Tohoku Math., Journ.
23(1971), 473-490.

ON THE UNIQUENESS OF THE CAUCHY PROBLEM FOR
CERTAIN ELLIPTIC EQUATIONS WITH TRIPLE
CHARACTERISTICS

KINJI WATANABE

(Rec. Jan.29,1971; Rev. May 13,1971)

1. Introduction. The uniqueness theorem of the Cauchy problem for elliptic
operators with double characteristics have been studied by many authors, [31,[4],
[6], etc. On the other hand, in [5], A.Plis has constructed an elliptic equation of
fouth order with real-valued C* coefficients, which has non-trivial solutions with
compact support and P.Cohen [1] has constructed an equation of order m with
constant leading coefficients, with a complex characteristics of multiplicity r and
with a lower order term of order m—1 with C* coefficients, 2<<r—2, for which
uniqueness fails. It is the point worthy of remark that there exists an equation
whose principal part is equal to A® and for which uniqueness fails, where A is
the Laplacian operator. The purpose of this paper is to show the uniqueness and
the unique continuation theorem for some class of elliptic equations which include
every equation with principal part A® and with a lower order term with Lipschitz
continuous coefficients. At first, we shall study the solutions of a differential inequality

(1.1) | P(D)u + Qla; Dju| =C 3 | Dl

la|=m—q

where P(D) is a linear partial differential operator of order m with constant
coefficients and the principal part P,(D) of P(D) is of real (resp. complex)
characteristics of multiplicity at most s (resp. 7) and where Q(x; D) is a homogeneous
operator of order m—qg+1 with Lipschitz continuous coefficients defined in a
neighbourhood of the origin 0. When Q=0, ¢=[(r+1)/2] and P(D) is homogeneous,
Goorjian [ 2] proved that each solution z< C™ for the differential inequality (1.1),
which vanishes for

(1.2) <L+t

when x = (x,, -+ -, &,) is in a neighbourhood of 0, also vanishes in a full neighbourhood
of 0. We are interested in the case of » =3, ¢ =2. Next, applying the results for
operators with constant leading coefficients, we shall also consider the solutions of a
differential inequality
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(1.3) |A(x; DPu+ B(a; Du| =C > |Du|

|a|=3m—2
where A(x; D) is a homogeneous operater of order m with C?™*! coefficients such
that A(0; D) is an elliptic operator of order m with simple characteristics and
where B(x; D) is a homogeneous operator of order 3m—1 with Lipschitz continuous
coefficients. The coefficients of A(x; D) and B(x; D) are defined in a neighbourhood
of 0. The purpose is to prove the following.

THEOREM 1. If r is an odd integer =3 and [r/2]=s, then each solution
ue C™ for the differential inequality (1.1) with q=[(r+1)/2], which wvanishes
Sor (1.2) when x is in a neighbourhood of 0, vanishes also in a full neighbour-
hood of 0.

Applying this Theorem to elliptic operators, we have

COROLLARY 1. Suppose that P(D) is a homogeneous elliptic operator
and that r=3. Then the same conclusion as in Theorem 1 holds with q=2 in
the differential inequality (1.1).

When operators are of variable coefficients, we have

THEOREM 2. Let ue C*™ be a solution of the differential inequality (1. 3),
which vanishes for (1.2) when x is in a neighbourhood of 0. Then u must
vanish in a full neighbourhood of O.

REMARK. If m=2 and =3, or if m=2 and A(x; D) has real-valued
coefficients, then Theorem 2 implies the uniqueness of solutions for (1.3) across
arbitrary surface I' of the class C*", since, for each point Z on I, by a change of
coordinates, the surface I'" can be made to coincide with the paraboloid x; = &3+« 423
in a neighbourhood of Z with Z at the origin of the new coordinates, and the class
of differential inequalities considered in (1.3) is invariant under the change of
coordinates, Hence the unique continuation theorem holds for such operators.
Explaining in detail, for a second order elliptic operator A(x; D) in a domain QC R*
with C%Q) coefficients such that if z =2 the coefficients are real-valued and for a
homogeneous operator B(x; D) of fifth order whose coefficients are locally Lipschitz
continuous in {2, we have the following.

