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1. Introduction. Let A be a real number such that —%<7\,<%. Let T

denote the set of real numbers modulo one and Z the additive group of integers.

For 1=p< oo, we denote by /**(z) the vector space of complex-valued functions
f defined on Z such that

1/p
Nyif] = {z ) 171 +1)M} <o,

while L?*T') denotes the space of those complex-valued functions f defined on T
for which

1/p
1Flps = ( [ 176w do) o

If fel*(Z), its Fourier transform

f/\(e) — Zf(n)eﬂninﬂ, 0 € T’

nez

exists as a limit in the mean, of order 2, of the partial sums of the series on the
right, and the inversion formula

fln) = [ fr0) e do
T
is valid. Let A" be a bounded measurable function defined on 7. Set

Hf(n) = f FMORMO) e~ 4
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for ne Z, fel*°(Z). Such a transformation F, determined by A%, is called a
multiplier transformation. If

N,.[H] = 1.u.b. (N, [Hf /Nyl f), fe1*(Z)N 174 (Z), f= 0}

is finite, then H has a unique extension, as a bounded linear transformation of
1»}(Z) into itself, with norm N, ,[H], since [*°(Z)NI**Z) is dense in [»*(Z).
Similarly for fe L*°(T), we set

) = [ Fo) e as.

Let A" be a bounded function defined on Z. Then the multiplier transformation
H, associated with A", is defined by

Hf(6) = >_ hNn)fNn) e

nez

If
1Hllp2 = 1w b. {1 HF |52/ | f s f€ L2(T)NL*T), f %0},

is finite, then H has a unique extension as a bounded linear transformation of
L»MT) into itself.

An important problem in this connection is to find sufficient conditions on the
multiplier function A" so that the multiplier transformation H associated with A"
is bounded. In [ 4] Hirschman has investigated this problem when A =0. In [6]
he considered the problem for /**(Z) and obtained the following result in terms
of bounded B-variation of a function.

THEOREM A. Let h" be defined on T and let H be the corresponding
multiplier transformation. If Vh"] is finite (8> 2) then

Ng,A[H]<°° l_f‘l7\o|<%,

where Vg[h"] denotes the B-variation of h’.

In this paper we extend the results of Hirschman to [”*Z). These results
are given in section 3. In section 2, the result analogous to Theorem A is given
for L>*(T'). The authors wish to express their gratitude to Professor Igari for
his useful comments, particularly for the improvement on the proof of Theorem 2. 6.
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2. Multipliers on L**T). Let A" be a bounded function defined on Z and

H the corresponding multiplier transformation on L**T'). If I(H) is the set of
all indices A for which |H],, is finite, then it is easy to verify that

(a) if MoNe€I(H) and if Y= (1—7) M +70:,0<9 <1,
then Ve I(H) and [|H|,,= |H|33IHI3.,

(b) if e I(H), then —n< I(H), and |H|;, = |H|s,-2-

The first of these results is a consequence of the Riesz-Thorin convexity theorem,

see [ 7], while the second results from the fact that the conjugate space of
L>4T) is L>~T).

We shall now give two lemmas that we need.

LEMMA 2.1. If £(6) ~ 3" Fn) €, then for 0= <—,

nez

(a) 2 | fAMm +n)[X(In] +1) = A'(N)If 122

nez

(b) 2 L fMNm 4 n) *(In] + )%= A" (NI 152

nez

Sor all me Z where A'(\) and A”(\) are positive constants depending only
on \.

This can be easily deduced from Hirschman [3, p.51].

LEMMA 2.2. If fe L*XT) and if a, = f F(6) e df. then for 0<A
T

1
<32

A [ 1FOPIAI= 3 3 dnn—anli w2 =4” [ 17001 a8
T T .

n=1m=—co

where A and A" are positive constants depending only on \. (See Hirschman
[3, p-52]).

