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Chapter 0. Introduction.

This work is mainly devoted to the study of differential geometry of
submanifolds in space forms, although most of the arguments and results in
Chapters I and II are intrinsic.

In 1952, Chern and Kuiper [2] introduced the notions of nullity and relative
nullity of submanifolds in Euclidean space; they showed that the nullity and
relative nullity distributions are of C°°, involutive and totally geodesic on the open
sets where they are constant. Later in 1959, Hartman and Nirenberg [9] ( ** }

proved that a complete hypersurface in (n +1)-dimensional Euclidean space with
the Gauss map of rank at most 1 is cylindrical, i. e., a Riemannian product of
(n — 1)-dimensional Euclidean space and a plane curve. This theorem gave the
first global determination of flat hypersurfaces in Euclidean space and led to
other, so called, cylinder theorems, under the assumption of constancy of relative
nullity and some restrictions on the sectional curvatures, by O'Neill [15] or
Hartman [ 8 ]. However, it should be remarked here that without the restrictions
of sectional curvature, it has not yet been known whether or not the above
cylinder theorems have further generalizations, even under the assumption of
constancy of relative nullity. For these theorems, completeness of the leaves of
the relative nullity distribution is crucial, as easily seen in their proofs. Thus a
natural question arose as to whether the leaves of the minimum relative nullity
distribution are complete or not under more general situations.

Meanwhile, Maltz [11] stated that the leaves of the minimum nullity
distribution in the sense of [ 2 ] are complete if the considered manifold is complete.
As a further extension of the notion, A. Gray [7] recently studied the nullity
distributions of curvature-like tensors and showed completeness of the leaves of
the minimum nullity distribution under the conditions that the curvature-like tensors

( *) This paper is a portion of the author's doctoral dissertation at Brown University under the
direction of Professor K. Nomizu during its preparation, he held National Science
Foundation Assistantships.

(**) The author has the complex version of this theorem, see [ 1 ].
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are recurrent and the considered manifold is complete. In this case, also, the
problem about completeness of the leaves of the minimum nullity distribution
remains open for more general situations.

It is the purpose of this work to establish the completeness in the above two
cases and to give some applications to submanifolds in space forms.

In Chapter I, we shall define a certain curvature-like tensor D relative to a
real number k on a Riemannian manifold M, and shall call it the relative curvature
tensor with constant k. Especially, if k = 0, then D will be the curvature tensor
of M as in [ 2 ] and [11]. Also if M is a submanifold of a space form M with
constant sectional curvature c, then the difference of the curvature operators on
M and M considered as a tensor on M will give us a typical example of D with
constant c.

With D, we shall prove our first main result, THEOREM 1. 4.1, describing
completeness of the leaves induced from the minimum nullity distribution of D,
when M is complete. As an application of THEOREM 1.4.1. we shall prove
THEOREM 1. 6. 2, which, incidentally, gives a partial answer to Gray's conjecture
in [7] .

Now let Mn be a complete Riemannian submanifold of a space form M(c) of
constant sectional curvature c. Then applying to the second fundamental form
quite similar arguments to those in the proof of THEOREM 1. 4.1, we shall get
THEOREM 1.8.1, which tells us completeness of the leaves of the minimum
relative nullity distribution.

In Chapter II, we shall treat the complex analogues of the results in Chapter
I under a slightly different definition of complex relative curvature tensors on a
Kahlerian manifold. Our main results in this chapter are described as THEOREMS
2. 2.1 and 2. 3.1.

Chapters III and IV will be devoted to an application of the results obtained
in Chapters I and II to submanifolds in space forms.

We shall genralize a theorem by Nomizu [13] on a characterization of totally
geodesic Kahlerian hypersurfaces in the complex projective space of constant
holomorphic sectional curvature 1. Here his proof, although elegant, heavily depends
on algebraic geometrical results such as Chow's theorem and is applicable only to
compact imbedded hypersurfaces. In Chapters III and IV, we shall develop a
more differential geometric method, which therefore will be applicable not only
to the complex case but also to the real case under more general situations. Our
main results in Chapters III and IV will be stated in THEOREMS 3. 2.1, 3. 2. 2,
4.2.1, 4. 2. 2, and 4. 2. 3. The author would like to express his sincere gratitude
to his advisor, Professor K. Nomizu, for his help and encouragement during
the preparation of this work. The author also thanks those people who gave
encouragement during his stay at Tόhoku University.
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Chapter 1. Completeness of the leaves of the nullity and relative nullity
distributions.

This chapter will be devoted to the Riemannian case. However, some
notations and definitions to be introduced here will be used, throughout this
paper, in the Kahlerian case which will be treated later as well. We shall follow
Kobayashi-Nomizu [10] for most of the fundamental notations, to which we shall
refer as K-N in the following chapters.

1.1. Curvature-like tensor fields and their indexes of nullity. Let M
be a Riemannian manifold with the metric tensor g and let V> TM and TMX be
the Riemannian connection, the tangent bundle and the tangent space at x,
respectively.

DEFINITION 1.1.1. A tensor field T of type (1,3) is curvature-like if it
has the following properties :

(1.1.1) T(X,Y) is skew symmetric endomorphism of TM;
(1.1.2) T(X,Y)=-T(Y,X);
(1.1. 3) The first Bianchi identity, i. e., © T(X, Y)Z = 0

χ,γ,z

(1.1. 4) The second Bianchi identity, i. e., © (\JXT){Y, Z) = 0
X,Y,Z

(1.1.5) g(T(X,Y)Z,W) = g(T(Z,W)X,Y).

Here X, Y, Z and W are in TM and © means the cyclic sum over X, Y
X,Y,Z

and Z.
DEFINITION 1.1. 2. For any point x in My the subspace defined by TN(x)

= [Xz TMX: T(X, Y) = 0 for all Y in TMX} is called the nullity space of T
at x, and its dimension is defined to be the nullity of T at x, say μ{x).

Under Definition 1.1. 2., μ(x) becomes an integer-valued function and is upper
semi-continuous. Thus the subset of M, say G, where μ(x) assumes the minimum
is open.

DEFINITION 1.1.3. The minimum of μ(x) in M is called the index
of nullity of T and is denoted by μ=μ(T9M).

1.2. The nullity distributions of the curvature-like tensors. In Section
1.1, we defined the index of nullity μ and an open set G where μ(x) = μ, i. e.,
the nullity is minimum.

DEFINITION 1. 2.1. Let TN be the distribution on G which assigns TN{x)
to x. TN is called the nullity distribution of T on M.
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The following propositions are known, for example, see A. Gray [ 6 ] or

K-N [10].

PROPOSITION 1.2.1. The nullity distrition TN is of C°° and involutive.

By Proposition 1. 2.1, we can speak of the integral manifolds of TN on G.

The leaves of this foliation will be called the leaves of nullity.

PROPOSITION 1. 2. 2. The leaves of nullity are totally geodesic submani-

folds of M.