COROLLARY 2. Let ue C¥Q) be a solution for the differential inequality
in Q

| A(z; D)*u + B(x; Dju| = Clx) >_ | Dul »

la[=4
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with a locally bounded function Clx) in Q. Then u must vanish identically in
Q if u vanishes in some non-empty open subset of Q.

The proofs of Theorems 1, 2 and Corollary 2 will be given in 83 by using
Carleman type estimates. This estimates will be established in §2, when operators
are of constant leading coefficients and in §3, in the case of variable coefficients.

2. Carleman type estimates for operators with constant leading
coefficients. Notation and Definitions. Let x = (x;,+++,x,) be a point in the real
n-dimensional Euclidean space R*, n=2, a = (a;,+++,a,) is a multi-index where the

n
ay is non-negative integer, |a|=)_ a;. k is always a single index, £=0,1,++-, [a]
k=1

is the largest integer less than or equal to a. For the brevity we use the following
notation; f=(§17 S En) € Rn’ §a=§i‘l e f:"’ Dk= —i a/a'rlc’ (2)2= -1, D= (Dl’ b Dn)’
= Dgt,eee, D,

We denote by P(D) a linear partial differential operator of order m with
constant coefficients and by P,(D) the principal part of P(D). For a multi-index a,
set P(E)=0l" P(§)/oE5++- O in particular, for a single index &, P % (§)=0%P(£)/OEF.

We say that a homogeneous operator P(D) with constant coefficients is of real
(resp. complex) characteristics of multiplicity at most s (resp. ) if the hyperplane
x, =10 is not characteristic for P(D) and if a family of polynomianls of ¢;,

(PO, Ep s b 0= =5}

(resp. {P®(Ey, €000, 80) 0=k =7})

has no common real (resp. complex) zero whenever (£,,---,£,) is non-zero real
vector. If »=1, we say P(D) is of simple characteristics. Without loss of generality,
we always assume that s=r = the order of P(D).

Using the methods of Hormander [3], we shall choose as a weight function
in the exponents

(2.1) Po(x) = (2, — 8 + 8(x3 + ++- + 23),

where >0 will be taken sufficiently small. Then we shall now prove the basic
Carleman type estimates, which was proven by Goorjian [ 2], when the operator is
homogeneous, by using the weight function in the exponents

@ = (2, — 8 + &zl + +++ + 23)
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instead of (2. 1).

THEOREM 3. If, for an operator P(D) of order m with constant coefficie-
nts, the principal part P,(D) is of real (resp. complex) characteristics of
multiplicity at most s (resp. r), then there exist positive constants &y, 8,, M, and
C, such that the inequality

2.2) f 372 m-lel=rem=lel| Dy | 2exp(2r,)dx = C, f | P(D)u|?* exp(2t@;)dx

holds for ue Cg(U,), a, 8 and v with |a| =m—s, 0<<8 <8y, My< 78+ where
U,={xeR% |x]| <&} and p=sif s=r, or p=0if s<r.

PROOF. At first, we use algebraic properties of the characteristic polynominal
P,(£) to prove a key inequality, that is: there is an open cone V in R", containing
the point Ny=(—1,0,++-,0), with the vertex at the origin such that the inequality

(2.3) C,|E+izN|*™9 < >~ | P9(£ + i7N)|®

|a,=s

+ 3 (rINI P | PO + i) 2

k=s+1

holds for (¢, 7)€ R**! and N eV satisfying
(2. 4) M, = l'TN I

with some positive constants C; and M,. If s=7, then the second sum does not
appear in (2. 3). It is sufficient to prove the inequality (2.3) for P,, instead of P. In
virtue of the continuity and homogeneity of P,(£), it is easy to show that (2.3)
holds for P=P,, Nc U and |E+ivN| =1, where U is an open neighbourhood on
the unit sphere |x| =1 and contains N,. For NeU and a non-zero real vector
(€, 7), by setting

£ +ir’N = (£ +i7N)/|E + ivN|

we have (2.3) holds for P=P,, Ne U and (£, 7). Now set V={&EN; &>0, N U}.
This completes the proof of (2.3). Using the properties of this cone V, we define
neighbourhood U;, 0<<8=1, in the following. Set W,= {x € R" gradp,x)eV,
| gradg,(x)— grade,(0)| <<8}. Since V is open and contains the points grade;(0)
=28N,, 8>>0, the set W; is a neighbourhood of 0. Notice that (x;, Zy, =+ +, x,) € W,
if and only if (8xy, &y -+, x,)e W;. Hence W; contains {x; |x| <2&3} if W,
contains {x;|x| <<2&}. Set U, = {x;| x| < &2S}.
Now we shall use the partition of unity given by the functions
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O(zA(7)/2 — gy, Zo8)/2 = Gy +e v, Zo(7O)2 — @)

with §,7>0, where ® is a C~ function with the support contained in the cube
max|x;| <1, such that for each x< R",

