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Introduction. Let GL(2, C) be the group of non-singular (2 x 2)-
matrices. An element u = (g 3) of GL(2, C) operates on C* as follows:

(2, w) = (az + dbw, cz + dw) .
Let M be a subset of GL(2, C) defined by

M={(§5)|asteco<iai<t0< g <1}.

Then M is a complex manifold. Let 0 be the origin of C®. We put
W=0C*—0. Let ueM. Then u defines a properly discontinuous group
G.={u"|neZ}
of automorphisms (holomorphic isomorphisms) without fixed point of W.

Hence we have a complex manifold

V.= W/G, .
V. is easily seen to be compact. It is called a Hopf surface. It can be
shown that the collection

{ Vu}ueM

forms a complex analytic family (X, =, M). We denote by Aut(V,) the
group of automorphisms of V,.
The purpose of this note is prove the following theorem.

THEOREM. The disjoint union
A= 1] Aut(V,)

ueM

admits a (reduced) analytic space structure such that

1) N A— M is a surjective holomorphic map, where \ is the canoni-
cal projection,

2) the map

AXX—X
M
defined by
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(f, P)—f(P),
ts holomorphic, where
AX X ={(f, P)e A x X|Mf) = n(P)},
the fiber product of A and X over M,
3) the map M— A defined by
u—1,

18 holomorphic, where 1, is the identity map of V.,
4) the map

AXA—A
M

defined by
(f,9)—97f,
18 holomorphic, where
AXA={(f,9)e A x AIMS) =M},
the fiber product of A and A over M.

1. The complex analytic family of Hopf surfaces.

By a complex

analytic family of compact complex manifolds, we mean a triple (X, =, M)
of complex manifolds X and M and a proper holomorphic map of X onto

M which is of maximal rank at every point of X, i.e.,
rank J(f)p, = dim M

for all Pe X, where J(f)p is the Jacobian matrix of f at P.

In this case,

each fiber 7' (u), ue M, is a compact complex manifold. M is called the

parameter space of the family (X, &, M).
Now, let

M={(§2)e6LE O)la g teC, 0<lal <1, 0< |8 <1

and
W=¢C-0.
We define a holomorphic map
NMX W—-Mx W
by
N(u, x) = (u, ux) .
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Then 7 is an automorphism, for 7™ is given by
(u, ©) — (u, w™'x) .
We put G = {n"|neZ}.

LEMMA 1. G 1s a properly discontinuous group of automorphisms
without fized point of M x W.

Proor. We assume that (u, u"z) = (u, ) for an integer n - 0. Then
u*r = x. We write

RA
u=(OB), 0<]al<l, 0<|B|<1

and x = (2, w). Then
Ny — n an_Bn n 3
ux—(az+——a_ﬁtw,ﬂw), if a#pg,

= (a"z + na" " 'tw, a"w) , if a=p.

Since 0 < |a|<1land 0 < |B]| <1, ux =2 implies that w = 0, so that
2z = 0, a contradiction. Hence G has no fixed point. In order to show
that G is a properly discontinuous group, it is enough to show that, for
a compact subset K, of M and a compact subset K, of W,

{neZ|9™(K, X K) N (K, X K,;) # O}
is a finite set. There are positive constants ¢ and d such that

lal|8lse<l and [¢|<d

for all (3 é) € K,.. We define a norm | | in C* by

|z, w) | =|2] + [w].

Then there are positive constants a¢ and b such that

e=|x|=b
for all z¢ K,. Now
lure | = |a"z + Yatw| + | B"w |
where u=(g‘é)eKl,m=(z, w) € K, and
an_IBn .
¥y = ——E-, f a#p8,
P I a#p8
= na"t, if a=4p.

Hence, for a positive integer =,
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luz| < [a|'|z|+ [V |[¢llw]+ 8] w]
<c¢"b + ne"'db + ¢"b— 0

as n— +oo. Thus there is a positive integer N such that

luz | < a
for all n = N. Next, we show that there is a positive integer N’ such
that

™" | > b

for all » = N’ and for all (u,x)e K, x K,., We assume the converse.
Then there are a sequence of points {(u,, #,)},_,.... of K, x K, and a se-
quence of integers :

nl < /,1,2 < coe
such that
|uy™2, | <0b, v=12 ...,
We put y, = w;™w,,v=1,2,-.-. Then x, = u»y,,v=12 .-.-. We put
p=@w) and u=(Fr), v=12...
Then
x, = uly, = (apz, + v.tw, srw)), v=12 ...,
where
y, = &y — B if a8,
av - ,8»
= nam-1, if a,=28,.
Hence

|z, | < (™ + n,em7'd + c¢™)b—0
as y— +oco. This contradicts to
{x,}1ps,.. C K,
Now
(neZ|n(K, X K,)) N (K, X K,) # @}
is contained in

{neZ|—N' < n<N}. q.e.d.