1.3. Relative curvature tensor field with constant K as an example of
curvature-like tensors. In Section 1.1, we introduced the notion of curvature-

like tensor. The most typical example is the curvature tensor field of M itself,

from which the notion comes. Another interesting example will be given in the

following definition, which we shall mainly investigate in Chapter I and Chapter

III.

DEFINITION 1. 3.1. Let R be the curvature tensor of M. Define a new

tensor field D of type (1,3) by

(1.3.1) D(X, Y) = R(X, Y)-kXAY,

where (X Λ Y)Z = g{Y, Z)X - g[X, Z)Y and k is a real number. Call D the

relative curvature tensor of M with constant k. Especially, R is the relative

curvature tensor of M with constant 0.

It is just a matter of verification to check the following proposition.

PROPOSITION 1. 3.1. D is a curvature-like tensor on M.

REMARK 1. 3.1. Let M be a Riemannian space form of constant sectional

curvature c with R(X, Y) = cXf\Y as its curvature tensor. Let Mbe a Riemannian

submanifold of M with R as its curvature tensor. Then D{X, Y) = R(X9 Y)

-R{X,Y)=R(X,Y)-cXAY for X and Y in TM is a natural and significant

example of the relative curvature tensor of M with constant c.

1.4. Completeness of the leaves of nullity for the relative curvature
tensors. Now we shall state our first main theorem. Let DN be the nullity
distribution of D which assigns DN(x), the nullity space at x, to x. Also, we
denote by μ the index of nullity for D.
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THEOREM 1. 4.1.* Under the notations mentioned in the previous sections,
if M is complete, then the leaves of nullity for the relative curvature tensors
are complete.

In the case k = 0, i.e., D = R, R. Maltz stated completeness of the leaves
of nullity, see [11]. A. Gray [ 7 ] has a similar theorem when D is recurrent,
i.e., there exists a 1-form ω on M such that \7xD = ω(X)D for all X in TM.

The fundamental idea in our proof is similar to that of Maltz [11]. However,
in our case, the following lemmas, which are not mentioned in [11], are essential.

We begin our proof with some preparations.
Let L be a leaf in G and p be a point in L. Consider a unit speed geodesic,

say V(t), in L. Since L is totally geodesic in M, Ί{t) can be regarded as a geodesic
of M and can be extended infinitely in M.

Define />* = Ύ(%) to be the point in M such that for any s, 0^Ss<s#, Ύ([0, s\)
is contained in L but p# itself is not. If p* is in G, then by continuity of D
and by the argument similar to that in the proof of Lemma 2. p. 86, K-N [10],
px is actually in L. Thus we can assume that p* is not in G. Under this
assumption, our aim is to show a contradiction.

REMARK 1.4.1. We may assume that there exists a point in L and a
geodesic starting at that point in L such that there is a point in the geodesic
which corresponds to the above p# and satisfies the above conditions characterizing
p*. Because, if not, then every geodesic in L is extendable infinitely in L, i. e.,
L is complete.

Let B{pχ,S) be an £-ball with p^ as its center such that for any x in
B(p*,S), Exp x : TMX-+M gives a diffeomorphism of the 2£-ball in TMX with its
image that is contained in a normal convex neighborhood oί x. It is possible to
choose such an 8 by well known arguments in Riemannian geometry.

Notice that the exponential maps at points in B{p*,S) restricted to the
leaves are nothing but the exponential maps with respect to the leaves on the
neighborhood, since leaves are totally geodesic.

For convenience, let us take another fixed point, say qy in Ί{t) πLfλ B(p#, S)
and reparametrize 7 to get a new unit speed geodesic Ύ(t) such that 7(0) == q and
ry(ί̂ .) = px for some t^..

LEMMA 1. 4.1. There exists a Frobenius coordinate system on a neigh-

(*) After the author completed this work, his attention was called to the following paper : The
iC-Nullity Spaces of the Curvature Operator, by Yeaton H. Clifton and Robert Maltz,
Mich. Math. Jour. Vol. 17(1970), pp. 85-89. Its main result is the same as Theorem
1. 4. 1. However, the author would like to point out that their definition of [Xa, Xβ] on
p. 88 is not clear, and that there is also the same lack of details in [11] by Maltz.
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borhood U of q, say (U; x\ , xn ξ), such that ζ(q) = (0, , 0) in Rn,
d/dx1, , d/dxn are orthonormal at q and finally, its first μ coordinates are
those of slices by the leaves of nullity, where μ is the index of nullity, i. e.,
the dimension of the leaves.

PROOF. A routine construction by Gram-Schmidt orthonormalization process
which starts with a Frobenius coordinate system around q. Q. E. D.

From now on, we assume that U which is constructed in Lemma 1. 4.1. is
contained in GfλB{p^,S), for convenience.

Let Σ be the transversal slice determined by x1 = = xμ = 0, where
(U, x1, , xn,ξ) is the local coordinate system in Lemma 1. 4.1.

Let Eι,' ',Eμ. be μ orthonormal vector fields in DN on Σ such that Ex[q)
= Ί(q), i. e., the velocity vector of 7 at q.

Denote by φ the restriction of ζ to Σ. Then φ gives a diffeomorphism of Σ
n — μ,

with a neighborhood W of the origin (0, , 0) in Rn~μ. Define a C°°-mapping
F: R'xW-^M by

(1. 4.1) F((t\ , t% (x)) =

w h e r e (x) = (xa+\ ,xn) is a point in Rn~β such t h n t ξoφ-^x) = (0, ,0,xμ+1,-- ,xn)

in the coordinate system constructed in Lemma 1. 4.1.

REMARK 1. 4. 2. We can prove that F is of C°° as in Nomizu [11].

The following lemma is most crucial in the proof of Theorem 1. 4.1.

μ n — μ

LEMMA 1. 4. 2. Let H be the subset {{t1,0, , 0,0, , 0) in Rβ x W: 0

ί=ktι <t#} of Rβ x W. Then F is regular on H except possibly at finitely

many points.

PROOF. Let JVi, ,Nn be the natural rectangular vector fields in Rμ x W
as a subset of Rβ x Rn~μ = Rn.

First of all, we recall that the exponential map of M at q restricted to the
tangent subspace to L at q is nothing but the exponential map of L at q, since
L is totally geodesic.

By the definition of the mapping F and the fact mentioned above, the first μ
natural vectors Nι(h), ,Nμ(h) at h in H are mapped upon linearly independent
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vectors F^[h)(Nι(h))9 ,F^(h){Nμ[h)) which are tangent to L on the fixed geodesic
7.

Now in order to prove regularity of F on H, it is sufficient to show that
the normal components to L of F#(h){Nμ+1(h)), ,F*(h)(Nn{h)) are linearly
independent at h in H except possibly at finitely many points.