;@(x— g9)=1

where ¢ =(g1, g3, +++, 9,) runs over all the points with integer coordinates. Hence,
for u e C:(U,), we have u= Y _ u, where
ﬂ .

uy(x) = wx) Ox,(7)V2 — g1,X5(T8)2 — ggy o+, Z,(TE)? — g,).
When we set

N, = grad @(x0), x5 = (9:/(7)/%,9./(T8)'%, + -+, 9o /1T8)"*),
we have, if u,(x) =0, then z,€ W,, N,V and
8= |N,| =38
whenever 7n&;? < 78%, 0<8<1. Let +8° (resp. 8) be a sufficiently large (resp. small)

positive number. Integrating the inequality which is obtained by multiplying (2. 3) by
lit(€ +17N,)|?, we have

2.5) C. [ 18 +énN, 20 il 4N,

= { PO +irN) [P+ 3 (r|No| <o

|a|=s k=s+1

X |P®(E+ iTNa)P} |,(€ +i7N,) | *dE,

where #,(E+i7IN,) is the Fourier transform of #,(x)exp(< x, TN, >). Using Parseval’s
formula, from (2.5) we get

(2.6) Cf | D™ *u, | 2exp(2T < x, N, >)dx

éf{z | P“Y(Dluy|? + Z' (T[N, | 2=

|a]=¢5 k=38+1

X | P®(Dlu, |? }exp(2-r < z,N, >)dzx,
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where we use the notation

| D™ %, |® = Z | D, |

|8|=m—s

and where, henceforth, C is a generic positive constant depending on 7, m, P and
@, but independent on 7,8 and «. Multiplying (2. 6) by exp (27 {@\(x,)— <z4, N, >}),
we have

2.7 C f | D™ *u, | 2exp(2my)dx

=[S 1PoDmI + T N ppe-s
|a]=8

k=s+1

X | P®(Dluy, | 2]exp(Z*r‘\lr)dx )
where Y = @,(x,)+ < x—x4,N,>. By Taylor’s formula, we see

"P=¢a(x) (zy — zg,,)? —SZ(xk xﬂk .

k=2

Since, in the support of u,, |Zi—Z.1|2<7"!, |xp—2,:]|2<(v8)"), k=2 and
|N,| <38, we obtain

(2.8) C f | D™ *u, |%exp (279;) dx

<f{ Z |P<‘) D)u ‘z + Z 7'8 "'"‘"’lP""(D)ugl’}exp(Z'r%)

Jal=8 k=341

On the other hand, from Cauchy’s inequality, we have

(2.9) | D™ *u|?=2">" | D™ *u,|t.

Let a* denote the multi-index obtained by setting the first components of a equal
to zero, that is, a*=(0,Q,,+*+,a,), k*=(0,0,-+-,0) if a=(a;, dy,+++,a,) and &
is a single index. By Leibniz’ formula, we see

DBA|® P(a+ﬂ)(D)u .

(2.10) PO(Dluy = 3 w81aglerisa
B
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Consequently we have

(2.11) C f | D™*u | 2exp(27@;)dx

= fz.,.lﬁlslﬁ'l,i Z lP“*”’(D)ul’
B

|x|=8

+ i ('1'3)2("") ]P(’”'B)(D)u [3}exp(2'r¢,)dx.

k=3+1

Next, we need the following fundamental inequality proven by Tréves [7]
(2.12) C(n, m) f 71#181" | Q) D) | *exp(2re;)d x

< [ 10D *exp(2riidz

for ve C?, @ with |@| =m and for the linear differential operator Q(D) of order
m with constant coefficients, where C(n, m) is a positive constant depending only on
n and m.

