Tôhoku Math. Journ. 21(1969), 328-335.

SOME REMARKS ON ANALYTIC CONTINUATIONS

Shinji Yamashita

(Received January 31, 1969)

1. The purpose of the present paper is to prove some theorems concerning continuations of analytic functions across simple open arcs. Here, a simple open arc means a topological image of the open interval $\{t; 0 < t < 1\}$.

Let D_1 and D_2 be Jordan domains in the z-plane having no point in common and I be a simple open arc lying on the non-empty common boundary of D_1 and D_2 . Then there arises the following

PROBLEM. Given two analytic functions f_1 and f_2 in D_1 and D_2 respectively, we set $f = f_1$ in D_1 and $f = f_2$ in D_2 . Under what condition do there exist an open subset I^* of I and an analytic function F(z) in $D_1 \cup I^* \cup D_2$ such that $F(z) = f_j(z)$ for $z \in D_j$ (j = 1, 2)? In other words, under what conditions on f and I can f be extended analytically to an open subset I^* of I?

This problem was investigated by some authors, e.g., Carleman [5], Wolf [14], Meier [8] and from cluster-sets-theoretic viewpoint, Bagemihl [3] gave an answer to this problem under the restriction of I being an open interval on a straight line. Recently, Noshiro [9] gave an improvement of Bagemihl's theorem [3] (cf. also [10]).

First in §2 we shall prove an analogous theorem to Bagemihl-Noshiro's in the case where I is an open locally rectifiable arc. Instead of the condition (c) in Theorem 6 in [9] we shall give a global restriction to f. In §3 we assume that I is a simple open smooth arc. We give an answer to the problem under the condition that f_j belongs to the Hardy class $H_p(D_j)$ for p>1 (j=1,2). In §4 we assume that I is a simple open analytic arc. Under the weaker condition that f_j is in the class $H_1(D_j)$ (j=1,2), we shall give another answer to the problem. Finally in §5 we shall state some remarks on null-sets for the class H_p , $p \ge 1$, as applications of two theorems in §3 and in §4.

2. By an open locally rectifiable arc I we mean a simple open arc such that every point of I has a neighbourhood which is a rectifiable subarc of I.

SOME REMARKS ON ANALYTIC CONTINUATIONS

We remark that a rectifiable simple arc must be a topological image of the closed interval $\{t; 0 \leq t \leq 1\}$. We also remark that a rectifiable arc has a tangent at every point except for a set of linear measure zero. Here a subset E of an open locally rectifiable arc I is said to be of linear measure zero if for any $\varepsilon > 0$, there exists a countable number of open subarcs $\{I_n\}$ of I such that $\bigcup I_n \supset E$ and $\sum mI_n < \varepsilon$, where m denotes the linear measure (the length).

An analytic function f in a plane domain D is said to be in the class S(D) provided that the subharmonic function $\log^+|f| = \max(\log |f|, 0)$ admits a harmonic majorant in D which is quasi-bounded, i.e., the limiting function of a monotone non-decreasing sequence of non-negative bounded harmonic functions in D (cf. e.g., [15]).

An analytic function f in D is said to be in the Hardy class $H_p(D)$ $(0 if the subharmonic function <math>|f|^p$ admits a harmonic majorant in D.

Both classes S(D) and $H_p(D)$ have local property, i.e., if f is in the class X(D), then f is in X(D') for any subdomain $D' \subset D$. Furthermore, $H_p \subset H_q \subset S$, for $p \ge q$.

We state the definition of another class $E_1(D)$. Let D be a Jordan domain with the rectifiable boundary and z = z(w) be a one-to-one conformal map of the disc U: |w| < 1 onto D. An analytic function f(z) defined in D is said to belong to the class $E_1(D)$ if the function f(z(w)) z'(w) is in the class $H_1(U)$. It is shown that this definition is independent of the choice of a map z(w)(cf. [6]).

The following lemma will play a fundamental rôle.

LEMMA. Let D_1, D_2, I, f_1, f_2 and f be as in the problem. Assume that the boundaries of D_1 and D_2 are rectifiable and $D_1 \cup I \cup D_2$ is a Jordan domain (with the rectifiable boundary). Let E be a subset of I of linear measure zero. For every $\zeta \in I-E$, let L_{ζ} be a simple arc in D_j terminating at ζ (j=1,2). Suppose that

$$(*) \lim_{\substack{z \to \zeta \\ z \in L^{2}\zeta}} f_{1}(z) = \lim_{\substack{z \to \zeta \\ z \in L^{2}\zeta}} f_{2}(z) \quad (\neq \infty) \text{ at every point } \zeta \text{ of } I-E;$$

(**) f_j is in the class $E_1(D_j)$ (j = 1, 2).

