROOF. First we prove :
For any point ξ0 € I—E there exists a Jordan domain Do with the rectifiable

boundary such that
(1) ξ0 € Do and the open set Dx U D2 has no exterior point belonging to Do

(2) Dl = D0Γ)Dj is a Jordan domain with the rectifiable boundary
ϋ = l,2);

(3) DlP\I=DlΠI=J0 is a rectifiable arc containing ξ0 in its interior;
(4) / is bounded in Dj
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By the condition (b) there exists a rectifiable subarc JJ of / such that JJ
has ζ0 as its interior point, / has normals from the interior of DΛ to both
terminal points of JJ and such that <p(ξ) is bounded in J\ — E. Therefore
there exists a Jordan domain GlaDγ with the rectifiable boundary such that

~G\C\I — J\. Let z — z(w) be a one-to-one comformal map of the unit disc U
onto G\. Let Jf be the inverse image of JJ by the natural extension ζ=z(ξ*~)
of z = z(τv) to the unit circle | f * | = l . Set ζo = z(ξf). Evidently the composite
function F^zv) — fx{z(w)) is in the class S(U) and Fx has the asymptotic value
φ(z(ζ*)) at a.e. (almost every) point ξ* in the interior If of Jf. By using
BagemihFs theorem [2] again we know that Fx has radial limit Fι(ζ*) = φ(z(t*))
at a.e. point £* of If since Fλ is of bounded type. Without loss of generality,
we may assume that | Fx{ζ*) | < 1 at a.e. point in If since the space S(JJ) is
linear. Let h(w) be the least harmonic majorant of log+1 F\(w) | in U, which
is quasi-bounded, and hence is represented as the Poisson integral of its radial
limits. Then h(w) has radial limit h(ζ*) = log+ | Fx(ζ*) | = 0 at a.e. point ξ* in
the open arc If. Hence h can be continued harmonically across If. This
shows that there exists an open disc d with the centre ζf such that h and
consequently Fx are bounded in dΓ\U. Therefore there exists an open disc vγ

with the centre ζ0 such that fx is bounded in vιC\Dι. Similarly we can choose
a disc v2 for f2. Now we can make easily Dicv1nDj as we wanted C/ = l, 2).

Next we remark that the derived function z(ui) in the definition of the
class Eχ(D) is in the class Hχ(JJ) since D has the rectifiable boundary. This
shows that any bounded analytic function in D belongs to E^D). Now we
can apply the lemma to Dl and f5 since f5 £ E^Dξ) C/ = l, 2). As a consequence
we know that / can be extended analytically to Jo, the interior of Jo. Thus
we have proved that f can be extended to be analytic to an open arc Iζ c /

corresponding to every point ζs I—E. Set e = I—\Jlζ- Then e satisfies the
ζel-E

conditions of the theorem. This completes the proof of the theorem.

REMARK. Let A^ be the set of points of I at which at least one of fx

and f2 has oo as an asymptotic value. Then, instead of the condition (c) in
our theorem, we can take

(c*) Z . Π ( / - £ ) = 0.

In fact, this condition implies that the function F^zv) = f^z^zv)) in our proof
is bounded in dΠ U since the technique in the proof of Bagemihl-Noshiro's
theorem ([3], [9]) is available. The rest of the proof is the same as in ours.
Furthermore, this shows that we can mix these two conditions, i.e., we can
take the following (c**) instead of (c) :

(c**) fx is in the class 5(A) and ΛL Π ( / - £ ) = 0 ,
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where AL is the set of points in / at which f2 has oo as an asymptotic value.
The problem of finding relations between the conditions (c) and (c*) seems

to be open.

3. By a simple open smooth arc we mean a simple open arc / such that
at every point ζ € / there exists a unique tangent vector Tζ and such that the
angle θ(ζ) of the vector Tζ to the positive real axis is a continuous function
of ζ € / . Clearly a simple open smooth arc is locally rectifiable.

We obtain

THEOREM 2. Let Dl9 D2,I,fi,fo and f be as in the problem. Assume
that I is a simple open smooth arc and let E be a subset of I of linear
measure zero. For every ζe I—E, let L{ be a simple arc in Dό terminating
at ζ 0"=.l,2). Suppose that

(I) limfι(z) — lim/2(^) (^oo) for every point ζ of I—E;

zz:£ζ zTάζ

(II) fj is in the class HP(D3) for some p> 1 (j = 1,2).

Then f can be extended analytically to the whole I.

PROOF. First, by the property of I we can make easily a Jordan domain
Do with the rectifiable boundary corresponding to every point ζ0 in the whole
/ such that the following conditions hold :

( 1) the same condition as (1) in the proof of Theorem 1;
(2') D{ — DQC\ DJ is a Jordan domain with the smooth boundary C/ = l, 2);
( 3 ) the same condition as (3) in the proof of Theorem 1.

Here a Jordan curve J: z = z(t), 0 ^ t ^ 1 is said to be smooth if any simple
open subarc of J is smooth and if we denote by θ(t) the angle of the tangent
vector at the point z(t) ( 0 : g ί < l ) to the real axis, we have lim 0(£) = 0(O) + 27T.

The existence of Dl, for example, is shown by the existence of a smooth curve
in Z)χ tangent to / at the point near ξ0.