By Lemma 1, the quotient space



AUTOMORPHISM GROUPS OF HOPF SURFACES 137

X =M x W)/G

is a complex manifold. Let 7: M X W — M be the canonical projection.
Then 7n = #. Hence there is a holomorphic map

mX—->M
such that the diagram

Mx W2 x
AN /
n'\ /n’
M

is commutative, where p is the canonical projection. Since p is a cover-
ing map, w is a surjective holomorphic map of maximal rank at every
point of X.

LEMMA 2. 7 is a proper map.

ProoF. Let K be a compact subset of M. We show that 77(K) is
compact. Let {P,},_.... be a sequence of points in 77'(K). We want to
choose a subsequence of {P,},_,.,... converging to a point of 7' (K). We
may assume that {m(P,)},_..,... converges to a point ue K. We put u, =
n(P,), v=12 .... We put

= ayty = LR
w=(Gg) »-12

and

Then a, —»a, B,— B and t,—t as y— + . We may assume that there
are positive constants ¢, ¢, and d such that

for all v. Let z,v =12, ---, be points of W such that
p(uv’xv)zpuy U=1,2,---.

a<|la,|=e<l, ¢,=|B|=Zc<l and |t |=Zd

We put
v, =@,w), v=12 ...
We define a norm | | in C* by
[z, w)| = 2]+ |w].

First, we assume that there is a subsequence
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YLKy <L e
such that
w, =0, k=12, ...,
Then 2,, #0, k=1,2 .-.. Thus there are integers =, k=12 --.,
such that

a=|a, l=|a}e, |=1.

We put 2, =alz, k=12 -... We put ), =(2,0),k=12,-...
Then &, = ulkx, ,k =1,2, ---. Hence

-Puk = p(uuky xuk) = p(uvk’ x:k) ’ k=1,2....

Vi

Since ¢, =[x}, |=1,k=1,2, ---, we may assume that {&]}i_,,.. con-
verges to a point x€ W. Then (P, };_,,,... converges to p(u, ).

Now, we may assume that w, =0,y =12, --.. Since there are
integers n,,v =1, 2, ---, such that

a=spl=lw |1, v=12 ...,
we may assume that
as|w|=1, yv=12 ....

(We use u™x, instead of x,.) Hence we may assume that {w,},_,,.. con-
verges to a point weC, ¢, < |w|<1. Since the Riemann sphere Cis
compact, we may assume that {z,},_,.,... converges to a point z of C. If
2z # o, then z = (2, w) is a point of W and {P,},_,,,,... converges to p(u, ).
If 2 = -, we may assume that

1<z | <2< e >+
Then there is a sequence of positive integers {n,},_,.,... such that
a=la|=Z|avwz, |1, yv=12 ...,

Let N be a positive integer such that
[ne;d| < Y
2

for all » = N. We may assume that |z, | is so large that
V<% .
Then
la, M =" <l|z|=lz], v=12-...

Hence
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|alz, | >1, y=12 ..

This shows that

Hence
ncny—-1d|<_9_1_ py=12 ..
v2 = 2 - y “y
We put
z,', = arz, + v.tw,, vy = 19 2’ cre
where
a:‘y —_ :L” .
y, =2 =B i a8,
@, — :81'
= nua:'V—-l N if a, = Bu .
Then
221_ = ¢ — % < lavz,| — [vtw, | <2,

< lamz, |+ [vtw, | <1 +£21_,
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Hence we may assume that {z]},_,.,.. converges to a point 2’ e¢C, ¢/2 <

27| <1+ ¢/2. Since |w,|=<1,v=12 ---,

|Bcuwv| élﬁvalé |,8u|§cz’

y=1,2 .

We may assume that {8"w,},_,.,.. converges to w'eC. We put = =

(7, w)e W. Then {P,},_,,,.. converges to p(u, ).

q.e.d.

Lemma 2 shows that (X, w, M) is a complex analytic family of com-
pact complex manifolds. Each fiber 7~'(u), v M, is called a Hopf

surface. Each fiber can be written as
mu)=ux V,
where
V.= WG,
and
G, ={u"|neZ}.

