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1. Introduction. Let λ be a real number such that — τ ^ < λ < ^ Γ Let T

denote the set of real numbers modulo one and Z the additive group of integers.
For lig^><oo, we denote by lpΛ{z) the vector space of complex-valued functions
f defined on Z such that

\f(n)\p(\n\

while Lp>λ(T) denotes the space of those complex-valued functions / defined on T
for which

11/11*'=

If f'<zP *(Z), its Fourier transform

exists as a limit in the mean, of order 2, of the partial sums of the series on the
right, and the inversion formula

f(n)= [ fψ)e-2«ίnθdθ

is valid. Let hκ be a bounded measurable function defined on T. Set

Hf(n) = f fA{θ)hA(θ) e~2πίnθ dθ
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for n^Z, fel2>0(Z). Such a transformation H9 determined by ΛΛ, is called a
multiplier transformation. If

Np>λ[H] = 1. u. b. {Np,λ[Hf]/Np,λ[fl ft l2'°(Z)nlp>*(Z), / * 0}

is finite, then H has a unique extension, as a bounded linear transformation of
lp'λ(Z) into itself, with norm Np§ι[H], since l2 °{Z)Γ)lp>λ{Z) is dense in /p-λ(Z).

Similarly for/<= L2 0(T), we set

*) = [ f(θ)e-uin9dθ.
JT

Let ΛΛ be a bounded function defined on Z. Then the multiplier transformation
H, associated with hA, is defined by

If

= l.u b.

is finite, then i ϊ has a unique extension as a bounded linear transformation of
Lp'λ(T) into itself.

An important problem in this connection is to find sufficient conditions on the
multiplier function hA so that the multiplier transformation H associated with hA

is bounded. In [ 4 ] Hirschman has investigated this problem when λ = 0. In [ 6 ]
he considered the problem for /2|λ(Z) and obtained the following result in terms
of bounded /S-variation of a function.

THEOREM A. Let ΛΛ be defined on T and let H be the corresponding
multiplier transformation. If Vβ[hA] is finite (β > 2) then

N2,λ[H]<oo

where Vβ[hA] denotes the β-variation of hA.

In this paper we extend the results of Hirschman to lp>i(Z). These results
are given in section 3. In section 2, the result analogous to Theorem A is given
for L2tλ(T). The authors wish to express their gratitude to Professor Igari for
his useful comments, particularly for the improvement on the proof of Theorem 2.6.
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2. Multipliers on L2 a(T). Let ΛΛ be a bounded function defined on Z and
H the corresponding multiplier transformation on L2>λ(T). If I(H) is the set of
all indices λ for which ||H||8,a is finite, then it is easy to verify that

(a) if λi,λa€ I(H) and if 7 = (1-η) λi

then Ύz I(H) and \\H\\2t7^ ||ff ||

( b) if λ€ I[H), then - λ ^ I(H), and | |H | | l t a = | | H | | l f - a .

The first of these results is a consequence of the Riesz-Thorin convexity theorem,
see [ 7 ], while the second results from the fact that the conjugate space of
L2'λ(T) is L2 " λ(T).

We shall now give two lemmas that we need.

LEMMA 2.1. If f{β) - Σ/A(n) e^\ then for 0^%<~9

(a) £ \f*(m + nm\n\

(b) Σ. \fA(™ + nM\n\
n*Z

for all me Z where A'(\) and A/7(λ/) are positive constants depending only
on λ.

This can be easily deduced from Hirschman [3, p. 51].

LEMMA 2. 2. ///<= L2>λ(T) and if an= [ f(θ) e~2πin9dθ. then for 0 < λ
JT

'f \f(θ)θ^dθ^± ±, K+«-α.l1»-1- |1^A" Γ

where A and A" αr# positive constants depending only on X. (See Hirschman
[3, p. 52]).