Let Ha, a = μ + 1, , n, be the subset of Rβ xW given by {(ί1,0, , 0,

0, , xa, 0, , 0) in Rβ X W}, where xa occurs in the cL-ύι component in Rμ

X WcRn. Let Va, a = μ + 1, , n, be the restriction of F to Ha. Then for
each 0Ly Va{t, x) defines a geodesic variation along the geodesic Ί[t) = Va(t, 0). By
well known arguments in variation theory, such variations induce Jacobi fields
along Ί. Now let us denote by Xa[t) the associated Jacobi field for each a. A
well known theorem tells us, see [10],

(1. 4. 2) V (0X«(ί) + R(X., Ύ(*))y(f) = 0, a =

Notice that if t = 0, then X«(0) = velocity vector of the Λ-th coordinate curve,
i. e., d/dx"(q). Thus from this, we know that one of the initial conditions of
(1. 4. 2) for Xa is X«(0) = d/dxa(q).

Since y(t) is in DN(V(t)) for O^t<t*,

D(Xa, γ)γ = Λ(X« γ)γ - A(Xβ Λ γ)γ = 0 .

Thus the equation (1. 4. 2) can be rewritten as

(1.4.3) V (oX« + *(X«Λ7>y = 0,

i.e.,

(1. 4. 4) V X« + k {g(v, y)Xa - g(Xβ, γ)γ} = 0 .

For convenience, let us introduce a parallel orthonormal adapted frame field
on y(t), say ex{t\ — , eμ{t\ eμ+1{t), , en(t), defined as follows : The first μ vectors
et

9s are given by displacing JE/S parallelly along V(t) and ejs are given by displacing
d/dx"(q) parallelly along Ί{t). Then, of course, ex(t) = y(t). Also note that the
parallel transformation sends an adapted frame to an adapted frame in this case,
because L is totally geodesic.

By the frame obtained as above, let X«(ί) be expressed as follows:
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(1.4.5) Xa{t

Then (1. 4. 4) is

(l. 4.6) v (o j Σ>«(*>*w} + *{

So by performing covariant differentiation,

(i. 4.7) έ*ϊ(0ta(0) *ι(rt + * | ίloc\{t)eit) - *ί(ί>i(θ| = o.
I J

i = l

Thus we have the following system of differential equations for each a= μ+1, ,n :

(1.4.8) (*i)"(0 = 0

(1.4.9) (*t)"(t) + kzt(t) = 0 for 2^i^n.

Since we are only interested in linear independence of the normal components
of Xa

ys to L, it is sufficient to take care of (1.4.9) for μ+ l^it^n.
By elementary theory for linear differential equations, (1. 4. 9) has the following

general solutions for the cases k > 0, k = 0 and k < 0, respectively :
For

(1. 4.10) x/{t) = a/ cos *J~kt + &2 sin

where a/9s and â̂

Js are independent of t, but depend on the initial conditions.
Now one of our initial conditions is xa

β{0) = δ/ , where 8/ is Kronecker's delta.
Hence (1. 4.10) has more simplified form as follows :

(1.4.11) x/(t) = SaβcoβΛ/Έt + b/s

Similarly, for k = 0,

(1. 4.12) x/[t) = δ/ + b/t,

For k<0,

(1. 4.13) ^ ( ί ) = δ/sinh V"^1^^ + */cosh V" 3 1
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Note that these solutions have only finitely many zeroes on [0, t*].
From now on to the end of this proof, we shall study the case k>0. The

cases k = 0 and k < 0 can be proved in the same fashion.
Since Xf's, μ+l^oίyβ^n, are the normal components of X«'s, μ+li=kcί,β

^ n, to L, it is sufficient to show that the following (n — μ) x (n — μ) matrix, say
B(t), has non-zero determinent on H except possibly at finitely many points:

(1. 4.14) B(t) =

cos V k t + bμ

μχ\ sin V k t f ι sin V k t

sm • cos V k t + ££ sin V ^ * i

As we see easily, the determinant of B(t) is a real-valued analytic function of
t. Since the determinant of B(0) = 1 ^ 0, we have only finitely many zeroes of
B(t) on [0, ί J . This fact shows that the normal components of Xβ's, μ< -f 1 ^r0L^n,
to ί/ are linearly independent except at finitely many points possibly.

To conclude the proof of Lemma 1.4.2, we recall that we showed that
F#Nι, , F*Nβ are linearly independent on H and are tangent to L. By the
definition of Xa's, we know that Xa(Ύ(t)) = F^(t)(Na(t))9 μ+l^a^n:so together
with the above fact, we have shown that F^hXN^h)), , F*{h)(Nn{hj) are
linearly independent on H except possibly at finitely many points. Q. E .D.

Coming back to the proof of Theorem (1. 4.1), in Lemma (1. 4. 2), we showed
that only finitely many singular points possibly exist on H. Let h* be the greatest
of the first coordinate in Rβ x W among such singular points in H. Then there
exists an open neighborhood N of the set {(£,0, ,0) in H: h^<t <t#}, say
H', where the rank of F# is n constantly by Lemma 1. 4. 2 and lower semi-continuity
of the rank of F#, namely, F restricted to N gives an immersion from N to M.

By the inverse function theorem, at any point x in H\ we have a neighborhood
Nx where F becomes a diffeomorphism.

Since Rβ X W has the canonical coordinate frame Nu , Nn which are induced
from those in RβxRn~μ = Rn, we can introduce a frame field, say d/dx1, , d/dxn,
on F(NX) by (F^N^N,) = d/dxl9 ,(F*\NxXNn) = d/dxn such that the first
μ vector fields d/dx1, , d/dx* are tangent to leaves in NxfλG.

Note here that by taking Nx small enough, we can assume NXC\G = Nx> so
from now on, we shall always consider such Nx at each x.

Let X be any parallel vector field along 7(ί). We extend X to a vector field
on a neighborhood of the set 7([/t̂ , £*]) and denote it by the same letter X for
convenience.

Our next aim is to show V̂ co [D(X«> Xβ)X) = 0, i. e. D(Xa, Xβ)X is parallel
along 7((λ*, £*)) for a, β = μ + 1, , n.
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Since Xa,Xβ,X and D(Xa,X0)X are all defined on V([hχ, t*]) and since
D(Xa, Xβ)X is a tensor field along Ύ, it does not depend on a local extension of
the considered vector fields.

Expecially, for each Nx,Xa(V(t)) = F*(Na\Nx) = d/dxa(V(t)) on HnNx for
a = μ + 1, , n, so to prove that D(Xa, Xβ)X is parallel along f/((Λ#, £#)), it
suffices to show that D(d/dxa, d/dxβ)X is parallel along 7 on each F(NX).

By the second Bianchi identity (1.1. 4), we have

(14.15) @ (Vβ/β».£>X3/3Λ, 3/3^β) = 0 ,
3 / 3 a / 3 a /

i. e.,

- D(d/dx*>

- D(d/dxa,

dx1, d/dxα)X - D(3/dx\

- D(d/dx\ d/dxa)\jdJdxβX = o.