A similar but simpler argument to the proof of Lemma 1 shows that G,
is a properly discontinuous group of automorphisms without fixed point
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of W. Henceforth, we identify 7~'(u) with V,.

2. Automorphism groups of Hopf surfaces. Let uec M. Let V, be
the corresponding Hopf surface. Let Aut(V,) be the group of automor-
phisms of V,. Let

C,={veGLZ, C)|uv = vu} .

Then C, is a complex Lie subgroup of GL(2, C). We define a homomor-
phism

h,: C, — Aut (V,)
by
vV
where ¥ is an automorphism of V, defined by
72 p(x) — p(ve)

for all x € W, where p: W— V, is the canonical projection. Since uv =
vu, ¥ is well defined.

LEmmA 3. ker (k,) = G,.
Proor. Let u"eG,. Then
#,: p(x) — p(uz) = p(x) .
Hence G, c ker (k,). Conversely, let v e ker (k,). Then

p(v2) = p(x)

for all x e W. Hence, for each ¢ W, there is an integer k(x) such that
v = Uty .

We show that
k(cx) = k(x)

if ceC and ¢+ 0. In fact
utex = v(cx) = cve = cut®x = uex
so that
ukCeR"k@ey = e |
Since G, operates on W without fixed point,
k(cx) = k() .

Thus we may consider ¥ to be a Z-valued function on P*C), the 1-di-
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mensional projective space. Since the cardinal number of the set P'(C)
is greater than that of Z, there are distinct points L, and L, in P'(C)
such that k(L)) = k(L,). We put k = k(L)) = k(L,). Let x, and =z, be
points in W such that x,¢ L, and x,€ L,. Then, for any point x¢ W,
there are complex numbers a and b such that

* = ax, + b, .
Here we regard xz, x, and «, as vectors Oz, Ox,, and Ox, respectively. Then
ve = v(ax, + bx,) = ave, + bvx, = autx, + dbutx, = utx .

Hence v = u*. g.e.d.

Now, we determine Aut (V,) following the argument in [1]. Let
fiV,—V,

be an automorphism. Since W is the universal covering space of V,,
there is an automorphism

FW-w
such that the diagram

w2 w

o le
v.- L. v,
is commutative where p is the canonical projection. Moreover f satisfies
Fluw) = wf(x)
for all xe W, where ’ is a generator of G,, (u* = % or u™'). We show
u? = u. By Hartogs’s theorem, f is extended to an automorphism
fcr—
which maps 0 to 0. If
fluw) = u='f(2)
for all x e W, then
wf(ure) = ()
for n =1,2,--- and for all xe W. We fix # = (2, w)e W. Weputu =
<6“ Bt) Then
w'r = (@"z + Y.tw, B"w)
where
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7”2%—%, if a¢,8,
= na™t, if a=p.

Hence
lue| = la|"z] + [ l[t]w] + [B["w]|—0
as m— +oco., Hence
. Fi (u"x) — 0
as n— + oo, for the extended map F maps 0 to 0. On the other hand,
there is an integer N such that
|urflure) | < | flurs) |
for all » = N. In fact, it is enough to take N such that
|8 [+ [YwlltI<1.
Hence
| urFurs) | — 0
as n— + . This contradicts to
urfure) = fl@)y, n=1,2---.
Hence
Fluz) = uf(x)
for all ze W. We write the extended automorphism f: C*— C* as
Fz, w) = (g(z, w), Wz, w)) .
Then the above condition is written as
g(az + tw, Bw) = ag(z, w) + th(z, w) ,
Maz + tw, Bw) = Bh(z, w) .
We expand g and % in the power series of z and w at the origin:
9(z, w) = 3, cp2"w’,
pFa>0
h(z, w) = 3, d,2z"w.
p¥a>0
Case 1. B=aand t=0; u = (32)
In this case, above equations reduce to

S, artic,2Pw = >, ac, 2w,
p+¢>0 Pp+g>0
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S, artid, 2wt = >, ad,zPw .
prg>0 p+g>0

Since 0 < |a| < 1, we get

if p 4+ q>1. Hence
9(z, w) = ¢z + cuw

Mz, w) = d,z + dyw .

143

Since f is an automorphism, the matrix (2” gm) is non-singular. Thus

10 “01

Aut (V)= CELO) _ Lo gimZe =4,
for all u = (8‘2)

_ . _f(at
Case 2. B=a and t # 0; u“(Oa)‘
In this case, above equations reduce to
S eplaz + tw)aw)! = X (ac,, + td,)z*w?,
P+¢>0 p+g>0
>, dylaz + tw)(aw)! = 3, ad,z’w’.
p+¢>0 p+q>0

From the last equation, we have

do=0 and d,,=0, if p+qg>1.
Hence

h(z, w) = dyw .