Let SSίlχ denote the set of all bounded multiplier transformations on L2>X(T).
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THEOREM 2.3. Suppose Q<\<~ and H^3Rλ. Then there exists a

constant A'(λ) such that for any fe L2>λ(T),

(1) ίX 1 " 2 ' E \fA(m)\^h^(m + n)-h^m)\^Af(\)\\H\\lJf\\ltλ.

n = l wj = -oo

PROOF. From the relation

fA(m)[h*{m + n) - hA(m)] = [fA(m + n)h*(m + n) -fA(m)hA(m)]

+ [ / Λ M -fA(m + n)]hA(m + w)

it follows that, since |ΛΛ(m + w)| ^ | | H | | 2 > ^ as can be easily verified,

\fA(m) 121hA(m + Λ) - ΛΛ(m) | 2 ^ 2 | / Λ (m + n)hA{m + n)-fA{m)hA(m) | 2

Multiplying by w"1"2^ and summing over m and n, we get the desired result, using
Lemma 2.2.

THEOREM 2.4. Let 0 < λ < ^ ~ . TT^re ^αi5ί5 a constant A"(λ)

if hA is defined on Z satisfying

and

Σ

for every ft U>λ{T), then Hz <>ΰlλ, and \\H\\ttλ

PROOF. We have

fA(m + n)hA{m + n) -fA(m)hA{m) =fA(m)[hA(m + n) - hA(m)]

+ [fA(m + n) -fA(m)]hA(m + n)

so that
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\fA{m + n)hA(m + n) -fA{m)hA(m) | 2

m) I\\hA{m + n) - hA(m) \2 + 2C2\fA(m + n) -fA(m) | 2 .

Multiplying by n"ι~2λ and summing over m and n, the desired result follows by

virtue of Lemma 2. 2.

THEOREMS 2.3 and 2. 4 correspond to the results of Devinatz and Hirschman

[1, Lemmas 3d, 3e].

Before we prove our main result in this section, we need the following

definition.

DEFINITION 2.5. If gA is a function defined on Z, then we define

( N-\

the least upper bound being taken over all sets of integers n0 < nx < n2 < < nN

and it is called the β-variation of gA.

First we prove a result analogous to the lemma of Hirschman [ 6 ] .

THEOREM 2. 6. Suppose that 0 < λ < ^ . Let hA be of bounded 1-variation

on Z. Then, if H is the corresponding multiplier transformation, we have

where B(\) is a finite constant depending only on X and

PROOF. By virtue of theorem 2. 4, we need only to estimate the quantity

n = l

Now

71 = 1 m = - α
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= 2||AΛlUX:»"1"Λέ Σ \fA{m-k)\*\h*(m)-h*(m-l)\
71 = 1 k=l W? = - o o

= 2||AΛ|U Σ \hA(m)-h*(m-l)\Σ,\f*(m-k)\*Σltr
ί-A

m=-oo je=ι n=ic

^~WU Σ |AΛM-AA(»*-l)|i;|/>*-*)|«*-«

using Lemma 2.1.

LEMMA 2. 7. Let hA be a real valued function defined on Z. For each
β>l, there exists a constant C(β)9 depending only on β, such that for each
hA for which Vβ[hA] < oo and £ > 0, there exists Λ6

Λ with the following
properties:

(a) HAΛ-AML^e,

where H-H*, is defined as in Theorem 2.6.

This lemma corresponds to Lemma 3 of Hirschman in [ 6 ] and can be proved
by the arguments used in [4] .

We now come to the main result in this section and it is the analogue of
Theorem A stated in the introduction.

THEOREM 2. 8. Let hA be defined on Z and let H be the corresponding
multiplier transformation on L2'λ(T). If Vβ[hA] is finite, where β>2, then

| |H | | f i λ <oo if | λ | < - | - .

PROOF. First we obtain a sequence of functions <7Λ

m such that

hA = lim gA

m
m-*oo

pointwise on Z. This construction is given by Hirschman [ 4 ] (see also Edwards
[2, Vol. 2, p. 270]). We shall not give the details here. Assuming without loss
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of generality that hA(0)=0, a real valued function h* on the entire real line is
obtained by interpolating linearly between successive values of hA(n) so that
h*(x)\x=n = hΛ(n). Then for each positive integer m, a function <7Λ

m is constructed
satisfying

(2) V1[gA

m]^2^-^mVβ[hAf

and

(3) HAA-tfAJ

Furthermore

The proof of our theorem is completed following the arguments of Hirschman
[6] . Define a sequence of functions {hA

m}^=ι on Z as follows:

h\(n) = g\(n)