Since 3/ar1 is in DN in F(NX), we have Dβ/dx^d/dx1) = 0 for O^i^n.
Also the choice of X gives that Va/ax«X = 0 on 7(ί). Finally, by the facts that£>(X, Y)
= -D{Y,X) and that Ve/dχid/dxj-V^d/dx'= [d/dx\d/dxj]=
= 0 for l^iyj^n, on F(NX), we can reduce the above equation to

/(( / ) - 0 on

i. e.,

(1. 4.16) V;(«(ZXX« X/,)X) = 0 for /x + 1 ̂  a, /S ^ n,

i. e., D(Xa,Xβ)X is parallel on Ύftλ*,**)) for
Let ί be a fixed point chosen from (/î ., ty.) and let Y" be any vector field

parallel along Ί.
Now let y(7(f*)) be in DiSΓ(ίJ. Then we claim that D[V, W)Y(t) = 0 for

all V and P^ in TMΊ{Ϊ), i. e., Γ(ί) is in DN(t). This last assertion follows from
(1.1. 5) directly if we know D(V, W)Y(t) = 0 for any V and W in TM.

Let V = V + E ^ β X and TT= W" + Σ ^ X ^ , where V and W are DiV
a=μ+l β=μ+l
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components of V and W, respectively. Then

DIV, W)Y(t) = D(V\ W')Y(t) + DIV\ Σ,Weχ)jY(t) + O^TV^X., W \Y(Ϊ)

Here the first three terms vanish. On the other hand, if one of D(Xa, Xβ)Y(t)
, then by (1.4.16) and continuity of D, we would have D{Xa{t^)y Xβ(t^))Y(t^)

Thus we have a contradiction that Y(t#) is in DN(t#). Thus we have
shown that D(V, W)Y(t) = 0 for any V and W in TM.

This fact tells us that every Y(t#) in DN{tχ) is the image of a vector Y(t)
in DN(t) by the parallel displacement along 7.

Since the parallel displacement is an isomorphism between the two tangent
spaces, the dimension of DN{t^) is less than or equal to the dimension of DN(t).
However, the dimension of DN(t) = μ, the index of nullty of D, is supposed to be
the minimum among the nullity μ[x) corresponding to every x in M. Consequently,
the dimension of DN(t#) must be equal to that of DN(t). Thus Ύ(£#) =ρ* is in
G by its definition. Then by the argument described just below the statement of
Theorem 1. 4.1, we can show that p^ is in L and can extend 7 in an eighborhood
of p*.

It is a contradiction to the choice of 7 and p#. Q. E. D.

1. 5. Riemannian submanifolds in Riemannian manifolds. Let MN be

an iV-dimensional Riemannian manifold with g, V and R as its Riemannian metric,
Riemannian connection and Riemannian curvature, respectively. Let Mn be an
w-dimensional Riemannian submanifold of MN isometrically immersed by / with g,
V and R as its Riemannian metric, Riemannian connection and Riemannian
curvature, respectively.

Denote by ξ19 , ξN-n a. normal frame to Mn orthonormal to each other in

MN. Then we have the following basic formulas, see K-N [10] :

(1.5.1) v * r = VxY + Σ W Y)ξi = V^Y + Λ(X, Y)
1 = 1

(1.5.2) Vxξi = -AX + Vjξi, l^i^N-n;

where X and Y are vector fields tangent to M, V is the normal connection, and
α is the second fundamental form.
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It is just a simple verification to see that Λ/s are symmetric bilinear forms
and Ai's are tensor fields of type (1,1). Moreover, we have that ht(X, Y) = g(AtX,Y),

Finally, under the notations introduced here, we have Gauss equation:

(1. 5. 3) R(X, Y)Z = tangential component of R{X, Y)Z + Σ (AtX Λ AX)Z,

where X, Y and Z are vector fields tangent to M and AtX Λ AiY, for
l^i^N—n, means the linear operator of TM defined by (AtXΛAtY)(Z) =
g(AtY, Z)AiX- g{AtX, Z)A%Y for Z in TM.

1. 6. Some direct results of Theorem 1. 4.1. Let L be a leaf of nullity
of D in Section 1. 4. Consider L as a Riemannian submanifold of M with the
induced Riemannian structure, say gL, \/L and RL, respectively, by those of M.
Then we have

THEOREM 1.6.1. L has constant sectional curvature k. Especially, if

k > 0, then L has the standard sphere of radius ~τηr as its universal covering

manifold. Conequently, L is compact.

PROOF. The first half is trivial by Gauss equation (1. 5. 3.) in Section 1.5.
For the rest of the proof, since L is complete by Theorem 1. 4.1 and is of

constant sectional curvature k, it is well known that L has a complete universal
covering manifold of constant curvature k. Especially, if k>0, then such universal

coverings are isometric to the standard /̂ -dimensional sphere with radius —jη= and

L is compact. Q. E. D.

T. Frankel proved the following in [ 5 ] :

LEMMA 1.6.1 (T. Frankel). Let Mn be a complete connected manifold
with positive sectional curvature and let VL and Wm be compact totally
geodesic submanifolds of M with dimensions I and m, respectively. Then if
I + m^in, then V1 and Wm have non-empty intersection.

Thus Lemma 1 6.1 leads us to

THEOREM 1. 6. 2. Let Mn be a complete connected Riemannian manifold
with positive sectional curvature. If the index of nullity μ of the relative
curvature with constant k satisfies 2μ^n, then Mn has constant sectional
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curvature k and also has the n-dimensional standard sphere Sn[k) of radius

~j=Ψ as its universal covering manifold.

PROOF. Let 2μ^n, but μ^n. Then there exist two leaves different from
each other, but Lemma 1. 6.1 tells us that any such leaves must intersect each
other. This is a contradiction.

So only one possible case is that μ — n. Since we know that L is complete
and M is connected, so L — M. Using the same argument as in the proof of
Theorem 1. 6.1, we have the desired result. Q. E. D.

COROLLARY 1. 6.1. Under the assumption in Theorem 1. 6. 2, if, in addi-
tion, n is even, then Mn = Sn or RPn, where Sn is the n-dimensional sphere of

radius —j== and RPn is the projective space given by identifying antipodal
V k

points in Sn above, which also has constant sectional curvature k.

PROOF. See p. 294 in [10] combined with Theorem 1. 6. 2.

1. 7. The relative nullity and the index of relative nullity. Chern and
Kuiper in [ 2 ] introduced these notions to study differential geometry of submanifolds
imbedded in Euclidean spaces.

The following definitions are extensions of those given in [ 2 ] to more general
cases.

As in Section 1. 5, let Mn be a Riemannian submanifold of a Riemannian
space form of constant sectional curvature c. Then we have the bilinear form
ax: TMxxTMx-*TMt at each x in M and symmetric tensors Aξ for any ξ in
TMi, for more details, see K-N [10].

DEFINITION 1. 7.1. The relative nullity space at x is defined to be the
subspace {X € TMX : a(X, Y) = 0 for all Y in TMX}. Denote it by RN(x).