Hence, from the first equation, we have

¢o=dy and ¢, =0, if p+qg>1.
Thus

g(z, w) = ¢,z + cuw ,

Mz, w) = c,qw .

Since (8“’ g;’:) e C,, we have
C . C
u dim =

’ =2,
G, G.

Aut (V,) =

for all w = <8‘é), t = 0.
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Case 3. B#*aand t=0; u= (gg)

In this case, above equations reduce to

DY CpPRRWT = D, ac,RPw?,

p+g>0 p+q>0
>, darBiRPw = D, BdR w .
p+g>0 p+g>0

Hence, if p >0 and ¢ > 0, then
¢e=0 and d,,=0.
If p =0, then
C(B'—a) =0,
do(B" — §) = 0.
Hence ¢, =0 and d,, =0, if ¢ > 1. If ¢ =0, then
cp(a? —a) =0,
dy(a* — B) =0.
Hence d,, = 0 and ¢,, = 0, if p > 1. Case 3 is thus divided as follows.

— . — (B0
Case 3-A. B = a for some q = 2; u = (0 B).
In this case, f is generally written as
7 (=, w) — (az + bw?, dw)

where ad # 0 and b is arbitrary. We note that

C. = {(2%)[a =0}

We introduce a group operation in the set C, x C as follows:
@', v')(v, b) = (V'v, a’b + b'dY)
where v = <8 g) and v = (8'02) By this group operation, C, x C becomes

a complex Lie group. C, is then isomorphic to the complex Lie subgroup
C,x0 of C, xC. The group C, x C is isomorphic to the group of

automorphisms f of W such that fu = uf. The isomorphism is given by

(Ga)2)—7

7z, w) — (az + bw?, dw) .

where
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Hence there is a surjective homomorphism
9.:C, X C— Aut (V).

We show that ker (g,) is equal to G, x 0. First, for an integer n, u" X
0 corresponds to the automorphism

F=u" (2, w) = (a2, B w)
of W which corresponds to the identity map of V,. Next, let
£ (=, w) — (az + dbw?, dw) , ad =0,

be an automorphism of W which corresponds to the identity map of V,.
Then, for each = (2, w) € W, there is an integer k(x) such that

az + dbw? = a*¥z,
dw = g w .
In particular, let x € W’ where
W' = {(z, w)e W|z+0 and w # 0} .

Then, by the second equation, d = g**. Hence k(x) = k is constant for
xe W'. By the first equation, ¢ = a* and b = 0. Hence ker (g,) is equal
to G, x 0. Thus

Aut(V)= -2 X8, dim(2XE) =3,

for all u = <g ), q = 2. We note that the center of the group C, x C is

70
B

{((gg) b)eCux Cla=ds and b=0}.
Hence G, x 0 is contained in the center.

Case 3-B. a? = B for some p=2; u = (ga(f)’)'

In this case, f is generally written as
F: (2, w) — (az, dw + b2?)
where ad #= 0 and b is arbitrary. We note that

_ (a0
6. = (8o =0}
We introduce a group operation in the set C, x C as follows:
(', ¥')(v, b) = (v'v, d'b + b'a?)
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where v = (8 g) and v = (8' (g) By this group operation, C, x C becomes
a complex Lie group. C, is then isomorphic to the complex Lie subgroup
C, x0of C, xC. By a similar argument to Case 3-A, we have

for all w = (8‘ a?,), p = 2. We note that the center of the group C, x Cis

{((gg),b)ec,, % C|d=a* and b = o} .
Hence G, x 0 is contained in the center.
Case 3-C. wu = (gg), B # a for amy positive integer q and af # S
for any positive integer p.
In this case, f is generally written as
f: (2, w) — (az, dw)
where ad # 0. We note that

C, = {<8g>|ad¢0} .

C . C
Aut(V,) = ==, d =2,
ut (V) G 1mGu

for all u = <8‘g> such that g7 = a for any positive integer ¢ and a? = B
for any positive integer p.

Case 4. a+ B and t + 0, uz(f)(,g)

Let @ = <gg> and y = <(1) t/(al— B)). Then y™* = ((1) - t/(cf - '8))
and % = yuy™'. Thus y induces a holomorphic isomorphism
§:V.—Vz
defined by

¢
a—p

7: Dz, w) — P (Y(z, W) = pz<z + w, w)

where p,: W— V, and p;: W— V; are canonical projections. Hence
Aut (V,) = Aut (V3)



AUTOMORPHISM GROUPS OF HOPF SURFACES 147

by the correspondence
feAut(V,) — 4f5 e Aut (V3) .
Thus Case 4 reduces to Case 3. We note that, in Case 4,

C,= {(g;)‘ad¢0,e= Z: Zt} .