Then

AΛ(») = ±h\(n)
m=l

and

If Hm is the multiplier transformation associated with hA

m, then

Choose a ,λ < a < ~2 . By Theorem 2. 6,

||HJ|lt. = O[(2"Λ)2
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On the other hand, by ParsevaPs equality

Putting λ = (1 — 0)0 + θa, 0 < θ < 1, we obtain by the Riesz-Thorin convexity-
theorem,

2<x
The series ^2\\Hm\\2t\ is convergent if λ < —5-. Since a is arbitrary such that

TO = 1 P

λ < Λ < τ τ , it is always possible to choose cί so that λ < - ^ ~ if 0<λ<ττ Thus
Δ β β

we have proved our theorem if 0 < λ < ^ The case when λ = 0 being trivial,

the theorem follows from the duality argument given at the beginning of this
section.

3. Multipliers on lp>λ{Z). We shall now consider the problem for lpΛ(Z)
and obtain some results similar to those given by Hirschman [ 4 ] for the case
λ = 0. L e t / e Z 2 °(Z). If

h(k) = Γ h A ( θ ) e ~ 2 π i k 9 d θ k z Z
J T

then

(n) = Σ,f(n-k)h(k).

The series on the right converges absolutely for each n, by ParsevaFs relation.
If l/p + l/q= 1, then it is easy to verify that if H is a multiplier transformation
on lp>λ(Z) then H is also a multiplier transformation on lQ>~λ(Z) associated with
the same hA and Np,λ[H] = NQt-λ[H]

THEOREM 3.1. If

(a) \hA(θ)\^A θzT

(b) \hA{θ)-h*{θ + t)\^A\t\a l/2<a^l

then H is a bounded linear transformation of lPtλ(Z) into itself where Kp
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<oo and -^- — a<\<a

PROOF. Let

s\(θ) = Σ h(n)e2πinθ

be the partial sum of order 2k of the Fourier series for hA. Given £ > 0 , it is
easily seen that

(Zygmund [7, p. 61], Hirschman [4, p. 223]) so that if

ft k — s k ~~ s k-l

then

(4) | |λ\ |U ^AC(a, e) 2-fc(β"6)

where || ||oo is on T. Let Hk be the multiplier transformation associated with hA

k.
Then

Htf(n)= ff*(θ)h\(θ)e->*«"dθ= Σ,f(n-j)h{j
JT j*z*

where Zk= [ne Z,2k~ι< \n\ ^2"} and

Σ IΛ(i)Γ(i+L/Ί)Γk\( 5 )

Using the relation

it easily follows that

(6) Nhλ[Hk\ ^ AC{a, 6)

From (4) and (5) using Schwartz inequality and ParsevaPs relation, it follows
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that

(7 ) N2,λ[Hk] ^ AC(a, S) 2*<^+w+—> .

Suppose 1 <p^2. Putting — = — z — + -~-, 0 < ω < 1, we obtain from ( 6 )

and (7) by virtue of Riesz-Thorin convexity theorem

If I λ I < oί — -y , we can choose S so small that

Σ,NPtλ[Hk]<oo.

Further since hA(θ) = ^2hA

k(θ), the convergence being uniform in θ it is easy to

see that Hf(n) - Σ,HJ(n) and ^ [ H ] ^ ]f)iSr,,x[HJ < oo. The regular conjugacy
A;=0 A:=0

argument gives the result for 2t=^p<°°.
Now we state two results of Devinatz and Hirschman [ 1 ] as lemmas.

LEMMA 3.2. / / 0 < λ < l / 2 , then there exist positive constants Λi(λ) and
A2(λ) depending only on λ such that

and

Γl f
o JQ

) f f{\fA(θ)~fA(φ)\2(sin π\θ-φ\)'^λ}dθdφ.
Jo Jo

LEMMA 3.3. Let 0 < λ < ^ - . There exists a constant A"(λ) such that if

hA is a measurable function on T satisfying h(0) — 0,
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and

[ \fA(θ)\2dθ f \hψ)-h*(φ)\^sm7t\θ-φ\)-^λdφ^σ(N2>λ\f]y
Jrp JT

for every fzl2>λ(Z), then N2Λ[H]^A"(\) C.