Let M, denote the set of all bounded multiplier transformations on L**(T).
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THEOREM 2.3. Suppose O<)\,<% and He M. Then there exists a
constant A’(N) such that for any fe L**(T),

(1) St 3 | FAm) |2 B + n) — BAm) |*= A O LIl £ 15

n=1 m=—co

PROOF. From the relation

SNm)[kNm + n) — RNm)] = [fNm + n)h"Nm + n) — f(m)h"(m)]
+ [ (m) = fNm +n)]h"(m + n)

it follows that, since |h*m +n)| =|H|, as can be easily verified,

|fAm) |* | RN + n) — hN(m) |2 = 2| fN(m + n)h"(m + n) — £ (m)hN(m) | *
+ 2| H gl f(m +n) — £ (m) |?

Multiplying by 77!"% and summing over 7 and 7, we get the desired result, using
Lemma 2. 2.

THEOREM 2.4. Let 0<x<%. There exists a constant A”(\) such that

if h" is defined on Z satisfying
|hNm)| =C meZ

and

Zn“ B3| ) 2R+ ) — BAm) [P = C £l

m=—oc0

Sor every fe L*!T), then He My, and |H|,1=A"(\)C.
PROOF. We have

FNm -+ n)hNm +n) — f(m) = fAm)[RN(m + n) — h\(m)]
+ [fNm + n) — fNm) N m + n)

so that
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| fA(m + n)hMNm + n) — fA(m)hNm) |*
=21fNm)|%|h"(m + n) — hNm)|* + 2C*| fNm + n) —fN(m)|*.

—-1-21

Multiplying by 7
virtue of Lemma 2. 2.

and summing over m and #, the desired result follows by

THEOREMS 2.3 and 2.4 correspond to the results of Devinatz and Hirschman
[1, Lemmas 3d, 3e].

Before we prove our main result in this section, we need the following
definition.

DEFINITION 2.5. If g” is a function defined on Z, then we define

1/8

Vilg" = L.ub. z |97 (err) — 9 1B

the least upper bound being taken over all sets of integers 7, <71y, <72, <+++ <7y
and it is called the B-variation of g*.

First we prove a result analogous to the lemma of Hirschman [6 ].

THEOREM 2. 6. Suppose that Q<A <%. Let h" be of bounded 1-variation

on Z. Then, if H is the corresponding multiplier transformation, we have
IEH 1z = BN {1AM% + 1AM Va2
where B(\) is a finite constant depending only on A and
A" = sup[A*(n)] .
PROOF. By virtue of theorem 2.4, we need only to estimate the quantity

M= én—l"n 2 1 fMNm) 2| hNm + n) — hNm) |2

mezZ
Now

M= 2IlhAHw§1n"'“ > lf“(m)lzknz_1 |h"\(m + k) — h(m + k — 1) |

M=—o00
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= 2)A). zn > S 1FNm = B) |2 hANm) — BAm — 1)]

k=1m=—oco

=20 35 1) — B — 1] 3 | — B2 S

m=-—oo n==k

g%nmnxmi |k m) — hNm —1)| z | fA(m — &) |
=<CO R ViR 3
using Lemma 2. 1.

LEMMA 2.7. Let h* be a real valued function defined on Z. For each
B>1, there exists a constant C(B), depending only on B, such that for each
h? for which Vgh’] <o and &>0, there exists h) with the following
properties :

(a) IA"—R .=,
(b) VilhA\1=C(B)Vh"]°€F,

where |||« is defined as in Theorem 2.6.

This lemma corresponds to Lemma 3 of Hirschman in [6] and can be proved
by the arguments used in [4].

We now come to the main result in this section and it is the analogue of
Theorem A stated in the introduction.

THEOREM 2.8. Let h" be defined on Z and let H be the corresponding
multiplier transformation on L**T). If V4h"] is finite, where 8> 2, then

NH [y < o0 if In] <%.

PROOF. First we obtain a sequence of functions g*, such that

AN = lim g*,

M—>oo

pointwise on Z. This construction is given by Hirschman [4] (see also Edwards
[2, Vol.2, p.270]). We shall not give the details here. Assuming without loss
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of generality that 2"(0) =0, a real valued function A* on the entire real line is
obtained by interpolating linearly between successive values of A*(n) so that
h*(x)|z=n=h"(n). Then for each positive integer m, a function g*,, is constructed
satisfying

(2) Vilghn] =2¢ 0"V, [h P
and
(3) [pA — g*pllo=27".
Furthermore

Vel g nl = Vilh'].