Then f can be extended analytically to the whole I in the sense stated in the problem.

PROOF. By the condition (**) we obtain

$$egin{array}{lll} rac{1}{2\pi i} \int_{\partial D_j} rac{f_j^*(\zeta)}{\zeta-z} \, d\zeta = f_j(z) & ext{if} \quad z\in D_j \,, \ &= 0 & ext{if} \quad z
otin \overline{D}_j \,, \end{array}$$

S. YAMASHITA

where $f_j^*(\zeta)$ is the non-tangential limit of f_j at the point $\zeta \in \partial D_j$ except for a set of linear measure zero, the integration is taken to the positive sense, and bar means the closure (j = 1, 2) (cf. chap. 10, §5 in [6]). By (*) and by Bagemihl's ambiguous-point theorem [2], we have $f_1^*(\zeta) = f_2^*(\zeta)$ except for a set of linear measure zero in I. Now we set

$$F(z) = \frac{1}{2\pi i} \int_{\partial D} \frac{f^*(\zeta)}{\zeta - z} d\zeta, \quad z \in D,$$

where $D=D_1\cup I\cup D_2$ and $f^*(\zeta)=f_j^*(\zeta)$, $\zeta\in\partial D_j$ (j=1,2). Then F is analytic in D and

$$F(z) = \frac{1}{2\pi i} \int_{\partial D_1} \frac{f_1^*(\zeta)}{\zeta - z} d\zeta + \frac{1}{2\pi i} \int_{\partial D_2} \frac{f_2^*(\zeta)}{\zeta - z} d\zeta$$
$$= f_j(z) \quad \text{if} \quad z \in D_j \ (j = 1, 2) \,.$$

This completes the proof of the lemma.

Now we are ready to prove

THEOREM 1. Let D_1 , D_2 , I, f_1 , f_2 and f be as in the problem. Assume that I is an open locally rectifiable arc and let E be a subset of I of linear measure zero. For every $\zeta \in I-E$, let L_{ζ}^{i} be a simple arc in D_{j} terminating at ζ (j=1, 2). Suppose that

(a) $\lim_{\substack{z \to \zeta \\ z \in L_{\zeta}}} f_1(z) = \lim_{\substack{z \to \zeta \\ z \in L_{\zeta}}} f_2(z) = \omega_{\zeta} \ (\neq \infty) \ for \ every \ point \ \zeta \ of \ I-E;$

(b) the function $\varphi(\zeta) = \omega_{\zeta}$ defined on I - E is bounded in some neighbourhood of every point ζ of I - E;

(c) f_j is in the class $S(D_j)$ (j=1,2).

Then there exists a closed set e relative to I such that e is a subset of E and f can be extended to be analytic in the open set I-e.

PROOF. First we prove:

For any point $\zeta_0 \in I-E$ there exists a Jordan domain D_0 with the rectifiable boundary such that

(1) $\zeta_0 \in D_0$ and the open set $D_1 \cup D_2$ has no exterior point belonging to D_0 ; (2) $D_0^j = D_0 \cap D_j$ is a Jordan domain with the rectifiable boundary (j = 1, 2);

(3) $\overline{D}_0^1 \cap I = \overline{D}_0^2 \cap I = J_0$ is a rectifiable arc containing ζ_0 in its interior;

(4) f is bounded in $D_0^1 \cup D_0^2$.