We now prove

T H E O R E M 3 . 4 . Suppose h A s a t i s f i e s t h e c o n d i t i o n ( a ) of T h e o r e m 3 . 1
a n d

(b') \hA(θ)-hA(θ+t)\^B\t\"

Then there exists a constant C such that

[ \fΨ)\2dθ f \hψ)-h*(φ)\°(Sm7t\θ
JT JT

where 0 < λ < d / 2 .

PROOF. We consider the quantity

M= [ \fA(θ)\2( \hA(θ)-hA(φ)\>
JT JT

^2||ΛΛ|U f I/Λ(#)l2 Γ \hψ)-h^(φ)\(smπ\θ-φ\)-1-Λdθdφ.
JT JT

It is easy to establish that there exists a constant C which depends on λ and a
such that

f \hA(θ) - hA(φ)\(smτr\θ - φ l )- 1

Jτ

Thus

f \fA(θ)\2dθ^C\\hA\U
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when λ > 0. Now applying Lemma 2.1 we obtain

where C is a constant depending on λ and a only.

THEOREM 3. 5. Suppose hA satisfies the conditions of theorem 3. 4. Then

if 0 < λ < ~w, there exists a constant C which depends on a and λ such that

if H is the associated multiplier transformation such that h(0) = 0, then

PROOF. An application of Lemmas 3. 2 and 3. 3 together with Theorem 3. 4
gives the result.

THEOREM 3.6. Suppose hA satisfies the condition of Theorem 3.1. Then His

a bounded linear transformation of lPfλ(Z) into itself where > |λ | > 2
2

and

2(l-d+21λ|)
l + 2 | λ | - 2 a '

PROOF. Suppose sA

k is defined in the proof of Theorem 3.1 and Hk the
multiplier transformation defined there. Then since

and, as can be easily verified,

I h \ ( θ ) - h\{θ + t)\^ AC{a,

we have by virtue of Theorem 3. 5

which implies that

(8)
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Now suppose ^γ~^~^-<p^2. Then if l/p=(l-ω)/l+ω/2 we have ω>

1—/v-μ2lλl ' ^ ^ ^ ^ e s z " ^ ^ l o r i n convexity theorem (this is possible since

0 < ω < 1 under the condition that | λ | > a —1/2) we obtain from ( 6 ) and ( 8 )

/g) N λ[JcJA;]<A2A:t(1/2~α+|λI+eK1~ω)~ω(α~ ) /2]

Now under the above condition on ω, it is possible to choose £ small enough such

that the quantity in the exponent of the right hand side of (9) is negative and we

, . i , r 2 ( l - d + 2 1 λ l ) ^ ^ - o ~« i £ o ^ ^ 2 ( l - d + 2 | λ l )
obtain the result for l+21λ <P = %. The result for 2gg/>< ^ . . _ ' ;

follows by the conjugacy argument.

In theorems 3.1 and 3. 6 we have assumed that CL>-^ . We have not asserted

that they are the best possible. There are multiplier transformations for some p

and λ even if cί<-w as can be seen from the following result.

THEOREM 3. 7. / / hA satisfies conditions of Theorem 3. 4, then H is a

bounded linear transformation of lp>λ(Z) into itself if -——. —r</><2 and

λ is a nonnegative number such that ct>\>a

PROOF. With the notations as in the proof of Theorem 3.1 we have

(10) iVM[HΛ] g AC(a, S) 2-*<«-«>

Let ri = {2-p)/p. Then l//>=(l-7)/2 + 7/l and let λ = (1 - 7)0 + Ίη. Applying

Riesz Thorin theorem to (10) and to

Nltη[Hk] ^

we obtain Theorem 3.7.
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REMARK. If <2<l/2, then X>cί—l/2 is satisfied by any nonnegative λ. In
particular when λ = 0 the range for p reduces to 2/{\+2a)<p<2 and this is the
result given by Hirschman [4, Th. 2a].
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