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About forty years ago, three Russian mathematicians (Kagan [1, 2],
Rachevsky [4,5], Shapiro [7,8]) introduced and studied the so-called sub-
projective spaces and they obtained many interesting results. In the
present paper, the authors would like to introduce the notion of special
conformally flat spaces which generalizes that of subprojective spaces.

In §1, we shall give some formulas and definitions which we use
later.υ In §2, we shall prove that every conformally flat hypersurface
of a euclidean space (hence, of a conformally flat space) is special, and
conversely, every special conformally flat space can be isometrically im-
mersed in a euclidean space as a hypersurface. In the last section, we
shall prove that every canal hypersurface of a euclidean space is a special
conformally flat space and it is a subprojective space if and only if it is
a surface of revolution.

1. Preliminaries. Let Mn be an ^-dimensional Riemannian space with

metric ds2 — gμdu'dv?) h,ί,j, =l,2, ,n, where {uh} is a local coordi-

nate system. We denote by < . \ the Christoffel symbols formed with

gH and by V, the operator of covariant differentiation with respect to

\ -Λ. We denote by Kkji

h the Riemann-Christoffel curvature tensor of Mn:

(1.1) Kw> = a * - l - 3 . Γ + J * l l t l - ί A l ί *
kt){ji) \jt\\H

where dk — d/duk. Then the Ricci tensor and the scalar curvature are
given respectively by

(1.2) KH = Kti{<

and

(1.3) K = g»KH ,

ι) Manifolds, mappings, functions, are assumed to be sufficiently differentiable and we
shall restrict ourselves only to connected manifolds of dimension n ^ 3.
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where gji are contravariant components of the fundamental metric tensor.
We define a tensor field LH of type (0, 2) by

(1.4) LH = - _ J ^ i _ + Eiiί .

n - 2 2(n - l)(n - 2)

The conformal curvature tensor Ckji

h is then given by

(1.5) CkH

h = KkH

h + δiLH - b)Lki + WgH - L/gki ,

where δk are the Kronecker deltas and Lk

h = Lktg
th.

A Riemannian manifold Mn is called a conformally flat space if we
have

(1.6) Ckji

h = 0

and

(1.7) V4Li4 - VjLki = 0 .

It is well-known that (1.6) holds automatically for n — 3 and (1.7) can
be derived from (1.6) for % > 3.

If there exist, on a conformally flat space, two functions a and β
such that a is positive and

(1.8) LH = ~ g a + β<?,*)<?&) ,

then the space Mn is called a special conformally flat space. In particular,
if β is a function of α, then the special conformally flat space Mn is called
a subprojective space. (See, Schouten [6], p. 329.)

Let Mn be a hypersurface of a euclidean (w + l)-space En+1 defined by

X=X{u\u\ ••.,<>,

where X denotes the position vector of En+1 representing a point of Mn.
We put

Xi = d,X

and denote by N the unit normal vector field along Mn. Then the metric
tensor of Mn is given by

(1.9) 0ii = XrXi9

the dot denoting the inner product of vectors in En+1 and the second
fundamental tensor h/ is given by

(1.10) djN= -h/Xi.

The Gauss equation and the Codazzi equation are then respectively
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given by

(1.11) Kkji

h = hk

hhH - h3

 hhki

and

(1.12) VΛ< - VΛ, - 0 ,

hji being covariant components of the second fundamental tensor.

2. Special conformally flat spaces. The main purpose of this section
is to prove the following:

THEOREM 1. Every conformally flat hypersurface in a euclidean
space is special. Conversely, every simply connected special conformally
flat space can be isometrically immersed in a euclidean space as a
hypersurface.

PROOF. Suppose that Mn is a hypersurface of a euclidean (n + 1)-
space En+ί. Then it has been proved by S. Nishikawa and Y. Maeda
[3] that Mn is conformally flat if and only if at each point of M the
second fundamental form is one of the following types:

(i) h = ag,
(ii) h has two distinct eigenvalues of multiplicity n — 1 and 1 re-

spectively.
If (i) occurs, then Mn is obviously special. In a neighborhood in

which (ii) occurs, there exists a non-zero vector field vt such that the
second fundamental tensor is given in the following form:

(2.1) h, i = agH + βVjV* ,

where a and β are functions. From (2.1) we can prove that the Ricci
tensor and the scalar curvature are given respectively by

(2.2) Kji = [(n - l)α2 + aβv^g^ + (n - 2)aβvjvi

and

(2.3) K = n(n- l)α2 + 2(n - l)aβvtv* .

Therefore, we have

a2

(2.4) Ljt = -—9H - aβVjVi .
Δ

Combining (2.1) and (2.4), we obtain

(2.5) ahit = -LH + °Lgji .

By taking covariant derivative of (2.5) and applying (1.7) and (1.12),
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we obtain

(2.6) akh3i - a3hki = a(akg3i - a3gki) ,

where ak — Vka.

Substituting (2.1) into (2.6), we obtain

(2.7) akv3 - a3vk = 0 ,

which yields

(2.8) vj=fa, ,

where / is a function on Mn. Substituting (2.8) into (2.4) we see that
the conformally flat space Mn is special. This proves the first part of the
theorem.

Conversely, suppose that Mn is a simply connected special conformally
flat space with

(2.9) Lji = —^—g3i + β(V3 a)(Via) ,

a and β being defined globally.
We define a covariant tensor h3i of order 2 by

(2.10) h3i - £LgSi - ±-L3i .
2 a

From (2.9) and (2.10), we obtain

(2.11) hjt = ag3i - ^(v^XV.a) .
a

Taking covariant derivative of (2.10) and applying (1.7) and (2.9), we
easily obtain

(2.12) VΛ* - VA< - 0 .