330

SOME REMARKS ON ANALYTIC CONTINUATIONS

By the condition (b) there exists a rectifiable subarc J_0^1 of I such that J_0^1 has ζ_0 as its interior point, I has normals from the interior of D_1 to both terminal points of J_0^1 and such that $\varphi(\zeta)$ is bounded in $J_0^1 - E$. Therefore there exists a Jordan domain $G_0^{1} \subset D_1$ with the rectifiable boundary such that $\overline{G}_0^1 \cap I = J_0^1$. Let z = z(w) be a one-to-one comformal map of the unit disc U onto G_0^1 . Let J_0^* be the inverse image of J_0^1 by the natural extension $\zeta = z(\zeta^*)$ of z=z(w) to the unit circle $|\zeta^*|=1$. Set $\zeta_0=z(\zeta_0^*)$. Evidently the composite function $F_1(w) = f_1(z(w))$ is in the class S(U) and F_1 has the asymptotic value $\varphi(z(\zeta^*))$ at a.e. (almost every) point ζ^* in the interior I_0^* of J_0^* . By using Bagemihl's theorem [2] again we know that F_1 has radial limit $F_1(\zeta^*) = \varphi(z(\zeta^*))$ at a.e. point ζ^* of I_0^* since F_1 is of bounded type. Without loss of generality, we may assume that $|F_i(\zeta^*)| < 1$ at a.e. point in I_0^* since the space S(U) is linear. Let h(w) be the least harmonic majorant of $\log^+|F_1(w)|$ in U, which is quasi-bounded, and hence is represented as the Poisson integral of its radial limits. Then h(w) has radial limit $h(\zeta^*) = \log^+ |F_1(\zeta^*)| = 0$ at a.e. point ζ^* in the open arc I_0^* . Hence h can be continued harmonically across I_0^* . This shows that there exists an open disc d with the centre ζ_0^* such that h and consequently F_1 are bounded in $d \cap U$. Therefore there exists an open disc v_1 with the centre ζ_0 such that f_1 is bounded in $v_1 \cap D_1$. Similarly we can choose a disc v_2 for f_2 . Now we can make easily $D_0^j \subset v_1 \cap D_j$ as we wanted (j=1,2).

Next we remark that the derived function z'(w) in the definition of the class $E_1(D)$ is in the class $H_1(U)$ since D has the rectifiable boundary. This shows that any bounded analytic function in D belongs to $E_1(D)$. Now we can apply the lemma to D_0^i and f_j since $f_j \in E_1(D_0^i)$ (j=1,2). As a consequence we know that f can be extended analytically to I_0 , the interior of J_0 . Thus we have proved that f can be extended to be analytic to an open arc $I_{\zeta} \subset I$ corresponding to every point $\zeta \in I - E$. Set $e = I - \bigcup_{\zeta \in I - E} I_{\zeta}$. Then e satisfies the conditions of the theorem. This completes the proof of the theorem.

REMARK. Let A_{∞} be the set of points of I at which at least one of f_1 and f_2 has ∞ as an asymptotic value. Then, instead of the condition (c) in our theorem, we can take

(c*)
$$\overline{A}_{\infty} \cap (I-E) = \emptyset$$
.

In fact, this condition implies that the function $F_1(w) = f_1(z(w))$ in our proof is bounded in $d \cap U$ since the technique in the proof of Bagemihl-Noshiro's theorem ([3], [9]) is available. The rest of the proof is the same as in ours. Furthermore, this shows that we can mix these two conditions, i.e., we can take the following (c^{**}) instead of (c):

(c**) f_1 is in the class $S(D_1)$ and $\overline{A}^2_{\infty} \cap (I-E) = \emptyset$,

S. YAMASHITA

where A^2_{∞} is the set of points in I at which f_2 has ∞ as an asymptotic value.

The problem of finding relations between the conditions (c) and (c^*) seems to be open.

3. By a simple open smooth arc we mean a simple open arc I such that at every point $\zeta \in I$ there exists a unique tangent vector T_{ζ} and such that the angle $\theta(\zeta)$ of the vector T_{ζ} to the positive real axis is a continuous function of $\zeta \in I$. Clearly a simple open smooth arc is locally rectifiable.

We obtain

THEOREM 2. Let D_1, D_2, I, f_1, f_2 and f be as in the problem. Assume that I is a simple open smooth arc and let E be a subset of I of linear measure zero. For every $\zeta \in I-E$, let L_{ζ}^{i} be a simple arc in D_{j} terminating at ζ (j=1,2). Suppose that

- (I) $\lim_{\substack{z \to \zeta \\ z \in L^1_{\zeta}}} f_1(z) = \lim_{\substack{z \to \zeta \\ z \in L^2_{\zeta}}} f_2(z) \ (\neq \infty) \text{ for every point } \zeta \text{ of } I E;$
- (II) f_j is in the class $H_p(D_j)$ for some p > 1 (j = 1, 2).

Then f can be extended analytically to the whole I.

PROOF. First, by the property of I we can make easily a Jordan domain D_0 with the rectifiable boundary corresponding to every point ζ_0 in the whole I such that the following conditions hold:

(1) the same condition as (1) in the proof of Theorem 1;

(2') $D_0^j = D_0 \cap D_j$ is a Jordan domain with the smooth boundary (j=1,2); (3) the same condition as (3) in the proof of Theorem 1.

Here a Jordan curve J: z = z(t), $0 \le t \le 1$ is said to be smooth if any simple open subarc of J is smooth and if we denote by $\theta(t)$ the angle of the tangent vector at the point z(t) $(0 \le t < 1)$ to the real axis, we have $\lim_{t \to 1} \theta(t) = \theta(0) + 2\pi$. The existence of D_0^1 , for example, is shown by the existence of a smooth curve in D_1 tangent to I at the point near ζ_0 .

