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Abstract. The Plancherel Theorem asserts the equality of the ZΛnorms
(with respect to Haar measure) of a function / on a locally compact abelian
group G and of its Fourier transform /. The Hausdorff-Young inequality
gives conditions on p and q under which \\f\\q ^ 11/lip. We consider a dif-
ferent variant: we place a measure μ on G, a measure w on G, and examine

^\ \f\Hw.
JG

Our main results show that it is enough to consider the case in which w is
equivalent to Haar measure, and we give a condition on w which is necess-
ary and sufficient for the inequality to hold for every μ ^ 0 with \\μ\\ ^ 1.

Let G be a locally compact abelian group and let G be its dual group.
We denote the Fourier transform of a function / on G by /. In this note
we shall consider the inequality

(1) [Λ\f\*dμ£ \ \f\2dw
JG JG

which we require to hold for all functions / in the space <5Γ{G) of con-
tinuous functions of compact support on G, for some positive measures μ
on G and w on G.

Inequalities of this kind have a long history (see, for example [2]).
They have appeared more recently because of their importance in the
solution of multiplier problems for weighted Lp-spaces ([5], in particular
a remark on page 50, and [6], especially Lemmas 2.1 and 2.2). These
authors usually consider cases in which one of the groups G and G is the
circle group and the other the integers, though in his Theorem 3b in [5],
Hirschman quotes a result for Rn. Work on general groups has usually
yielded only abstract characterizations of multipliers [1], and we hope
that a study of the inequality (1) might be a first step to some more
concrete representations.

Our principal results are as follows. First, if the inequality (1) holds
for some non-zero measure μ, then the Haar measure m of G must be
absolutely continuous with respect to w. Moreover, the inequality remains
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valid if we replace w by its absolutely continuous part: the singular part
of w can be omitted. We may therefore write dw(x) = v(x) dm(x) for
some measurable function v. Then the inequality (1) holds for every
positive bounded μ with \\μ\\ <^ 1 if and only if l/veLι(G), and in this
case G must be σ -compact. We write

P = {(μ, w):μ^0,w^ 0, and (A |/(7) |2 dμ(i) ^ \ \f(x) |2 dw(x)
JG JG

for all/e^Γ(G)},

μP = {w: (μ, w) e P} and Pw = {μ: (μ, w)eP},

and we obtain some elementary properties of these sets.
All the facts from harmonic analysis we use can be found in Hewitt

and Ross [3].
We denote by m (resp. λ) the Haar measure on G (resp. G). If w is

a measure on G, wx denotes the translate of w by x e G, \ f(y) dwx(y) =

I f(y - a) dw(y).
JG

The value of the character determined by the element 7 of G at the
element x of G will be denoted by (x, 7>. Then the Fourier transform
/ of feSΓ(G) is given by /(7) = ( f(x)(x, -7)dm(x).

JG

PROPOSITION 1.1. (i) (λ, m) e P.

(ii) If {μ, w)eP, 0 ̂  μf ^ μ and w ^ w', then {μ\ wr) e P.
(iii) If (μ, w)eP, 7 e G and xeG, then (μr, wx) e P.
(iv) For each μ and each w, μP and Pw are convex.
(v) μP is a weak*-closed subset of the dual M(G) of
PROOF. Part (i) is immediate from the Plancherel Theorem, and (ii)

is obvious. For (iii) we have, when (μ, w)eP and

|/(ί - 7) \2dμ(ξ) ^ \ \f{x)(x9 7> |2 dw(x)
JG

= \ \f(x)\*dw(x),
JG

using the facts that the Fourier transform of /(•) < , 7> is the mapping
ξ—•/(£ — 7) and that the modulus of a character is 1. Thus, from
{μ, w)eP follows (μr, w)eP. A similar argument now proves that
(μr, wx) G P. The convexity of μP and Pw is easy to see, which deals with

(iv). Finally, for /e^T(G), the map w-+[ \f(x)\2dw(x) is a weak* con-
JG

tinuous linear functional on M{G) for each f
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μP = Π \w: ( |/(7) I2 dju(7) 52 ί \f(x) \2dw(x)\
fe^T(G) K JG JG )

is therefore an intersection of weak*-closed half-spaces, and so is closed
(and convex).

REMARK 1.2. The functions / for fz<5Γ{G) do not in general lie in
3ίΓφi), and the result of part (v) therefore will not hold for Pw. How-
ever, the argument does show that Pw is weak*-closed when it is regarded
as a subset of the dual of any space containing all functions / for

We shall now improve part (iii) of Proposition 1.1. We denote the
convolution product of two measures μ and v by μ*v. A convolution
product is always defined if one of the measures has compact support or
if both measures are bounded.