The proof of our theorem is completed following the arguments of Hirschman
[6]. Define a sequence of functions {A",}m-; on Z as follows:

hM(n) = g'i(n)
hAm(n) = gAm(n) - gAm—l(n) .

Then
W) = ()

and

Vi[h, 1= C. 262"V [RNP,
A ple=C27™ .

If H,, is the multiplier transformation associated with A", then

IIHllz.Aéglllellz,x-

Choose a .\ <a< % By Theorem 2.6,

|H,,||s,c = O[(2-™)? + 2™, 2me-D]i/2= O(gmen-D)
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On the other hand, by Parseval’s equality
[Hpllzo = 2 0] = O@2™™).

Putting A= (1—6)0+0a, 0<6 <1, we obtain by the Riesz-Thorin convexity
theorem,

[Hlls0 = O(2m1+812) |

The series > | H,l;2 is convergent if 7\,<%. Since a is arbitrary such that
m=1
1 .. . 2a . 1
Ar<a<y, it s always possible to choose @ so that 7»<—B— if 0<7»<§. Thus

we have proved our theorem if 0<)u<%. The case when A =0 being trivial,

the theorem follows from the duality argument given at the beginning of this
section.

3. Multipliers on [»*(Z). We shall now consider the problem for [**(Z)
and obtain some results similar to those given by Hirschman [4] for the case
A=0. Let fel**(Z). If

h(k) = f AMNO)e- M A ke Z
T
then

Hf(n) = 3_f(n—k)h(k) .

kez

The series on the right converges absolutely for each 7, by Parseval’s relation.

If 1/p+1/9=1, then it is easy to verify that if H is a multiplier transformation
on I»%(Z) then H is also a multiplier transformation on [%*(Z) associated with
the same A" and N,\[H] = N, _\[H].

THEOREM 3.1. If

(a) [RNO)I=A beT
(b) |AMNO) —RNO +2)| <A|t]* 1/2<a=<1

then H is a bounded linear transformation of I"*(Z) into itself where 1 <p
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1 1
< oo and ?—a<x<a—§.

PROOF. Let

she(6) = Z h(n) ¥t

In|s2*

be the partial sum of order 2* of the Fourier series for A". Given >0, it is
easily seen that

Is" — 2. = AC(a, &)27%9

(Zygmund [7, p.61], Hirschman [4, p.223]) so that if
AN = M — My

then

(4) 12%]lo = AC(a, €) 2779

where ||+|. is on T. Let H, be the multiplier transformation associated with A";.
Then

H,f(n) = f FAORN(B) e d8 = 3 fln — f)h(j)

JeZx

where Z, = {ne Z,2F ' < |7sz =2* and

1/r
(5) R I

JjeZe
Using the relation

> |A(j)] = AC(a, &) 2F0/2-=+®

JjeZx
it easily follows that

( 6 ) N1,A[ch] éAC(d, 8) 2k(1/2—a+.+|7t|) A

From (4) and (5) using Schwartz inequality and Parseval’s relation, it follows
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that

(7) N, \[H ] = AC(a, &) 2k0/2+ M +e=a)

Suppose 1 <p=2. Puttingl= l1-o ® , 0<w<1, we obtain from (6)

p- 1 T2
and (7) by virtue of Riesz-Thorin convexity theorem

Np,A[Hk] éAC(d, 8) 2k(1/2+|7t[+a—a) .

If A <a—%, we can choose € so small that
ZNZ,AH;‘]<OO .
k=0

Further since h"(0 Zh" » the convergence being uniform in 6 it is easy to

see that Hf (n) Zka ) and N, \[H]= in,A[Hk] < 00. The regular conjugacy
k=0

argument gives the result for 2=p < oo.
Now we state two results of Devinatz and Hirschman [1] as lemmas.

LEMMA 3.2. If 0<A<1/2, then there exist positive constants A,(\) and
A,(\) depending only on A such that

(NaaL£1)'— 1 £(0) f f (FNO) = FNP) 2 (sin 7| 6—p| )P db dep

and

(Naal£1)? = 1 £(0)]7 = Ay(n) f f {FNO) =) X(sin 7|0—|) 2} dOdgp .