Applying this inequality to (2.11), we have if s=r,

c f | D*u|Pexpl2ro)da < (rd)"* f | P(Dlu|expl2ro)dzz
and, if s<r7,
c[ 1D ultexplerpida < 778" + (187~ f | P(Dut|*exploro)d

Without loss of generality, we assume that 0 <& <<1/2. Then we can use the
inequality

(2.13) (v3)? f |v|%exp(2re,)dx = f | Dy | *exp(27@s)dx

for ve C2(U,), since, by setting w = v+ exp(T®,),
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f | 9v/ox, | *exp(2r@;)dx = f |ow/ox, — 2v(x; — d)w|?* dx
= 47 x, — d)? f |w|2dx = (18)? f |v]2exp(2v@;)dx .
Hence we have the inequality (2.2) for a sufficiently large +8***>0 and a small
8>0. This completes the proof.
Next we shall prove the similar estimates to (2. 2) for the operator P(D)+ Q(x;D).
THEOREM 4. Let P(D), Q(x; D) be the operators given in Theorem 1.

Assume that r is an odd integer=3 and that [r/21=s. Then there exist
positive constants &,8,, M, and C, such that the inequality

(2.14) f (7&2)m=lel=rgm=lal| Dy | 2exp(27@;)dx
=G f | P(D)u + Q(x; Du|%exp(27;)dx

holds for ue C2(U,), a, v, & with |a]|=m—[r/2], 0<8<d,, M,<78 where
U,= {z; |x| <&8}.

PROOF. Let r=2r,+1. By the continuity of the coefficients of Q(x; D),
Theorem 3 and the inequality (2.12) for operator P(D)+Q(y; D) may be applied
and we have

¢

(2.15) f S (rdFrtel=remlel | Dry| texp(2rey)dx

la|=m—1,

+ f 2 18| P®(D)u + Q®(y; Diu|*exp(2r@s)dx
1518]

< C[ |PUD+ Qy; Dlulexplzrp)dzz

for ue Co(U,), a sufficiently large 76°>1, a small 8 >0 and for y belonging to a
neighbourhood of 0, with some positive constants & and C. Now we use the partition
of unity given by the functions ®((r8*)"2x—g), where ® is the function given in
the proof of Theorem 3. For u< C(U;) and g, put

u(z) = ulz) O((18")'*x — g), x, = g/(v&)/*.
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Since, in the support of #,, |x—x,|?<(78%)! and the coefficients of Q(x; D)

are Lipschitz continuous, we see

[ 110z, D)~ Q®(z; D)y "expizrpdzz

=C f (78%)~1| D™~ 18ly, | 2exp(2r@,)dx .
Hence, replacing ¥ by x, and « by %, in (2.15), we have

(2.16) f > (rd2ym-lel=rgm=ial| Dy, | 2exp(2r,)dx

|a|sm -7y

+ [ 5 w9851 PODluy + Q(z; D Pexpl2rpdc

1s|8|

=C f | P(DYuy + Q(x; Dlu, | *exp(27@s)dx

with some another constant C if we take
T(782) " » (78?)7!
and for |8 =1
TroHBI( STyt 18I=T Y lBI-1g2

thus, if we take a sufficiently small 8 >0 and a large 78°>0. Summing these
inequalities (2. 16) over g, we obtain

f > (rd2m-lel=rgm=ial| Doy | 2exp(2r@;)dx

|&|sm—7o

+ f > 7818 | PO( D+ Q®(a; Dl | expl2rep)d

1=(8|

= C[ S| PO(Du+ Q1e; Diulexpizrp)dz.
B

Thus we can get the inequality.(Z. 14) for a sufficiently large 78°>0 and a small
8 > 0. This completes the proof.

Now we shall prove the following lemma, in order to obtain estimates of



482 K.WATANABE
operators with variable coefficients.

LEMMA 1. Let A(D) be a homogeneous elliptic operator of order m with
constant coefficients and with simple characteristics and let B(D) be an operator

of order 3m—1 with constant coefficients. Set P(D)= A(D)*+ B(D). Then the
inequality

(2.17) f (r8%) | D™A(D)*u|?exp (27@,) dx = C, f | P(D)u|%exp (279;) dx

holds for ue Co(U,), T, 8 with 0<8<8,, M, <78 where 8§,, M, and C, are
positive constants and where U, = {x; | x| < &S} with some & >0,

PROOF. Let V be an open cone in R", containing the point Ny=(—1,0,+++,0),
with the vertex at 0 such that the inequalities