Next we show

(4') f_j is in the class $E_1(D_0^j)$ (j = 1, 2).

Let z=z(w) be a one-to-one conformal map of the unit disc U onto D_1^0 . Then by the well-known theorem (cf. Theorem 5, p. 410, [6]) the function z'(w) is in the class $H_q(U)$ for any q > 0. On the other hand, the function $F_1(w)$ $= f_1(z(w))$ is in the class $H_p(U)$. Hence by Hölder's inequality

$$\int_{0}^{2\pi} |f_1(z(re^{i\theta}))z'(re^{i\theta})| \ d\theta \leq \left(\int_{0}^{2\pi} |F_1(re^{i\theta})|^p \ d\theta\right)^{1/p} \left(\int_{0}^{2\pi} |z'(re^{i\theta})|^q \ d\theta\right)^{1/q},$$

332

with (1/p)+(1/q)=1, $0 \leq r < 1$, we know that $f_1(z(w))z'(w)$ is in $H_1(U)$ and hence f_1 is in the class $E_1(D_0^1)$. Similarly f_2 is in the class $E_1(D_0^2)$. The rest of the proof is the same as in the proof of Theorem 1.

4. Under a stronger condition that I is analytic, we obtain

THEOREM 3. Let D_1 , D_2 , I, f_1 , f_2 and f be as in the problem. Assume that I is a simple open analytic arc and let E be a subset of I of linear measure zero. For every $\zeta \in I-E$, let L_{ζ}^{i} be a simple arc in D_{j} terminating at ζ (j=1,2). Suppose that

- (i) $\lim_{\substack{z \to \zeta \\ z \in L^1_{\zeta}}} f_1(z) = \lim_{\substack{z \to \zeta \\ z \in L^2_{\zeta}}} f_2(z) \ (\neq \infty) \text{ for every point } \zeta \text{ of } I E;$
- (ii) f_j is in the class $H_1(D_j)$ (j = 1, 2).

Then f can be extended analytically to the whole I.

PROOF. We have only to prove the following:

Let G be the open unit disc |z| < 1, G_1 be the open upper half disc and G_2 be the open lower half disc. Let I be the open interval -1 < x < 1 on the real axis. Let g_j be in $H_1(G_j)$ (j=1,2). Assume that

(iii) $\lim_{\substack{z \to x \\ \Re z = x \\ z \in G_1}} g_1(z) = \lim_{\substack{z \to x \\ \Re z = x \\ z \in G_2}} g_2(z) \ (\neq \infty) \text{ for a.e. point } x \in I.$

Then there exists an analytic function g in G such that $g=g_j$ in G_j (j=1,2).

To prove this, set $\psi(z) = g_1(z) + \overline{g_2(\overline{z})}$ and $\chi(z) = i(g_1(z) - \overline{g_2(\overline{z})})$ for $z \in G_1$, where bar means the complex conjugate. Then both ψ and χ are in $H_1(G_1)$ since the function $g^*(z) = \overline{g_2(\overline{z})}$ for $z \in G_1$ is in $H_1(G_1)$ and the class $H_1(G_1)$ is linear. By the condition (iii) both ψ and χ have real asymptotic values along the vertical lines at a.e. point in *I*. Let z = z(w) be a one-to-one conformal map of the unit disc *U* onto G_1 . Then we can apply Rudin's lemma (Lemma 4.4., p. 59, [12]) to the functions $\psi(z(w))$ and $\chi(z(w))$. As a consequence we know that both ψ and χ can be continued analytically to the whole *G* and the Schwarz reflexion principle holds. Let Ψ and X be the resulting functions of ψ and χ respectively and set $g(z) = \frac{1}{2}(\Psi(z) - iX(z))$. Then $g(z) = \frac{1}{2}(\psi(z) - i\chi(\overline{z})) = \frac{1}{2}(\psi(\overline{z}) - i\overline{\chi(\overline{z})}) = \frac{1}{2}(\overline{\psi(\overline{z})} - i\overline{\chi(\overline{z})})$ $= g_2(z)$. This completes the proof of our assertion.

REMARK. Noshiro [10] remarked that there exists a function $g_1(z)$ analytic

S. YAMASHITA

in the upper half plane $\widehat{D}_1: \Im z > 0$ with the following properties:

- (A) $\Im g_1(z) > 0$ in \widehat{D}_1 ;
- (B) $g_1(z)$ has a real vertical limit at a.e. point on the real axis;
- (C) $g_1(z)$ has an essential singularity at every point on the real axis.