LEMMA 3.3. Let O<7\,<é—. There exists a constant A”(\) such that if

h" is a measurable function on T satisfying h(0) =0,

2Ml.=C
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and

fTIfA(ﬁ)l’de |RA8) — BN () |*(sin 7|6 — ¢[) ' dp = C*(N,al £1)?

Sfor every fel*Z), then N, ,[HI=A"(\) C.

We now prove

THEOREM 3.4. Suppose h" satisfies the condition (a) of Theorem 3.1
and

(b) [RNO) —RMNO +8) =Bl¢]* 0<a=1.

Then there exists a constant C such that
f |FA(6) |26 f |RA(6) — k@) |*(sin 7|0 — @|)* d0dp = CAB(N, AL f1)*
T T
where 0 <\ <a/2.

PROOF. We consider the quantity
M=f ‘f/\(e)‘zf | RN6) _h/\(d))lz(Sin”le—d)‘)"‘"“d&dd,

éZHhANmf IfA((’)!?f |RM6) — kM) (sin 7 |6 — ¢1) 7" dbd¢p.

It is easy to establish that there exists a constant C which depends on A and a
such that

[ 1126) = k(@) (sin w16 — $1) - dp=C.
Thus

M=Cl. [ 10110 =C Il [ 177000107 de
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when A >0. Now applying Lemma 2.1 we obtain
M= C||h"|« (NoaLf])?
where C is a constant depending on A and a only.
THEOREM 3. 5. Suppose h satisfies the conditions of theorem 3.4. Then

J0<x<%

if H is the associated multiplier transformation such that h(0)=0, then

, there exists a constant C which depends on a and A such that

(N:2[H])*=CAB.

PROOF. An application of Lemmas 3.2 and 3.3 together with Theorem 3. 4
gives the result.

THEOREM 3. 6. Suppose h" satisfies the condition of Theorem 3.1. Then H is

a bounded linear transformation of 1™*Z) into itself, where g > A >a— %

and

2(L—a+2|al)
14200

2(1—a+2|al)
1+2|A|—2a

<p<

PROOF. Suppose s*; is defined in the proof of Theorem 3.1 and H, the
multiplier transformation defined there. Then since

[s%]l.. = AC(a, &) 2742
and, as can be easily verified,
|A"(0) — h"(6 + 2)| = AC(a, &) 2% |2]*
we have by virtue of Theorem 3.5
NiAlH,] = A27Fe
which implies that

(8) NyalH = A. 27+
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Now suppose %)ZJLI)<A¢§2. Then if 1/p=(1—0)/1+w/2 we have o>
—2 . . . .. . .
%. By the Riesz-Thorin convexity theorem (this is possible since

0 <o <1 under the condition that |A|>a —1/2) we obtain from (6) and (8)

( 9 ) Np A[Hk] < A 2k[(1/2—a+]/\[+:)(1-—w)—m(a—t)/2]

Now under the above condition on ®, it is possible to choose & small enough such
that the quantity in the exponent of the right hand side of (9) is negative and we
2(l—a+2|al) 20—a+2|n])

1+2|n] 1+2|n| —2a
follows by the conjugacy argument.

obtain the result for <p=2. Theresult for2=p <

In theorems 3.1 and 3.6 we have assumed that a>%. We have not asserted
that they are the best possible. There are multiplier transformations for some p

and A even if a<% as can be seen from the following result.

THEOREM 3.7. If h" satisfies conditions of Theorem 3.4, then H is a

bounded linear transformation of I»*(Z) into itself <p<2 and

. 2
7 14+2(a—2)

M\ is a nonnegative number such that a>N\>a — %

PROOF. With the notations as in the proof of Theorem 3.1 we have

(10) N, o[ Hy] = AC(at, §) 274

Let ¥=(2—p)/p. Then 1/p=(1—7)/2+7/1 and let A= (1 —7)0+ ¥Yn. Applying
Riesz Thorin theorem to (10) and to

Nl,,,[Hk] = AC(a’ 8)2k(1/2—a+7)+e)

we obtain Theorem 3.7.
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REMARK. If a<(1/2, then A>a —1/2 is satisfied by any nonnegative A. In
particular when A =0 the range for p reduces to 2/(1+2a)<p<<2 and this is the
result given by Hirschman [4, Th. 2a].
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