This shows that h3i satisfy the Codazzi equations. On the other hand,
by using formulas (1.5), (1.6), (2.9), (2.11) and a straightforward com-
putation, we can prove that

(2.13) Kkji

h - hk

hh3i - h3

hhki .

Thus h3i satisfy also the Gauss equations. Therefore, by the funda-
mental theorem of differential geometry, we see that the space Mn can
be isometrically immersed in a euclidean space as a hypersurface. This
completes the proof of the theorem.

As a consequence of Theorem 1, we obtain
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COROLLARY 1. Every simply connected subprojective space can be iso-
metrically immersed in a euclidean space as a hypersurface.

3. Canal hypersurfaces. The envelope of one-parameter family of
hyperspheres of a euclidean space En+1 is called a canal hypersurface.

In the following, we suppose Mn to be a canal hypersurface given as
the envelope of the hyperspheres

(3.1) (X - x(s)) (X - x(s)) = r(sY , r(s) > 0 ,

where x(s) and r(s) are respectively centers and radii of the hyperspheres.
Then the canal hypersurface Mn is given by (3.1) and

(3.2) (X- x(s)) x'(s) = -rrr ,

where xr = dx/ds and r' = dr/ds. Without loss of generality, we may
assume that the canal hypersurface Mn is also given by a vector-valued
function

(3.3) X= X{u\u\ ...,un-\s)

satisfying (3.1) and (3.2), where {v,1, u2, , u%~γ, un = s) is a local coordinate
system on Mn. Then, taking partial derivative of (3.1), we obtain

(3.4) Xh-(X- Φ)) = 0 , α, δ, c, d, . . . = 1, 2, . . . , Λ - 1 ,

and

(3.5) Xn.(X-x(8)) = 0,

by virtue of (3.2), where Xb = dX/dub and Xn = dX/ds. From (3.4) and
(3.5), we see that the unit normal N to the canal hypersurface is parallel
to X — x(s). Thus we may write

(3.6) X = x(s) - r(s)N(u\ u2, , un~\ s) .

By taking partial derivative of (3.2) with respect to uh, we have

(3.7) Xb x'(s) = 0 .

Since N is a unit normal vector field, we have Weingarten equations
(1.10), from which

(3.8) 3bN= -hb

aXa-hb

nXn

and

(3.9) dnN= -hn

aXa-hn

nXn.

From (3.6) and (3.8), we find

(3.10) Xb = rhb

aXa + rhb

nXn ,
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from which

(3.11) hb

a = -1 δ; , Λ6» = 0 .

r

Also, from (3.6) and (3.9), we have

(3.12) Xn = x'- r'N + rhn

aXa + rhn

nXn .

Thus (3.7) and (3.12) imply

(3.13) gbn = r/C<76α + rΛn βr6ll

= rhjgib = rhbn .

Thus, from (3.11) and (3.13), we obtain

(3.14) hci = λQci .
r

Thus, if we put

(3.15) 5 = — , £ = Kn - ~9nn ,

r r

then we obtain

(3.16) hH = δflri4 + ^(V.sXV.s) ,

where α is a function of s.

Thus, from Gauss equations (1.11) and (3.16), we find by a direct
computation that
(3.17) Kkji

h = ά\δlgH - δ)gki) + s

where VAs = (ViS)flr**,

(3.18) ίΓ^ - {(Λ - l)α 2 +

+ (n - 2)a

(3.19) iΓ = w(n - l)α2 + 2(w - l)aβ(Vιs)(Ψs)

and

(3.20) Ly< = -^QH - aβφjsWts) .

Thus, by substituting (3.17) and (3.20) into (1.5), we can easily find
that the conformal curvature tensor Ckji

h vanishes. On the other hand,
from (3.16) and (3.20), we have
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(3.21) LH = S£-git - ahit .
Δ

Hence, by the Codazzi equations, we easily find that

VkLH - VόLki = 0 .

Consequently, we have proved the following:

THEOREM 2. Every canal hypersurface of a euclidean space, singu-
larities excluded, is a special conformally flat space.

REMARK. If the canal hypersurface is subprojective for the induced
conformally flat structure, i.e., if the function

β = Kn — —gn n
r

is a function of s, then the canal hypersurface is a surface of revolu-
tion, i.e., the locus of centers x(s) is a straight line. The proof is as
follows:

From (3.12), we have

gnn = Xn-x' + rhnn ,

that is,

(3.22) Xn.χ' = -rβ

and

(3.23) N-tf = r ' .

From (3.7), (3.22), and (3.23), we find

(3.24) xf = -rβgniX{ + r'N.

If we choose s as the arc length of the locus of centers x(s), then
by taking partial derivative of (3.2) with respect to s, we obtain

(X - x)-x" = - r ' 2 - rr" + 1 + rβ

by virtue of (3.22). Therefore, (X — x) x' and (X — x)-x" are both func-
tions of s only. Hence, for a fixed s, we have (X — x) x' — constant and
(X — x) x" = constant. Since, for a fixed s, x(s) = constant and X defines
an (n — l)-sphere in En+1, by the constancy of (X — x) x' and (X — x) x",
we see that x' and x" are parallel. This implies that x" = 0. Hence the
canal hypersurface is a surface of revolution.
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