ClE+inN 2™ < 3 | A@(E + iwN)|*
|

a|=1
and
ClE+iwN|?™ = |A[E +ivN) | + |TN|2| AD(E + i7N)|?
holds for (£,7)e R**! and N €V, with some constant C>0. Then we have

CIE +ixN|™ | AlE +irN)|* =< | P(E +imN)|? + |=N|2| PD(E +irN)|?
+ 3 |ADE + iaN) | { | AE + iwN)|* + [N || AD(E + iwN) 1},

la]=1

with another constant C >0. Using the same method as in the proof of Theorem 3,
we have

C f | D™A(D)*u| 2exp(27p;s)dx

= f { | P(Dee|*+ () | P(Dee|* + 3° {| A\ D)A(D)*e|*

|al=1

+ (79)*| A9(D)A (D) |} }exp(z'rcp,)dx .

Consequently using the inequalities (2.12) and (2.13), we obtain the inequality (2. 17).
This completes the proof.
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3. Carleman type estimates for certain elliptic operators with variable
coefficients. In this section, we shall give the similar estimates to Theorem 3 for
the operator P(x; D)= A(x; D)*+ B{x; D), where A(x; D) is a homogeneous elliptic
operator of order m with C*™*! coefficients such that A(0; D) is of simple
characteristics and where B(x; D) is a homogeneous operator of order 3m—1 with
Lipschitz continuous coefficients. Then we shall give the proofs of Theorems 1,2
and Corollary 2. The following lemma was proven by Hormander [ 3 1.

LEMMA 2. The inequality
(3.1 f (r82)m-lei=tgm=lel| Dy | 2exp(2r@,)dx = C; f | A(x; D)u|%exp(2rp;)dx
holds for ueCgU,), a, 7 & with |a|=m, 0<d<d;, M;<7d where
U,= {z; |x| < &3} with some & >0.
Then, using this Lemma and Lemma 1, we have

THEOREM 5. There exist positive constants &, 8, M, and C, such that the
inequality

8.2) [erspiei-teni| Dl explorpid = C [ | Plas Dl explzrpida

holds for ueCz(U,), a, =, & with |a|=3m, 0<8<8, M,<vd where
U,= {z; | x| <&8}.

PROOF. In virtue of the continuity of the coefficients of A(x; D) and B(x; D),
applying Theorem 3, Lemma 1 and the inequality (2.13) to the operator A(y; D)
+ B(y; D), we have

(3.3) f > (vd2pm-lal-3gdm=ial | Doy | texp(2re,)dx

|| =3m

+ [ 5= +11 A9y; DIALy; DID"u'explrpide

la|=1

+ [ 5 w51 A(y; Dt Bo(y; Diulexp(zrp)dz

1=|a|

<[ 1 Aly; Dyu-+ Bly; Dil'expizrpida
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for ue Cg(U,), a sufficiently large 78 >1, a small §>>0 and for y belonging to a
neighbourhood of 0 with some positive constants &, and C where A;(y; D)= A(y; D)*.
Now we use the partition of unity given by the functions ®(w(t, 8)’x—g) where
® is the function given in the proof of Theorem 3 and where w(r,8)=6*2 If
we set, for ue C(U,;) and g,

uy(x) = ulz) O(w(r, 8)'’x — g), x, = g/w(r, )

then we have, for a sufficiently large 78* >0 and a small & >0,

3
(3.4) SI=[ 5 (rrpmeiei-ion-t| Dru, explzrpd
=1

|a|=8m

+ f (7821 37 71| A(x; D)A(x; D)D™u, | *exp(2r@,)da

la|=1

+f > 781= | P“Y(x; Dyu, | *exp(2r@;)dx

1s|a|
= ¢ {1Ptw: Dln|* + 1 4423 D - Al D
+(e8)7] {Alz; D~ Aley; DF} D"