It is easy to check the following proposition.

PROPOSITION 1. 7.1. The following three subspaces of TMX are same :

(1. 7.1) RN(x) = [Xz TM: a{X, Y) - 0 for all Ye TMX]

(1. 7. 2) {Xe TMX : Aξ(X) = 0 for all ξ € TMί~}

(1. 7. 3) {X € TMX : Aξi(X) = 0, where ξϊs, l^i^N-n, form

an orthonormal base of TMt] .
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DEFINITION 1. 7. 2. v(x) is defined to be dim RN(x) and is called the
relative nullity at x. The minimum among v{x) over M is called the index
of relative nullity of the submanifold M.

REMARK 1.7.1. Gauss equation (1. 5. 3) shows some relation between the
nullity space and the relative nullity space in the followiug sense.

Let M be a space form of sectional curvature c and let M be a Riemannian
submanifold of M. Then as in Section 1.3, we can define a relative nullity
curvature tensor with constant c by D{X, Y) = R(X, Y) - R(X, Y) for X and Y
in TM.

By (1.5.3), we have DN(X)ΏRN(X). However, the equality may not hold.
For example, let M be R3 and let M be the cylinder {[x,y>z) € R3: y2 + z2 = 1}.
Then, as we know, R(X,Y)=0 and R(X,Y)=0, therefore DN=TM, but RN
are generators.

1. 8. Completeness of the relative nullity distribution Denote by G the
set {x £ M: v(x) = v). Then by upper semicontinuity of v, G is open. Define the
relative nullity distribution RN by assigning RN(x) to x in G and call it the
relative nullity distribution of M.

PROPOSITION 1.8.1. The relative nullity distribution RN is of C°°,
involutive and each leaf, say L, of the foliation is totally geodesic in M
and M.

PROOF. This proposition is well known. One can refer to [ 2 ] for the proof.
Q. E. D.

THEOREM 1.8.1.* / / M is complete, then the leaves of the foliation
defined by RN are complete and have the same constant sectional curvature
as the ambient space form under the induced Riemannian structure from that
of M.

[ 8 ] showed Theorem 1. 8.1 when Mn is a submanifold in the Euclidean space
with an arbitrary codimension. For non-zero c, O'Neill and Stiel [16] have this
theorem under the restriction that Mn also has the same constant sectional
curvature as that of the ambient space form.

PROOF. Let V(t) be the geodesic in a leaf L as in the proof of Theorem
1. 4.1, where 7([0, t*)) is in G, but Ύ(ί#) =p* is not.

(*) After submitting this paper, the author was informed that R. Maltz has the same result as
Theorem 1. 8. 1



TOTALLY GEODESIC SUBMANIFOLDS IN SN AND CPN 233

Define (17, x\ , xv, xv+\ , xn, ξ) be a Frobenius coordinate system around
Ύ(0)=p as in Lemma 1.4.1 with respect to the relative nullity distribution.
Again as in Lemma 1. 4. 2, define F: Rυ x P^->MW by

,*", (3,))) =

V

where W is the transversal slice defined by ζ~1{W) — {xe M\ ζ(x) = (0, ,0,
xv+\ , xn] and φ is the restriction of ζ to ζ"ι( {(0, , 0, xv+\ , xn)}), and
^ί's, lrgz^gz/, are vector fields on ξ~1(W) such that ex[p) — 7(0) and e/s, l ^ i ^ r ,
form orthonormal base of RN at each point on ξ~1(W).

By Gauss equation (1. 5. 3), for any X in RN and Y in TM,

22(X, Y) - Λ(X, Y) + i f AX Λ A,Y.

Since X is in i?iV and M is a. space form of sectional curvature c,

R(X,Y) = c(X AY).

Thus let Xa, v + l^a^n, be the variation vector field along Ί[t) as in the
proof of Lemma 1. 4. 2. Then we have

By the same arguments as in the proof of Lemma 1. 4. 2, we have a parameter
value, say h#, of 7 such that F is regular on the set H= {(t, 0, ,0) € i?"
x W: h*<t<t*}.

Let JVi, , iVυ, JVy+i, , Nn be the canonical rectangular coordinate fields of
Rv X ΐ ^ C Rn such that X(7(ί)) = F*(Na(t, 0, , 0)), v + 1 ̂  Λ ̂  rc. Moreover, we
have a neighborhood Nx oίxinH such that 3/dx1 = FM), , 3/3^n = F*(Nn)
form coordinate fields on F{NX), i. e., d/dx1, , 3/3α;n are linearly independent
on F(NX) and [3/SΛ:1, 3/3^] = 0 for all l^ij^n.

For the proof of Theorem 1.8.1, we claim that ^yit)(a(XayY)) = 09 v+1
^a^n for all parallel vector fields Y along 7(ί) with respect to V> hence with
respect to V.

Let Z be any tangent vector field to M. Then

g(VVωWX« Y)), 2) + $a(X« y), Viu,2) - Viu,^Λ(X« Γ), Z) = 0.
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On the other hand, because v(t) is in RN(Ύ(t)),

V7it)Z = VΎ{t)Z + a(y{ή, Z) = VΊit)Z.

So

ΊίY)9V7Z) = -g(ct(Xa,Y)9V'ΎZ):=O.

Thus the tangential component of V;(d(X«, Y)) = 0 along 7(ί), h*<t<tχ.
To show that the normal component of Vγ(#(Xα> Y)) = 0 as well, on each Nx,

we have

c(d/dxι Λ 3/3xα)Y = R(d/dx\ d/dxa)Y

= V3/3χi S7d/dxaY — V3/axαVa/3a;ίY — V[3/3χi,3/3xβ]Y

= Va/»*(V9/3x«Y + tf(3/3^, Y)) - V9/3x«( V3/3X.Y + Λ ( 9 / 3 ^ , Y))

1,3/3x«JY - ^([3/ar;1, 3/arf], Y)

α, Y) -

Since F is a diffeomorphism on iVx, [3/3.rS 3/3^] =FJΛ^, iSΓ,] = 0,1 ^ i, j ^ n. Also

d/dxι is in RNin the neighborhood iVx, so the normal component of R(d/dxϊ9 d/dxa)Y

is equal to the normal component of \/d/dxxa{/d/dxa

> Y) — a(d/dxa, \7δ/dxιY).