Case 4-A. B = « for some q = 2 and t #= 0.

Aut (V) = S X8, dim<g“>><<g>=3,

where the group operation in C, x C is defined as in Case 3-A:
(', b)(v, b) = (v'v, a’b + b'd")
where v = (g 0‘;) e = ((a—d)/(a@ — B))t and v’ =(g 3) ¢ = ((a’ — d)/(a— B))t.
Case 4-B. a® = B for some p=2 and t = 0.

Aut (V) = gig dim(%%) ~3,

where the group operation in C, x C is defined as in Case 3-B:
@', b')(v, b) = (V'v, d'b + b'a?)

where v :(8 ;) e=((a—d)(a— B)t and v’ = (g gﬁ), ¢ = (o — dY(@— Bt

Case 4-C. u= <g Bt)’ t+#0, B*# a for any positive integer q and a® =

B for any positive integer p.

Aut (V) = g , dim<g"

3. Proof of Theorem. In §2, we have shown that Aut(V,) is
isomorphic to C, x C/G, x 0 if u is in one of Case 3-A, Case 3-B, Case
4-A and Case 4-B, and is isomorphic to C,/G, if u is in one of other
cases. We introduce an analytic space structure in the disjoint union of
these quotient groups. If this is done, an analytic space structure in
IM.ex Aut (V,) is induced by it.

We consider closed subvarieties

ZO, Xz, Xa, Y YZ, Y3’ .
of M x GL(2, C) x C defined by
Zy = {(u, v, b)) e M x GL(2, C) x C|uv = vu, b = 0},

/=2.
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X, = {(u, v, b)) e M x GL(2, C) X C|uv = vu, 8* = a}
for k =2,8, --., where u = <6“[§), and

Y, = {(u, v, 0)e M x GL(2, C) X C|uv = vu, a* = B}

fork =2,3, .--, where u = ((C)Z/f’) It is clear that X,, X, ---, Y,, Y, -+

are mutually disjoint, while each of them intersects Z, Let Z be the
union of these subvarieties:

z=zu(Y%)u(Yn).
LEMMA 4. Z s a closed subvariety of M x GL(2, C) x C.

Proor. First, we show that Z is closed in M x GL(2, C) x C. Let
{(u,, v,, b,)},_1,.,... be a sequence of points in Z converging to a point
(u,v,b)e M x GL(2, C) x C. Since u,v, = v,u,,v=1,2, ---, we have uv =

vu. We put u = (g ,6'2) We assume that

(u, v, b) ¢ (g X,,) U <,,U Yk> :

ie, a*# B, B+ a for any k= 2. Since a* and B* converge to 0 as
k — + oo, there is a positive number ¢ such that

(1) la¥ — B >e and |B*—a|>e¢

for all £ = 2. We may assume that

(2) e<81l—|al) and e< 31— |B).

We put u=<gg">, v=12 -... Then a,—a, B,— B and ¢, —1t as

y— +oo. Henece there is an integer N, such that
(3) la—a << and [B-BI<3

for all y = N,. Now we show that there is an integer N, N = N,, such
that

(4) o —af| << and g - gH< T
for all ¥ = 2 and for all y > N. We show the first half of (4). The
second half is shown in a similar way. We assume the converse. Then
there are a sequence N, <y, <y, < --- of integers and a sequence k,

k,, --- of integers each of which is greater than 1 such that
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la{kn — a')’fn = £
" 3
for n=12,..-. If {k,k, ---} is bounded, then there is a subsequence
ku, kn, -+ such that
k., =%k, =+:--=k, a constant.

Then

lo* — o, |2 =
for m =1,2,-.-. On the other hand, af, —a* as m— +, a con-
tradiction. Hence we may assume that

b, <k, <-ev.
Then

kn
S slan—alSlals o+, < lals + (o] +5)

(by (8)). The right hand side converges to 0 as n — + < by (2), a con-
tradiction. This shows (4). By (1), (3) and (4),

P> and |af— 8> <
|8 >3 | B>

for all £ = 2 and for all y = N. This proves that

(%, v,, b,) € (,,U X,,) U <,,U Y,,)

for any v = N. Hence (u,, v,, b,) € Z, for all vy = N. Hence b, = 0 for all

vy = N so that b =0, i.e., (u, v, b) = (4, v,0)c Z,, Hence Z is closed.
Next, let (u, v, b)) e X,. -We put u = <8¥ Bt) Then g* = . We show

that there is a positive number ¢ such that

(5) ZN (N, ) = (X, U Zy) N 1 '(N(w, €))

where ¢#: M x GL(2, C) x C— M is the canonical projection and

N(u,e):{(“'t'>eM[1a—a'|<e and |,8—B’|<el».