+ > 7" {P®(x; D) — P®(xy; D)}u,|* texp(2re;)dx

18]=1

7
21
j=t

Il

where, henceforth, C is a positive constant depending on 7, m, A(x; D), B(x; D) and
©, but independent on 7,8 and . We shall give the proof of the inequality (3.4)
from (3.3). Since, in the support of #,, |x—x,|*<w(r,8) ! and the coefficients of
B(x; D) are Lipschitz continuous, we have

f | {B(x; D)— B(x, ; D)}u, | *exp(2v@;)dx
=C f w(7, 8)7| D¥™1u, | 2exp(2re;)dx ,

and since, for |a| =1,
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Azy; D)A(x,; D) — A®(x; D)A(x; D)
= {A®(z,; D) — A“(x; D)} {Alx,; D)— A{zx; D)}
+ {Axs; D) — A®(z; D)} Alz; D)
+ {Alxy; D) — Alz; D)} A®(x; D)

+ lower order term of order =2m — 2,

we have
f 82| {A“x,; D)A(xy; D)— A®(x; D)A(x; D)} D™u, | *exp(2r@;)dx

= Cy f {w(f, 8)72| D™y |* + wir, )1 {| Alar; D)D" 'ugy |

+ | A®(a; DD, |} + | D | 2{exp<2~r¢a)dx :

And since, for |a|=2,

AP(z,; D) + B®(a,; D)— P®(z; D) = P“(z,; D)— P®{x; D)

+ lower order term of order =<3m — |a| —1

and the coefficients of P(x; D) are Lipschitz continuous, we have
[ 78 {A(z,; D) + Bolz,; D)= P9las Dl expl2rpidc
= Cf'r""S'“"'{w('r,S)"‘ | D3m=1lgg, |2 + | D3~ 111y, | 2} exp(2T@;)dx .

Hence, replacing y by x, and « by %, in (3.3), and then using the inequality (3.1),
we have the inequality (3. 4), if we take

(78%) % » (8%w(m, &)1, (702)~'r? » &7,
and for |a| =2,
(782)1e1=8glel S lelyg(r, §)1, (rd2)iel-2lel+1 3 plal
thus, if we take a sufficiently large 78° >0 and small &> 0.

On the other hand, we can also write the last three terms on the right hand
side of (3.4) as follows.
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A(x; Df — Alzxy; D) = — {Alz; D) — Alzo; D)}* + 2{Alx; D) — Alzs; D)} Alz; D)

+ lower order term of order =<2m —1
and

A(x; D)} — A(xy; D) = {A(x; D)— Alx,; D)}? — 3{A(x; D) — Alx,; D)}*Alx; D)
+ 3{A(zx; D)—Alz,; D)} Alx; D)
+ {a differential operator of order 2m — 1}A(x; D)
+ {A(x;D)— A(x,;;D)} {a differential operator of order 2m—1}

+ lower order term of order < 3m — 2
and for |B| =1,

P®(x; D)— P®(x,; D) = 3{A®(x; D)A(x; D)* — A®(z,; D)A(x,; D)*}
+ lower order term of order = 3m — 2
= 3{A(x; D) — Alx,; D)}*{A®(x; D)—A®(z,; D)}
— 3{A(x; D) — A(z,; D)}*A®(x; D)
—6{A(x; D) — Alzy; D)} {A®(x; D)— A®(x,; D)} Azx; D)
+ 6{A(x; D) — Alz,; D)} A®(x; D)A(x; D)
+ 3{A®(z; D) — A®(z,; D)} Alx; D)?

+ lower order term of order = 3m — 2.

Hence we have

(3.5) f > (r82)pr-lel=tgim=lal | Doy, | 2exp(2r@s)dx

la|=3m

+ f > 11§l | P“Yx; D, | *exp(2r@;)dx

1=|a|

< C[ | Pta; Dy rexpierpidz

for a sufficiently large +8°>0 and a small § >0. Here we give the proof of the
inequality (3. 5) by (3. 4). Using the above three identities, we have
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1= C [ uotr 87 D1 4wk, 87| Al DID™ w1
+ wlr, 81| Alzs DID™s|* + | D™ |1

+ |Alz; DD 'uy |* + | D™ *u, | texp(2r@s)dir 5

I, = Clrb)™ [ (aord) s | D )
+ w(r, 8| A(z; D)D™u,|? + | D¥™ u,|*}exp(2r@,)dx
and
L=Cr f {w(r, 8)~*| D™ 2, | + wir, 8)72| Alzr; D)D*™ 'y, |?
+ w(r, 8 | A(x; DPD™ Yuy | + | D¥™*u, | *}exp(2r@,)dx
+C % 5% [ fwfr, 371 4%(e; DD
g

+ w(r, 8)| A®(x; D)A(x; D)D™u,|*}exp(2re;)dx .