However, R(d/3x\ d/3xa)Y = c(d/dxι Λ 3/3^α)Y is tangent to M, therefore

the normal component of V3/3χiM3/3.rα, Y)) - α:(3/3^α, V3/ax Y) = 0. Since V3/3x»Y

restricted on Ύ(t) is Vγ(ί)Y=0 on F(NX), we have the normal component of

V3/3x^(3/3α:α, Y) = ct{d/dxa, Vd/3*Y) = 0 on V(t)nF(Nx). Since tf(3/3z:α,Y) is well

defiend on Ύ((h*,tχ))> Vy(ί)(Λ(X«, Y)) = 0, z/+ l ^ α ^ / z , together with the fact that

the tangential component of V7(ί)W^« Y)) = 0.
Let Y(ί*) ^F0 be in i?iV(^) If ^(^) were not in RN(Ύ(t)), where ί is a fixed

value in (hχ,t#), then for some X«, we would have to conclude that α(Xβ(2), Y(ί))
=^0. By continuity of a and by the fact that a(Xa(t),Y(t)) is parallel along Ύ(t)9

h^t^t*, we conclude that a(X(t*)9 Y(t*)) * 0. This is a contradiction. Thus
Y(t) must be in RN(V(t)). Therefore the parallel displacement along V(t) from
V(t) to γ(ί*) sends RN{V{t)) onto a subspace in ΓM7(ί.) containing RN(Ύ(t*)). So

= z;^z/(Ύ(^)), but i; is the minimum among z/(x) for x in M. Thus 7(ί#)
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is in G. Now by the argument in the proof of Theorem 1. 4.1, we see that p#
= Ί(t*) is in L. This contradicts the choice of Ί(t) and p*. Q. E. D.

COROLLARY 1. 8.1. Under the notations and conditions in Theorem 1. 8.1,
if M has constant sectional curvature and if v^2, then it must have the same
sectional curvature as My i.e., c.

PROOF. Obvious by Gauss equation (1. 5. 3). Q. E. D.

Chapter 2. Completeness of the nullity and relative nullity of complex
submanifolds in Kahlerian manifolds.

2.1. Relative curvature tensors of Kahlerian manifolds. In Section 1.1,
we defined curvature-like tensors on Riemannian manifolds. The definition of such
tensors on Kahlerian manifold M is the same. Thus the rest of Definitions and
Propositions in Sections 1.1 and 1. 2 are valid for the Kahlerian case. Especially,
as an example of curvature-like tensor, we introduced the relative curvature tensor
on Riemannian manifolds in Section 1.3. Now we shall define the Kahlerian
analogue in this section.

DEFINITION 2.1.1. The relative curvature tensor field D relative to a
real number k on a Kahlerian manifold M is defined to be

(2.1.1) D(X, Y) = R(X, Y) - k/A{X AY + JXAJY + 2g(X9 JY)J} ,

where i?, J and g are the curvature tensor, the complex structure and the
metric tensor of M> respectively. We call D the relative curvature tensor
with constant k on M.

PROPOSITION 2.1.1. D in Definition 2.1.1 is a curvature-like tensor on
M and the nullity space DN{x) at x in M is invariant under the complex
structure J.

PROOF. Verify (1.1.1.), , (1.1. 5.) for the first half, and for the last half,
check J(DN) c DN. Q. E. D.

Proposition 2.1.1 tells us that the nullity space is a complex space. Thus the
nullity μ(x) is an even number. From now on, we define the nullity at x for
DN to be the complex dimension of DN(x) and denote it by μ{x). Automatically,
the index of nullity is to be the minimum complex dimension among μ{x) and is
denoted by μ as well.
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2.2. Completeness of the nullity distribution of the relative curvature
tensor on a Kahlerian manifold.

THEOREM 2. 2.1. Under the notations in Section 2.1, if M is complete,
then all leaves in G are also complete,

PROOF. The proof of this theorem is quite similar to that of Theorem 1. 4.1.
By the same reason as in proof of Lemma 1. 4. 2, we are only interested in

the normal components X«'s, say Za\ 1 ̂  / 5g n — 2μ, 2μ + 1 ̂  a ^ n.
Thus for k > 0,

(2. 2. 7) Za

ι(t) = aa

ι cos ~ t + b« s ί n ^ Γ " *> 2/* + 1 ̂  a ^ n

and l ^ / ^ n - 2 / x .

Considering the initial condition of Xα's at q,

(2. 2. 8) Za

ι(t) = δ ^ c o s ^ - ί + W s i n ^ ί , 2/t + l^a^

and l ^ / ^ n - 2 / t .

Similarly for k = 0,

(2.2.9) Zβ'(ί) = δi+2/i + W , 2 / i + l ^ α : ^ « and l^l^n-2

and for

(2. 2.10) Zα'(ί) = δ ^ + 2 ^ s i n h ^ ^ - 1 + ft.1 cosh^~Z k t,2μ,
Zl Zl

and l ^ / ^ n - 2 / L 6 .

Here all coefficients appearing in the above differential equations do not depend on
the variable t.

By analyticity of the solutions, we have a parameter value h# such that F is
regular on the set H= {[t9 0, , 0) € R2β x W: h*<t<t*} as in the proof of
Lemma 1. 4. 2.

Applying the method used in the proof of Theorem 1. 4.1 to this case, we
can conclude the desired result in Theorem 2. 2.1. Q. E. D.

THEOREM 2.2. 2. [Λzder *Λe same assumption as Theorem 2. 2.1, z/ M



TOTALLY GEODESIC SUBMANIFOLDS IN SN AND CPN 237

has positive sectional curvature and if 2μ ̂  n, then for k > 0, M has constant
sectional curvature k and also has the complex protective space of constant
holomorphic sectional curvature k ab its universal covering manifold. Especially,
M is compact.

PROOF. Use Lemma 1. 6.1 and imitate the proof of Theorem 1. 6. 2.
Q. E. D.

Recently, Goldberg and Kobayashi [ 6 ] showed the following result which is
a slight generalization of the complex version of Lemma 1. 6.1 by Frankel [ 5 ].

LEMMA 2. 2.1 [Goldberg and Kobayashi]. Let Mn be a complete connected
Kdhlerian manifold with positive holomorphic bisectional curvature and let
Vk and Wι be compact complex submanifolds with dimensions k and /,
respectively. If k + / ̂  n, then V and W have non-empty intersection.

About holomorphic bisectional curvature, see [ 6 ] or [10].
Thus, we have the following additional theorem.

THEOREM 2. 2. 3. Let Mn be a connected complete Kdhlerian manifold
with positive holomorphic bisectional curvature. If 2μ^n and k>0, then
Mn has constant holomorphic sectional curvature k and also has the projective
n-space of constant holomorphic sectional curvature k as its universal covering
manifold. Especially', Mn is compact.

In [ 7 ], A. Gray made a conjecture that if M is an ^-dimensional manifold
with the relative curvature with positive constant k, then its index of relative
nullity is either 0 or n.

Our Theorems 1. 6. 2, 2. 2.2 and 2. 2. 3 are partial answers to this conjecture
under the conditions mentioned in each theorem.

2.3. Completeness of the relative nullity distributions on Ksihlerian
manifolds. In Section 1.7, we introduced the notion of relative nullity for
submanifolds and in Section 1.8, we proved completeness of the relative nullity
submanifolds.

Here we shall take care of the Kahlerian analogue of Section 1. 8.
Let Mn be a Kahlerian submanifold of a Kahlerian manifold M. Then as in

Section 1. 7, we have the relative nullity space, the index of relative nullity and
the relative nullity distribution. Denote them by RN{x), v and RN, respectively.