Next we show

(4') fj is in the class Ex(Dfo (j = 1, 2).

Let z = z{w) be a one-to-one conformal map of the unit disc U onto D]. Then
by the well-known theorem (cf. Theorem 5, p. 410, [6]) the function z'(w) is
in the class Hq(U) for any q > 0. On the other hand, the function Fλ{w)
= fi(z(w)) is in the class HP(U). Hence by Holder's inequality

£l/,(^..))»x«»)i« a ( f iF,(re«)|.^)1/γlzv»)i <*f,



SOME REMARKS ON ANALYTIC CONTINUATIONS 333

with (l/p) + (l/q)<=l, 0 ^ r < l , we know that fi(z(w))z'(τv) is in HX(JJ) and
hence /i is in the class Ex(Dl). Similarly f2 is in the class Ev(Dl). The rest
of the proof is the same as in the proof of Theorem 1.

4. Under a stronger condition that I is analytic, we obtain

THEOREM 3. Let Du D2, I,fuf2 and f be as in the problem. Assume
that I is a simple open analytic arc and let E be a subset of I of linear
measure zero. For every £ £ I—E, let L{ be a simple arc in Dj terminating
at ζ (7 = 1,2). Suppose that

(i) λϊmfiiz) = livcif2(z) (^00) for every point ξ of I—E;
z^ζ z^ζ

Z&Liζ Z&Ltζ

(ii) fj is in the class Hγ(D3) (j = 1, 2).

Then f can be extended analytically to the whole I.

PROOF. We have only to prove the following :
Let G be the open unit disc \z\ < 1, G1 be the open upper half disc and

G2 be the open lower half disc. Let I be the open interval — 1 < x < 1 on
the real axis. Let g5 be in H^Gj) (j. = l, 2). Assume that

(iii) lim^Oε) = Urn g2(z) (φoo) for a.e. point x € I.
f z (z

Then there exists an analytic function g in G such that g — g^ in Gj (7 =1,2).
To prove this, set ψ(z) = gi(z) + g&) and χ(z) = i(gι(z) — g2(z)) for zz Gly

where bar means the complex conjugate. Then both -ψ and % are in Hι{Gχ)
since the function g*{z) — g^z) for z £ Gx is in HX(G^) and the class HX(G^) is
linear. By the condition (iii) both ψ and % have real asymptotic values along
the vertical lines at a.e. point in /. Let z — z(w) be a one-to-one conformal
map of the unit disc U onto Gι. Then we can apply Rudin's lemma (Lemma
4.4., p. 59, [12]) to the functions ψ(z(zv)) and χ(z(τv)). As a consequence we
know that both ψ and % can be continued analytically to the whole G and
the Schwarz reflexion principle holds. Let Ψ and X be the resulting functions

of ψ and X respectively and set g(z) = ~(Ψ(z)-iX(z)). Then g(z) = -~-

- iχ{z)) = gx{z) in G1 and if *e Gt, g(z) =±(Ψ(z)-i X"(f))=^(t(5) - i

— ^2^) This completes the proof of our assertion.

REMARK. Noshiro [10] remarked that there exists a function g\(z) analytic
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in the upper half plane Dγ : ^z > 0 with the following properties :

(A) %gι(z) > 0 in Dx

(B) gι(z) has a real vertical limit at a.e. point on the real axis;
(C) g\(z) has an essential singularity at every point on the real axis.

______ /\
Now we set g^^ — giiz) in the lower half plane D2. Then applying Smirnov-
Cargo's Theorem (Theorem 2, [4]) we have g5 <= HP(D3) for any p, 0 < p < 1,
since g3 takes values in a half plane (j = 1,2). The vertical limits of gλ and <72

coincide at a.e. point on the real axis by the condition (B). Thus we cannot
replace the condition (ii) in Theorem 3 by

(ii') fj is in the class HP(D3) (J = 1, 2)

for p, 0 < p < 1.

5. A totally disconnected compact set E in the plane is said to be null
for Hp if any element of HP(CE) is constant, where CE is the complement of
E with respect to the extended plane. It is known that if E is of logarithmic
capacity zero, then E is null for any Hp, 0<p< oo ([11], cf. [12], [13] and
[15]). As a direct corollary to Theorem 2 (resp. Theorem 3) we have: A
compact set of linear measure zero lying on a simple open smooth {resp.
analytic) arc is null for Hp, p> 1 (resp. H^.

Obviously, any Hp-nu\l set is an NB set in the sense of Ahlfors and
Beurling [1] (0 < p < oo). On the other hand, if E, lying on a simple open
analytic arc, is an NB set, then E is of linear measure zero ([1]). This shows
that the notion of Hp-nul\ sets (p^ 1) and the notion of NB sets coincide under
the restriction of E lying on a simple open analytic arc. We remark also that
Havin and Havinson [7] proved : If E, lying on a smooth Jordan curve of a
special type, is an NB set, then E is of linear measure zero. This shows that
the notion of Hp-nu\l sets (p> 1) and the notion of NB sets coincide under
their assumption.

It is well known that there exists a compact set of linear measure zero
lying on the real axis and of positive logarithmic capacity. This means that
Rudin's question (QO (p. 49, [12]) is answered in the negative for p^ 1.
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