PROPOSITION 1.3. Let (μ, w) eP. If μ is bounded, let v be a bounded
measure and if μ is not bounded, let v have compact support, and in both
cases, let v be positive with \\v\\ ^ 1. Let u be a positive measure of
compact support with \\u\\ ̂  1. Then (v*μ, u*w)eP.

PROOF. If δr is the unit point mass at 7, then μr — δ_r*μ. By (iii)
and (iv) of Proposition 1.1, if π is any convex combination of δr's and 0
(for it is obvious that (0, w) e P, where 0 is the zero measure) then π*μ e
Pw. Given v as in the statement of the proposition, we can find a net
(πa) with support πa £ support v for every a, and with πa —-• v in any
weak* topology of the kind mentioned in Remark 1.2. Since πa*μ—>v*μ
in the same weak* topology under either of the given conditions, it fol-
lows from the fact that Pw is closed that (v*μ, w) e P. The rest of this
proposition is proved in a similar way.

We next prove a technical lemma which helps to simplify many
arguments.

LEMMA 1.4. // (1) holds for all feJst~(G) then it also holds when
feL2 (m + w), when either f or {if we allow the possibility of infinite
values) f is the characteristic function of a compact set, and when

PROOF. Inequality (1) and the Plancherel Theorem give I | /1 2

JG

I/I2d(m + w) for fe JT(G). Let g e L\m + w). Then g e L\m), so g is
JG

well-defined as an element of L2(λ). Let (gn) be a sequence in J%Γ(G) with
gn—*g in L\m + w). Then (gn) is Cauchy in L\m + w) and the inequality
above shows that (gn) is Cauchy in L2(λ + μ). Thus (gn) converges

\
J
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in L2(λ + μ) to a limit which may obviously be identified with g. We

may therefore take limits in the inequality for gn to get I I g 2 d(X + μ)

S JG
\g\2d(m + w), from which the inequality (1) for g follows by the

G

Plancherel Theorem. The case in which / is the characteristic function
of a compact set is included in this. If / is the characteristic function
of a compact set or if feSΓ(G), then either I \f\2dw = oo and (1) is
trivial oγfe L\m + w) (note that fe L2(λ) so fe L\m)) and (1) for / has
already been established.

Our next result gives some special properties of Haar measure in this
context.

PROPOSITION 1.5. (i) Let (λ, m) be a normalized pair of Haar meas-
ures. Then if (μ, m)eP, μ ^ λ.

(ii) Suppose that for some measure v on G, μ ^ v for all μe Pw.
Then there is a Haar measure λ on G such that μ ^ λ for μePw. Moreo-
ver, if Pw is a lattice (for the usual ordering in the space of measures),
λ can be chosen so that Pw = {μ: 0 ^ μ ^ λ}. Dual results hold when the
roles of G and G are interchanged.

PROOF, (i) Suppose μ ^ λ is false. Then we can find a compact set
K £ G with μ(K) > X(K). By Lemma 1.4 we may take / so that / is
the characteristic function of K. Then

ί \f\*dμ = μ(K)>X(K)= ί | / | 2 d λ = ( I / I 2 dm
JG )G JG

(by the Plancherel Theorem) so that (μ, m) € P.
(ii) Since Pw is bounded above, by v, it has a supremum ([3] Vol. I

B. 35) which we can again denote by v, so that v = sup {μ: μ e Pw). For
7eG the map μ—*μr is a bijection of Pw on to itself, for it maps Pw

into itself by Proposition 1.1 (iii) and has an inverse μ~>μ_r. Therefore

vγ = sup {μr: μ e Pw) = sup {μ: μ e Pw} = v .

Thus, v is translation invariant and so is a Haar measure. If now Pw is
a lattice we can find an increasing net (μa) in Pw with μa —> v. It follows
that

ί \ \ dw,ί \f\*dv = Um\A \f\2dμa^ \ \f\2

JG a JG JG

i.e. that v e Pw. The proof of (ii) is now complete.

The hypothesis that Pw should be a lattice in the last part of (ii) is
necessary. For consider the case in which G (and so also G) is finite.
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Then as we shall see later (Proposition^ 2.6 (ii)), Pw is always bounded,
but if μ G Pw the measure sup {μr:7e G}^ is represented by the function
whose constant value is sup {μ(ξ):ξe6}9 and this may not be in Pw

(Proposition 2.8).