Now we set $g_2(z) = \overline{g_1(\overline{z})}$ in the lower half plane \widehat{D}_2 . Then applying Smirnov-Cargo's Theorem (Theorem 2, [4]) we have $g_j \in H_p(\widehat{D}_j)$ for any p, 0 , $since <math>g_j$ takes values in a half plane (j=1,2). The vertical limits of g_1 and g_2 coincide at a.e. point on the real axis by the condition (B). Thus we cannot replace the condition (ii) in Theorem 3 by

(ii') f_j is in the class $H_p(D_j)$ (j = 1, 2)

for *p*, 0 .

5. A totally disconnected compact set E in the plane is said to be null for H_p if any element of $H_p(CE)$ is constant, where CE is the complement of E with respect to the extended plane. It is known that if E is of logarithmic capacity zero, then E is null for any H_p , 0 ([11], cf. [12], [13] and[15]). As a direct corollary to Theorem 2 (resp. Theorem 3) we have: <math>Acompact set of linear measure zero lying on a simple open smooth (resp. analytic) arc is null for H_p , p > 1 (resp. H_1).

Obviously, any H_p -null set is an N_B set in the sense of Ahlfors and Beurling [1] (0 . On the other hand, if <math>E, lying on a simple open analytic arc, is an N_B set, then E is of linear measure zero ([1]). This shows that the notion of H_p -null sets $(p \ge 1)$ and the notion of N_B sets coincide under the restriction of E lying on a simple open analytic arc. We remark also that Havin and Havinson [7] proved: If E, lying on a smooth Jordan curve of a special type, is an N_B set, then E is of linear measure zero. This shows that the notion of H_p -null sets (p > 1) and the notion of N_B sets coincide under their assumption.

It is well known that there exists a compact set of linear measure zero lying on the real axis and of positive logarithmic capacity. This means that Rudin's question (Q_1) (p. 49, [12]) is answered in the *negative* for $p \ge 1$.

References

- L. V. AHLFORS AND A. BEURLING, Conformal invariants and function-theoretic null-sets, Acta Math., 83(1950), 101-129.
- F. BAGEMIHL, Curvilinear cluster sets of arbitrary functions, Proc. Nat. Acad. Sci. U.S. A., 41(1955), 379-382.
- [3] F. BAGEMIHL, Analytic continuation and the Schwarz reflection principle, ibid., 51(1964), 378-380.
- [4] G. T. CARGO, Some geometric aspects of functions of Hardy class H^p , Journ. Math.

334

Anal. & Appl., 7(1963), 471-474.

- [5] T. CARLEMAN, Théorie de l'intégrale de Fourier, Uppsala, 1944.
- [6] G. M. GOLUZIN, Geometric theory of functions of a complex variable, 2nd ed., Moscow, 1966, German translation of 1st ed., Berlin, 1957.
- [7] V. P. HAVIN AND S. YA. HAVINSON, Some estimates of analytic capacity, Dokl. Akad. Nauk SSSR, 138(1961), 789-792, in Russian.
- [8] K. E. MEIER, Über die Randwerte meromorpher Funktionen und hinreichende Bedingungen für Regularität von Funktionen einer komplexen Variablen, Comm. Math. Helvet., 24(1950), 238-259.
- [9] K. NOSHIRO, Some remarks on cluster sets, Journ. d'Anal. Math., 19(1967), 283-294.
- [10] K. NOSHIRO, Some theorems on cluster sets, Hung-Ching Chow Sixty-fifth Anniversary Volume, Mathematics Research Center, National Taiwan University, Taiwan, December, 1967, 1-6.
- [11] M. PARREAU, Sur les moyennes des fonctions harmoniques et analytiques et la classification des surfaces de Riemann, Ann. Inst. Fourier, 3(1952), 103-197.
- [12] W. RUDIN, Analytic functions of class H_p , Trans. Amer. Math. Soc., 78(1955), 46–66. [13] G. C. TUMARKIN AND S. YA. HAVINSON, On removal of singularities of analytic functions
- of a class (class D), Uspehi Matem. Nauk, 12(1957), 193–199, in Russian.
- [14] F. WOLF, Extension of analytic functions, Duke Math. J., 14(1947), 877-887.
- [15] S. YAMASHITA, On some families of analytic functions on Riemann surfaces, Nagoya Math. J., 31(1968), 57-68.

Mathematical Institute Tôhoku University Sendai, Japan