08
It is enough to claim that there is a positive number ¢ such that
(6) B+BY+a+a and (@+a)" =B+ 4

for any k¥ # k, k' = 1, for any k” = 1 and for any 8’ and o’ with | 8’| < ¢
and |a'| <e. (It is enough to prove (6) for any %' = k, k' = 2 and for
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any k" = 2 for our present purpose. But we use the case ¥ =Fk" =1
afterwards.) We show the first half of (6). The second half is shown
in a similar way. We assume the converse. Then there are sequences
{al}oorz,es {Bili=1,e,... such that

| <~ and |g<L
Y Y

for v=1,2 ..., and a sequence k, k,, --- of positive integers each of
which is different from % such that
(7) B+ B =a+a

forv=12 -.-.. If {k, k,, ---} is bounded, then there is a subsequence

k., k,, -+ such that
ko =k, = -+ =k(# k), a constant.

2

Then
B+ Bim)k' =a+ a

Yom

for m = 1,2, --.. The left hand side converges to 8* as m — + oo, while
the right hand side converges to a. Hence G* = a, a contradiction.
Hence we may assume that

k1<k2< cee
Then

B+ B =81 +181)=(181+2)"
Y

— 0 as y— + . Hence the left hand side of (7) converges to 0 as v —
+ oo, while the right hand side of (7) converges to a, a contradiction.
Hence (5) is proved. Let (w,wv,b)eZ,N X,. Then (5) shows that Z
coincides with Z, U X, in a neighbourhood of (u, », b). Let (u, v, b) € X, —
Z,. Then b # 0. The open subset

N ={w, v, ¥) e £7'(N(u, €)) [ b" = 0}
of ¢ *(N(u, ¢)) does not intersect Z,, and

Thus Z coincides with X, in a neighbourhood of (u, v, ). In a similar
way to (5), we can show that, for every point (u, v, b) € Y}, there is a
positive number ¢ such that

(9) Z Ny (N(u, €)) = (Y, U Z) N 7 (N(u, €))
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Let (u,v,b)€ Z,N Y,. Then (9) shows that Z coincides with Z,U Y, in
a neighbourhood of (u, v, b). Let (w, v,b)e Y, — Z,, Then b 0 and

(10) ZNN=Y,NN

where N is the open subset of p~(N(u, ¢)) defined above. Hence Z coin-
cides with Y, in a neighbourhood of (u, v, b). Finally, let (u, v, b) e Z, —
Uiz X)) U(Uiz2 Yi). Then b =0 and uv = vu. A similar proof to the
proof of (5) shows that there is a positive number ¢ such that

(11) ZN e (N(w, ) = Zo N L (N(u, €)) .
This means that Z coincides with Z, in a neighbourhood of (u, v, 0).
This completes the proof of Lemma 4. q.e.d.
Let '
(Z—-Z

be an automorphism defined by
(u, v,0)€ Z,— (u, v, 0) € Z, ,
(u, v, b) e X;, — (u, wv, ab) € X, ,
(u,v,b)e Y, — (u, uv, Bb)e Y, ,
where uv is the product of matrices w and v and u = (8‘ Bt) We note

that {: Z,— Z, and {: X, — X, (resp. {: Z,— Z, and (: Y,— Y,) coincide
on Z,N X, (resp. Z,N Y,). The inverse

wZ—Z
is given by
w, v,0)eZ,— (u,u'v,0)e Z,,
(w, v, b) e X, — <u, u, %) eX,,
1, b
—_— Ly, — .
(u, v, b)e Y, (u, U, B)e Y.
We put

H={{"|neZ}.

LEMMA 5. H s a properly discontinwous group of automorphisms
without fized point of Z.