2. The main theorem. We now prove the first of the theorems
mentioned in the introduction.

THEOREM 2.1. If weμP for some μ > 0, then the Haar measure m
is absolutely continuous with respect to w.

PROOF. Suppose that the conclusion is false. Then we can find a
measurable set E such that w(E) = 0 but m(E) > 0, and hence a compact
set K S E such that w(K) = 0 but m(K) > 0. Take / to be the char-
acteristic function of K (see Lemma 1.4). Since / is in D(m), f is con-
tinuous and as m{K) Φ 0, / Φ 0. As μ Φ 0, we can therefore find 7 e G

A\f\2dμr> 0. However, 1 \f\2dw = 0, and therefore {μr, w) £ P.
G JG

Proposition 1.1 (iii) shows that this is contrary to hypothesis.
Since the support of m is the whole of G we have the following

corollary.
COROLLARY 2.2. If weμP, the support of w is G.

Theorem 2.1 in conjunction with the next result shows that it is
enough to consider measures w equivalent to Haar measure.

THEOREM 2.3. Let (μ, w) e P. Write w = u + s where u is absolutely
continuous with respect to Haar measure m, and s is singular with
respect to m. Then (μ, u) e P.

PROOF. Let £ be a Borel set with s(E) = 0, m(G\E) = 0. If 1E

is the characteristic function of E and fe^f(G) then both fXE and
/(I — 1E) belong to L\m + w), and so we may apply Lemma 1.4. More-
over, / - (fXEy = (/(I - 1E)Y = 0. Hence

\Af\2dμ = \j(fXEy\2dμ^\ \flE\*dw=\ \f\*lEdw
JG JG JG JG

= ί ϊfl'du.
JG

The theorem is proved.

We next show that a proof given by Hirschman ([4]) works in a more
general context with only minor modifications. We shall use the same
symbol for a non-negative measurable function v on G (which we allow
to take the value +°o) and the measure v(x) dm(x) associated with it.
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We shall also write

P = {(w, μ): \jf(x) \>dw(x) <L ^ |/(τ) \*dμ(Ί) for / e JT(G)} .

THEOREM 2.4. Let v (resp. φ) be a non-negative measurable function
on G {resp. G). If (φ, 1/v) e P, then (v, 1/φ) e P.

PROOF. If φ is identically zero, the result is trivial. Otherwise, by
Theorem 2.1, 1/v vanishes only on a set of Haar measure zero, and so we
may assume v(x) < co for all x. Using Lemma 1.4, we may suppose that
the inequality represented by the statement (<P,l/v)eP holds for fe
L\m + v) and not merely for feSΓ(G).

Let K gΞ G be compact and such that v is essentially bounded on K.
Let fe3έΓ{G). Then lκfv e L\m + Ό (where lκ is the characteristic
function of K) because K is compact and lκv is essentially bounded. Put
Fκ = (X>κfvY. Since (φ, l/v)eP, we have

\A\Fκ\
2φdX^\ \lKfv\2-^-dm= \ Xκ\f\2vdm.

JG JG V JG

Hence, using the Parseval identity,

= \ lκfvfdm = \AF
JG JG

l/2 /f ^ I \l/2

Since the left-hand integral is finite we conclude that

Since feL2(m + v) its support is σ-compact. Since v{x) < oo for all x, we
can find a sequence (Kn) of compact sets such that Kn \ (support /) and
v is essentially bounded on each Kn. Replacing K by Kn and taking the
limit we see that (v, 1/φ) e P.

Our next theorem was also promised in the introduction.

THEOREM 2.5. Let w be an absolutely continuous measure given by
dw(x) = v(x) dm{x). Then the following are equivalent.

( i ) There is an element 7 of G and a neighbourhood V of 7 such
that, for all φ e L\X) with support φ ϋ V, φ Ξ> 0, and \\φ\\ ^1, (φ, w)eP.

( i i ) doePw.
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(iii) Every μ^O with \\μ || ^ 1 belongs to Pw.
(iv) 1/v e L\m), and \\ 1/v \l ^ 1.

// any of these assertions holds, then G is σ-compact.

PROOF. The standard construction of an approximate identity in Z/(λ)
shows how to find a net (φa) in L\X) with support in V and \\<Pa\\ ^ 1
which has the property that φa —> δr in the weak* topology. From Remark
1.2 we conclude that (i) implies that δrePw, and then Proposition 1.1 (iii)
shows that δ0 e Pw. Proposition 1.3 gives (ii) implies (iii), and it is trivial
that (iii) is stronger than (i). We shall prove that (ii) is equivalent to
(iv).