PROPOSITION 2. 3.1. RN{x) at x in M is invariant under the complex
structure J, i. e., the leaves of relative nullity distribution are complex
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submanifolds of M and M, as well.

PROOF. Let X be in RN, i. e., ct(X, Y) = 0 for all Y in'ΓM. Then we have
a well known equation, a(JX, Y) = a(X, JY) = J(a(X, Y)) so a(JX, Y) = 0. Thus
JX is in RN. Q. E. D.

PROPOSITION 2. 3. 2. 7/ M n w a Kάhlerian submanifold in a complex

space form M(c) with constant holomorphic sectional curvature c, then the

relative nullity distribution RN is the same as the nullity distribution defined

by the relative curvature D(X, Y) = R(X, Y) - R(X, Y) = R(X, Y) - c/4{X Λ Y

+ JX f\JY + 2g{X, JY)J}> where R and R are the curvature tensors of M

and My respectively.

PROOF. The following proof was given by Professor K. Nomizu in his
lecture. By Gauss equation, for the complex case,

R(X, Y) - Λ ( I J ) = Σ AX ΛAY + Σ, JAJC Λ JAtY,
i ί

we have RN(x)<zDN(x) for each x in M.
On the other hand, if X is in DN(x), i. e., D(X, Y) = ]Γ AtX Λ AiY +

i i

/\JAX = 0 for all Y in TMX, then clearly 2 ^ J A j X AAtX = 0 by replacing JX

for Y. Thus glh^JAiXΛ AX)Y, JYj = 0.

On the other hand, the left-hand side of this equation is equal to ^{g(Y9 AtX)2

+ g(JY,AιX)2}, therefore, ALX=0 for all i. So X is in RN(x) by Proposition
1. 7. 2. Q. E. D.

THEOREM 2. 3.1. Under the notation mentioned above, in addition, if M
is complete, then the leaves of the relative uullity distribution are complete.

Also the leaves are Kάhlerian submanifolds of M and M under the induced
Kdhlerian structure and have the same constant holomorphic sectional curvature
as the ambient space form.

PROOF. Combine Theorem 2. 2.1, Proposition 2. 3.1 and Proposition 2. 3. 2.
Q. E. D

COROLLARY 2. 3.1. Under the same assumption as Theorem 2. 3.1, if M
has constant holomorphic sectional curvature and if v^l, then M has the
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same holomorphic sectional curvature as the ambient space form,

PROOF. Obvious by Gauss equation. Q. E. D.

Chapter 3. A characterization of totally geodesic submanifolds in SN(c)
by an inequality.

3.1. Preliminary lemmas. Let Mn be an ^-dimensional complete connected
Riemannian submanifold of SN(c), i. e., the standard iV-dimensional sphere with

radius /— with constant sectional curvature c > 0. Let Mn be immersed into SN{c)
Λ/ C

by f isometrically.

LEMMA 3.1.1. Let f be a continuous mapping of a locally compact
metric space M into a locally compact metric space M\ Assume

(3.1.1) / is a local komeomorphism,

(3.1. 2) / is one-to-one on a compact subset L of M.

Then f is one-to-one on a neighborhood of L.

PROOF. First of all, we notice that we can prove the same conclusion under
weaker conditions, but Lemma 3.1.1 is good enough for our purpose here.

Assume that there exists no neighborhood of L where/gives a homeomorphism.
Then there exist two sequences of points, say [a,] and {bt}9i = 1,2, , such that

(3.1. 3) {αj and {&;} converge to points, say a and b, in L, respectively.

(3.1. 4) For each i, at Φ bi9 but f(at) =f(bt).

It is just a simple matter to construct such sequences as above.
For {ai} and [bι], i = 1, 2, , we can show that a = lim{ai] ^ l im^} = b,

ΐ-»oo ί->oo

because if a = b, then by (3.1.1), we have a neighborhood of a where / is one-to-
one, and for sufficient large i, both at and bt must be in the neighborhood. This
is a contradiction to (3.1.1) and (3.1. 4). Thus f(a) *f(b) by (3.1. 2). However,
continuity of / assures that f(a) = l im/^) = lim/(^) =f(b), again a contradiction.

Q. E. D.

Let v be the index of relative nullity of Mn. We follow the notations in
Chapter I.



240 K. ABE

LEMMA 3.1. 2. Let L be a leaf in M with respect to the relative nullity
distribution as in Sections 1. 7 and 1. 8.

/ / v>ly then L is imbedded isomorphically by f restricted to L as some
great sphere of dimension v in SN(c), where L has the Riemannian structure
induced by that of M.

If v = 1, then f restricted to L is an isometric covering projection with L
as the covering manifold and with some great circle as its base space.

PROOF. Let x0 be a fixed point in the leaf L. Then by Proposition 1. 8.1,
a neighborhood of x0 in L is isometrically imbedded by f\L as an open sebset in a
great sphere of dimension v, say Sv(c). If 7 is any geodesic starting at x0 in L,
then/(7) must stay in Sv(c). We know t h a t / | L is an isometric immersion of L
into Sv(c) by completeness of L. Theorem 4. 6 in K-N [10], for example, tells us
that f\L is a covering map. As we know, Sv is simply connected if I > > 1 , thus

f\L must be an isometry. Q. E. D.

LEMMA 3.1. 3. Let x be a point in a leaf L. Then there exists a Frobenius
coordinate system around x which contains at most one slice of each leaf. This
is nothing but regularity of the distribution in the sense of Palais [17].

PROOF. If Sm(c) is any great sphere of SN(c)9 then for any two points x
and y in Sm{c), the distance between x and y in Sm is equal to the distance in SN.

Let (U, xι, , xv, xv+1, , xn, ζ) be a Frobenius coordinate neighborhood
around x in L such that UcB{x, 2π/+J c ), an open ball with radius 2τtl*/ c and
with x as its center, where any two points are joined by a unique geodesic segment
whose length gives the distance between them.

Define Ui9 i = 1, 2, , to be a sequence of neighborhoods of x as follows :

Ut = ζ{x\ ---,xv, xυ+\ , xn)) € U: I Xj \< y , 1 ̂ j ^ n \,i = 1, 2,

, xn) is the coordinate system and ζ is the coordinate mapping.
Assume that for any z, Ut contains two slices belonging to a leaf, say Lτ.

Take points xt and yt from each of two such slices, respectively. Then lim^i
X—»oo

= ^ = lim^i, and the distance d^x^yi) in L% is greater than a constant c for
ί-+oo

large z's.
LEMMA 3.1.2 tells us tha t/ |L i is a local isometry, thus combining it with

the above fact, we have dN(f{xi),f{yi)), i. e., the distance in SN is equal to d^x^y^
which is greater or equal to c for large i. Since limXi = x=\'imyi,

i—>oo i—> oo

=f(x) =
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So d«(f(xi),f(yι))^d»(f(xt),f(x))+d'f(f(x),f(yi))<c/2 for sufficiently large
i. Now we have a contradiction. Q. E. D.