Hence we have
I5+IG+I7§(I1+I2)/2’

for a sufficiently large 78° >0 and a small § >0. This completes the proof of the
inequality (3.5). Thus, summing these inequalities (3. 5) over g, we have

[ = (asrpm-tei-sometet] Doy rexpl2rp)dr

|al=3m

+ [ & w181 POz; Dl explerpildz

1=|e|

=C f > w(, 8)#| P®(x; Diu|*exp(2re,)dzx .
B

Consequently we have the inequality (3. 2) for a sufficiently large 78° > 0 and a small
8>0. This completes the proof.
Now we are ready to prove Theorems 1, 2 and Corollary 2.

THE PROOF OF THEOREM 1. Let U, be a neighbourhood of such that (2. 14)
holds and U; is contained in the neighbourhood initially given in this Theorem.



488 K. WATANABE

Take a function X e C(U,) such that X =1 in a neighbourhood U, ;, of 0, and set
v=2Xu. Then we have in U,,

(3.6) | P(Djp + Q(ac; D| =C 3 | D'v|

|a]=m—-q

where ¢ =[(r+1)/2]. Since, in the support of v, ai+--++xi=x,, and x,<8
in U;,, we have @x)<<@,(0) in the support of v except when x =0, Hence we
have for some positive constant L;

(3- 7) 7’a(x) = ?’3( 0 ) —L,,

when z is in the support of v and in the complement CU, , of U, ,. By approximation,
we can apply (2.14) to v. This gives, by using (3. 6),

f > (v82ym-lel=rgm=lal| Dry | texp(27@,)dx

la|=m—q

=C f > | Dv|%exp(2re;)dx

Us,1 |a|sm—q

+C | P(Dl + Q(x; Dp|*exp(2r@,)dzx ,

CUs,1

or, by restricting the integration in the left hand side to U, it gives

(82— C} 3 |D"|%xp(2rp;)dx

Us,1 |a|s=m—q

=C | P(Dlv + Q(x; Dv| 2exp(2r@s;)dx .

CUs,1

Let U,,cU,; be a neighbourhood of 0 where @;(x)=@,0)—L,/2. Choose
7872>2C and then fix 8 >0. Then we have, using (3.7),

f lv|tdxr = exp(—'rL.,)f | P(Dp + Q(x; Dpw|* dx

and, letting 7—+ oo, we have v=u#=0 in U,, This completes the proof.

The proof of Theorem 2 is exactly the same as the proof of Theorem 1. We
have only to use the estimates (3. 2) instead of (2.14).
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THE PROOF OF COROLLARY 2. We denote by Q, the set of points x in
Q such that » vanishes in some neighbourhood at x. By the assumption and the
definition, Q, is the non-empty open set. Give any points z, in Q, and z; in Q. Since
Q is connected, there is a continuous arc y= {x(¢); 0=t=1} in Q such that
2(0)=xy, 2(1) = x,. .

Take a positive number 7, such that B(xy, 7,)C Q4 B(ao, 7,) being the open ball
at the centre x, with the radius r,, and then set '

4r, = min (r,, dis(y, 2Q)) >0,

and

ty=sup {£;x(s)e Q, for 0 =s=1¢},

where 2Q is the boundary of Q and dis(y, Q) is the distance from v to 2Q, and
where , is the subset of €, consisting of points x such that « vanishes in
QN B(x,r,). Since B(x,, 2r;)C Q,, we have £,>0, and since v is a continuous arc,
for any points x in B(x(¢,), 71)

|2 — 2ty —E&)| < |x— 2(t,)| + |x(to) — xlt, — )| <7,y

if we take a sufficiently small &€>0. This means B(x(¢,),7;) is contained in Q,
and x(t,) € Q,.

Suppose that #,<<1. Since the surface S(z(¢,),r,)= {x,|x—x(¢,)| =7} is smooth,
after a change of coordinates, applying Theorem 2, we have that S(x(,),7,) is
contained in Q,. Hence B(x(t,), &) is contained in Q, for some &>0. In virtue of
the continuity of vy, we can get x{s)e Q, for 0=s=1¢,+&, with some & >0. This
gives a contradiction. Consequently we have x; =x(1)e Q,. This completes the
proof.
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