ProOF. Let (w,v,b)eZ. We assume that {*(u, v, b) = (u, v, b) for
an integer n. Then u™ = v». Hence u" =1 so that n = 0. Next, we
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show that, for any compact set K in Z,
(neZ|C(K)N K + @}
is a finite set. Let o and R be positive numbers such that

|detu|<p<1 and %-gldetw <R

for all (u, v, b) € K, where det % is the determinant of 4. Then there is
a positive integer n, such that

o< =
Then, for any positive integer n = n,,
|det u™ | = |detu|"|detv| < "R < 713-
and
|det u™"v| = |detu|™|detv| = p‘”—llé- >R.
Hence

neZ|M(K)N K+ @)
is contained in

meZ|—m < n<ng. q.e.d.

By Lemma 5, the quotient space

A=ZH

is an analytic space such that the canonical projection
q¢:Z— A

is a covering map. Let
XeZ—M

be the restriction to Z of the projection map
M x GL(2,C) x C— M.
Then X{ = X. Hence there is a holomorphic map
MA—-M
such that the diagram
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q
Z——A

NUZ
N A
M
is commutative. Since (u, 1, 0)e Z,C Z, where 1 is the identity matrix

of GL(2, C), X is surjective, so that \ is surjective. By the construction
above, each fiber \A~'(u) is naturally isomorphic to

C.,xClG, x0
if 4 is in one of Case 3-A, Case 3-B, Case 4-A and Case 4-B, and is
isomorphic to
C./G,

if u is in one of other cases.
Now, we prove 1)-4) of the theorem. 1) is already done. Next, we
show 2). We define a holomorphic map

PZX(Mx W)—AXX
M M

by
((u, v, ), (%, x)) — (q(u, v, b), p(u, v))

where p: M x W — X is the canonical projection. Then » is a covering

map. Let ((u, v, b), (u,2))eZX (M x W). Let f be the automorphism
M

of W corresponding to (u, v, b), see §2. Let f be the automorphism of

V. corresponding to q(u, v, b). Since the diagram

(F, (w, ¥) e ZX (M x W)—(f, P)e A x X

| |

(u, fl@) e M x W—L—— f(P)e X,

where P = p(u, ), is commutative, and since » and p are covering maps,

it is enough to show that f(x) depends holomorphicaNIIy on (u, v, b, x).

Since the problem is local, it is enough to show that f(x) depends holo-
morphically on (u, v, b, ) in a neighbourhood of any point (u,, v, b, ).

Case A. (U, Vo, b)) € Zy — (Uize Xi) U (Uize Y)-

In this case, by (11) in the proof of Lemma 4, there is a positive
number ¢ such that

ZN P (N(wo, €)) = Zo N 7 (N(uo, €)) -
Let (u, v, 0) € Z N f~(N(uo, €)) = Z, N £ (N(to, €)). Let f be the automor-
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phism of W corresponding to (u, v, 0). Then
fl@) = v(x)

for all xe W, as the argument in § 2 shows. wv(x) depends holomorphically
on (v, x).
Case B. (uy, v,, b) € X, — Z,.
In this case, by (8) in the proof of Lemma 4,
ZNN=X,NN,
where N = {(u, v, b) € ™ (N(u,, €)) |b = 0}. Let (u,v,0)eZNN=X,NN.
Then b # 0 and B* = a where u = (6( g,) Let F be the automorphism

of W corresponding to (, v, b). Letx = (2, w)e W. Then f(z) is written
as

a—d

f@) = (az + tw + bw, dw)

where u = <6(,(§) and v = <g (3), e=((a—d)/(a—p)t. In fact, f=y gy
where y = (é tf (al— B )> and §(z, w) = (az + dbw*, dw), (see Case 4-A in §2).
Hence f(x) depends holomorphically on (u, v, b, ) € (Z N N) x W.

Case C. (u, v, b)) € X, N Z,.

In this case, by (5) in the proof of Lemma 4,

Z N e (N(uy, €) = (X5 U Zo) N 27 (N(uo, €)) -
Let
(u, v, b) € Z N ' (N(o, €)) = (X U Zo) N 7 (N(t, €)) -

Let f be the automorphism of W corresponding to (w, v, b). Let x =
(2, w)e W. Then it is easy to see that f(x) is written as

= _ a«_d k
7o) = (02 + 2=t + bu, dw)

for all (w, v, b, ) € (Z N £ (N(uy, €))) X W, where u = (3 é) and v = (8 3)’

e=((a—d)(@a— B))t. (We note that a= B in Z N s (N(u, €)) =~(X,, UZy)n
L (N(u,, €)) by (6) of the proof of Lemma 4.) This shows that f(x) depends
holomorphically on (u, v, b, x).