LEMMA 3.1. 4. If L is a leaf of RN in M, then for any neighborhood
of L, say U, there exists a leaf L' in U different from L for v<n.

PROOF. Actually, we could prove much stronger result, but this lemma is
enough for our purpose here.

Professor Nomizu pointed out that R. Palais had proved the stronger version
of Lemma 3.1. 4 in a fashion quite similar to that of ours in his thesis at Harvard.
So we refer to it for the proof of Lemma 3.1. 4. See Theorem VI, p. 16, in
Palais [17].

3. 2. The statements of Theorems and their proofs.

THEOREM 3. 2.1. Let Mn be a complete Riemannian submanifold of SN(c)
immersed by f isometric ally. If 2v^N and if I / > 1 , then Mn is isometric to

the standard n-dimensional sphere of radius —τ= and is imbedded as a great

sphere Sn(c) of SN(c) by f

PROOF. Theorem 3. 2.1 will be proved by Lemmas 3.1.1, , 3.1. 4 and
FrankeΓs result, i. e. Lemma 1. 6.1, since SN{c) has positive curvature. However,
we shall here present a more elementary proof.

Let L be a leaf in G. By Lemma 3.1. 2, the immersion / restricted to L is
one-to-one. Applying Lemma 3.1.1, we have a neighborhood U of L where f is
one-to-one. Lemma 3.1. 4 tells us that there exists a leaf U different from L in
U. We shall claim that under the condition 2v^N,f(L)nf(L') *φ9 i .e.,/ is not
one-to-one unless v = n.

It is well known that every ^-dimensional great sphere in SN[c) corresponds to
a (k + 1)-dimensional real linear subspace in RN+1 in the canonical fashion, and that
two such great spheres have a common point in SN(c) if and only if the corresponding
linear subspaces have an intersection whose dimension is greater or equal to 1.

By elementary linear algebra, we have the following formula:

(3. 2.1) dim K + dim H = dim(K + H) + dim(HΠ K),

where K and H are two linear subspaces in RN+1.
Since f(L) and f(LS) are z -dimensional great spheres, they correspond to

(v + 1)-dimensional subspaces, say L and L', respectively. By (3. 2.1) and the given
condition
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(3. 2. 2) (v + l) + (v + l)^N+l+ dim(LΠ Γ)

because dim(L + L') is at most JV+ 1.
From 3. 2. 2, we have

(3.2.3) dm(LnL')^2i/ + 2-(A7 r+l) = 2v-N

Thus /(L) Π/(L') *?0. This is a contradiction unless v = n, i. e. Mn = Sn{c).
Q. E. D.

LEMMA 3.1. 2 and LEMMA 1. 6.1 give us the following:

THEOREM 3. 2. 2. Let Mn be a complete connected Riemannian submanifold
of SN(c) immersed by f isometric ally. If Mn has positive sectional curvature
and if 2v^n and n>l, then Mn is isomorphic to the standard sphere of

radius ~Ί= and of dimension n, and is imbedded by f as an n-dimensional
Λ/ C

great sphere Sn{c) of SN{c).

Chapter 4. a characterization of totally geodesic submanifolds in CPN{c)
by an inequality.

In this chapter, we shall study the complex analogue of Theorems in Chapter
III. Naturally, most of the proofs of lemmas and theorems in Chapter IV will
be quite similar to those in Chapter III. Here we shall present only those which
are not obvious from the real case.

4.1. Preliminary lemmas. Let Mn be a complex 72-dimensional complete,
connected Kahlerian submanifold of CPN(c), i. e., the JV-dimensional complex projective
space with Fubini-Study metric of constant holomorphic sectional curvature c.

Let Mn be immersed into CPN(c) by / isometrically and holomorphically. As
in Chapter II, we denote by v the index of relative nullity in the complex sense.

LEMMA 4.1.1. Let L be a leaf of the relative nullity distribution. Then
L is isometric to the v-dimensional complex projective space with constant
holomorphic sectional curvature c and is imbedded by f\L as a v-dimensional
projective subspace of CPN{c), where L is given the Kahlerian structure induced
by that of Mn.

PROOF. Using the fact that L is complete and totally geodesic in CPN{c),
we can prove Lemma 4.1.1. as in the proof of Lemma 3.1. 2. Notice here that
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every complex projective space is simply connected, so we do not have an additional
restriction as in Lemma 3.1. 2. Q. E. D.

LEMMA 4.1. 2. Let x be a point in a leaf L. Then there exists a Frobeniu*
coordinate neighborhood around x which contains at most one slice of each
leaf in M.

PROOF. One can apply the same argument as the real case. The proof is
left to the reader. Q. E. D.

4.2 Statements of Theorems and their proofs.

THEOREM 4. 2.1. Let Mn be a complex n-dimensional complete connected
Kdhlerian submanifold of CPN[c). Let Mn be immersed by f into CPN(c)
isometrically and holomorphically. If 2v^N, then Mn is isometric to the
complex projective space of dimension n and of constant holomorphic sectional
curvature c, and is imbedded by f as an n-dimensional complex projective
subspace CPn{c) in CPN{c).

K. Nomizu [13] proved that if Mn is a compact Kahlerian hypersurface
imbedded to CPn+1(c) and if 2v^n + 1, then Mn = CPn(c).

Thus Theorem 4.2.1 is an extension of his theorem. Nomizu's proof uses
Chow's theorem, but our proof is more differential geometric as we saw in the
real case.

PROOF. The same argument as the real case can be applied to this case. Of
course, every dimension here should be read as complex dimension. The details are
left to the reader. Q. E. D.

THEOREM 4. 2. 2. If Mn has positive sectional curvature and if 2v^n then
Mn is isometric to the complex projective space of constant holomorphic sectional
curvature c and is imbedded as a complex projective subspace CPn{c) in CPN(c).

PROOF. Use Lemma 1. 6.1 and Lemma 4.1.1.

COROLLARY 4.2.1. If Mn is a complete Kdhlerian hypersurface of
CPn+1(c) immersed by f into CPn+1(c) isometrically and holomorphically and
if the sectional curvature is ^c/4, the?ι under n^3, Mn is imbedded as a
projective hyperplane CPn(c) in CPn+1(c).

PROOF. This is a generalization of Theorem 2 in [13].
To get v^n — 1, we can refer to the proof of Theorem 2 of [13]. Then apply
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Theorem 4. 2. 2. Q. E. D.

THEOREM 4. 2. 3. Let Mn be as in Theorem 4. 2.1. If Mn has positive
holomorphic bisectional curvature and if 2v §: n, then Mn is isometric to the
n-dimentional complex protective space of constant holomorphic sectional curv-
ature c and is imbedded as a complex projective subspace CPn(c) in CPN(c).

PROOF. Combine Lemma 2. 2.1 with Lemma 4.1.1. Q. E. D.
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