Now (ii) represents the inequality

^ \f(x)\*dw(x)
JG

or, replacing the Fourier transform, and recognizing that <#, 0> = 1 for
all x,

r / r

f(χ) I2

Obviously this inequality holds for all / if and only if it holds when / is
positive and so if and only if

where the expression on the right denotes the norm of / as an element
of L\w).

Now assume that this norm inequality holds. Then each continuous
linear functional on L\m) is also continuous on U(w), or in other words,
for each g e L°°(m) there is Wg 6 L\w) such that

\ g(x)f(x)dm(x) = \ Wg(x)f(x)dw(x)
JG JG

Since dw = vdm, this gives vWg = g almost everywhere, so that g/v =
Wg e L\w). In particular, we may take g — 1 to find

ί J-dm(x) = ί -L-v{x)dm{x) - || Wl ||ifW < oo .
JG v(X) JG V(X)

Moreover, since \\f\l ^ | |/lk», W, being the adjoint of a contraction, is
a contraction too, and so || Wl \\2>w ^ 1.

Finally, assume (iv). Define Wg for g e L°°(m) by Wg = g/v. Then

,. = ( ^vdm= \ g2-±-
)GV JG v
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So for/eJ!r(G),

(Wg)fvdm ^ \\ Wg

Taking suprema over ||ff |U ^ 1 gives

^ II/IU
which we have seen is equivalent to (ii).

Finally, as l/veL^m), support 1/v = Closure of {x: v(x) < 00} is
σ-compact. But as w is a measure (in the dual of St~(G)) v is finite
almost everywhere, so G is σ-compact.

The inequalities represented by Theorem 2.4 are by no means the best
possible. For if G is the circle group and G the integers, the pair (μ, w)
with μ{n) = (| n | + l)"α for n e G and dw(x) = x~adm(x) for a eG, belongs
to P if 0 < a < 1 (see [6]) and in this case μ £ Z/(λ) and so certainly does
not satisfy | | μ | | ̂  1. If we interchange the roles of G and G, the pair
(μ'f w') with dμ\x) = α;α ίίw(a ) and w'(w) = (| ?ι | + l)α belongs to P for 0 <
α < 1 (see [3] again, or use Theorem 2.4). This shows that in the nota-
tion of Theorem 2.4, if we know only that (φ, w)eP for one φ e &{m),
then we cannot conclude that 1/v e Lϊ{m).

In the case in which G is discrete, we can say more.

PROPOSITION 2.6. Let G be compact, and let dw(x) = v(x) dm(x).
(i) If (μ,w)eP and μ Φ 0 then 1/v e Lι(m).
(ii) For each 7 e G, | /i(7) Γ ̂  w(G).

PROOF, (i) Since G is discrete and μ Φ 0, for some constant fc > 0
and some 7 e G, kδr ̂  //. Hence (fcδr, w) e P. Since Pw is translation in-
variant, (&<50, w) e P. It is easy to see that (<50, 1/k w) e P, and so from
Theorem 2.4, 1/fcv e Lι(m), whence 1/v e Lι(m).

(ii) In the inequality

\f\2dμ ^ \ \f\2dw ,
JG

we simply take / to be the character (x, 7>.
If we interchange the roles of G and G, the same proof as for part

(ii) gives the following.

PROPOSITION 2.7. Let G be discrete. Then if (μ, w) e P, μ(G) ̂
I w(x) |2 for each xeG.

We saw in Proposition 1.1 that if (λ, ra) is a normalized pair of Haar
measures, μ ^ λ and m<^w, then (μ, w) e P. We would like to observe
that this does not cover all cases.
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PROPOSITION 2.8. Suppose that G is σ-compact. Then there exists
(μ, w)e P such that for no normalized pair (λ, m) of Haar measures is it
true that μ ^ λ, m ^ w.

PROOF. If G is not compact, all we need do is take an atomic measure
for μ in using Theorem 2.5. If μ is a measure with || μ || <̂  1 on discrete
dual G of a compact group G, then the smallest Haar measure λ which
dominates μ is defined by λ(τ) = sup {μ(ξ): ξ e G} for each 7 e G. Put k =
λ(τ) for any 7. The dual Haar measure m assigns mass 1/k to the whole
group G. According to Theorem 2.5, {μ, w) will belong to P if w is given
by dw(x) = v(x) dm{x) and || 1/v H ̂  1. Thus to prove our proposition, we
need only find v such that \ 1/v dm ^ 1 and yet v(x) ^ 1/k a.e. is false.

JG

This is clearly always possible.
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