Case Do (uo, 'vo, bo) € Yk - Zo.
In this case, by (10) in the proof of Lemma 4,
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ZN N = Yk NN ’
where N = {(u, v, b) € " (N(u,, €)) |b = 0}. Let (w,v,0)eZNN=Y,NN.
Then b +# 0 and a* = B where u = (g é’) Let f be the automorphism of

W corresponding to (w, v, b). Letx = (2, w)e W. Then f(x) is written as

fN(x)=(az+ Z:gtw— ab—t,8<z+ af,e"’)k,

k
gy w) + dw)
where u = (8‘5) and v = ((O)L é), e=((a—d)/(a—P)t. In fact, f=y gy
where y = <(1) t/( f '8)> and §(z, w) = (az, dw + bz*), (see Case 4-B in §2).
Hence f(x) depends holomorphically on (u, v, b, ) € (ZN N) x W.
Case E. (4, v, b)) € Y, N Z,.
In this case, by (9) in the proof of Lemma 4,
ZN e (N, €)) = (Y U Z) N 7 (N(u, €)) -
Let f be the automorphism of W corresponding to (w, v, d). Let x =
(z, w)e W. Then
2N a—d _ bt ¢ k
f(x)—(az—l—a_BtW a—3<z+a—,6’w>’
w)k + dw)

for all (u, v, b, ) e (Z N L (N(u, €))) X W, where u = (8‘ ,(f’) and v = (g 5),
e = ((@ — d)/(« — B))t. Hence f(x) depends holomorphically on (u, v, b, ®).

This completes the proof of 2) of the theorem.

Next, we prove 3) of the theorem. Let 1 be the (2 x 2)-identity
matrix. Then the map

weM—(u,1,00eZ,CcZ
is holomorphic. Hence the map
ueM—q(u,1,0)cd

is holomorphic. It is clear that gq(u, 1, 0) corresponds to the identity

map of V,.
Finally we show 4) of the theorem. We define a holomorphic map

$:ZXZ—AXA
o i

b(z +

b(z +

a—pg



156 M. NAMBA

by
(%, v, b), (u, V', b)) — (a(u, v, b), q(x, ¥', D)) .
Then s is a covering map. Let ((u, v, b), (u, v, b))eZX Z. We define
a product "
(u, v, b')(u, v,b) e Z
by
(1) (u, V', b')(u, v, b) = (u, v'v, a’b + b'd?) ,

if w is in Case 3-A or 4-A of §2, where u = (gﬁt’>’ v=<8§), e=

(@ — D@ — @)t and v = (§ &), ¢ = (@ — DY@ - O,

(2) (u, v', b')(u, v, b) = (u, v'v, d'db + b'a?),

if w is in Case 3-B or 4-B of §2, where u = (35)’ V= (g 3), e=
(@ — D@ — BNt and v = (' 5), ¢ = (@ — D@ — AW

(3) (u’ ,U” O)(u, /v’ 0) = (u’ v’v’ O) ’

if % is in one of other cases. Then, as in the proof of 2) of the theorem,
by diving in various cases, we can easily see that the map

((u, v, b), (u, V', 0)eZ 25 Z— (w, v, b)(u, v, b)) e Z

is holomorphic. We define a product
q(u, V', b)q(u, v, b) e A
by
a(u, v, b)q(u, v, b) = q((u, v, V')(u, v, b)) .

This is well defined, as is easily shown by dividing in various cases.
Since the map s defined above and the map q are covering maps, the map

(q(u, v, b), q(u, v/, b)) € A X A — q(u, v/, b)q(u, v, b) e A

is holomorphic. It is clear that gq(u, v’, b')q(u, v, b) corresponds to the
composition gf of automorphisms g and f of V, corresponding to g(u, v', b')
and q(u, v, b) respectively.
Now, we define a holomorphic map
0:Z—Z
by
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G:(u,v,0€Z,— (u,v"0eZ,
~ _ b
0: (u, v, b)eX,,—-»(u,v L= ad">eXk’
e —1 b
0.(u,v,b)€Yk'—’(u,'U ,—W>6Yk,

where u = (gé) and v = (8 §>’ e=((a — d)/(a — B))t. We note that §: Z, —
Z, and 0: X, — X, (resp. 6: Z,— Z, and 6: Y, — Y,) coincide on Z,N X,
(resp. Z,N Y,). Itis easy to see that 4 = {f. Hence we can define a map
0:A— A
by
0(q(u, v, b)) = q(9(u, v, b)) .

Since ¢ is a covering map, 6 is holomorphic. It is clear that 6(q(u, v, b))
corresponds to the inverse f~! of the automorphism f of V, corresponding
to q(u, v, b). This completes the proof of 4) of the theorem.
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