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CUT LOCI IN RIEMANNIAN MANIFOLDS

V. OZOLS

(Received March 7, 1973)

1. Introduction. In this paper we study the structure of the
cut locus C(p) of a point p in a Riemannian manifold M, in the comple-
ment of the set QQ(p) of points conjugate to p along a minimizing geodesic.
The principal tool is a vector field constructed as follows: Let Fc TPM be
an open subset on which exp^ is a diffeomorphism onto an open set in M.
For each Xe V let Ίx(t) = expp tX be the geodesic from p in the direction
of X] and for each t such that tXe V, let Ye^Pptx be the tangent to ΊX

at t having length equal to the length of the segment of ΊX going from
p to expp t X. Using the vector fields Y obtained in this way we are
able to apply differential methods to the study of the cut locus away from

The main results are: (i) A description of C(p) — Q0(p) locally as an
intersection of a finite number of smooth (n — l)-dimensional manifolds
and finitely many open sets given by smooth inequalities (n = dimM).
(ii) For real analytic manifolds, a triangulation theorem for open subsets
of C(p) — Q0(p) whose closure is disjoint from Q0(p). This second result
is a consequence of a theorem of Lojasiewicz [3] on the triangulability of
semi-analytic sets.

Also, we give a description of what happens to the cut locus when
taking quotients by groups Γ of isometries which act properly discon-
tinuously (and freely). We show that if Ap is the fundamental domain of
Γ centered at p, Ep = M — C(p), and if π: M— * M/Γ is the projection,
then C(πp) = π(d(Ap Π E9)).

2. Local structure of the cut locus. Let M be a complete C°°
Riemannian manifold of dimension n, <(•••,•••) the Riemannian inner
product, and || || the associated norm. For each pe M, expp: TPM—>M
denotes the exponential map, C(p) the cut locus of p in M, and Q(p) the
first conjugate locus of p in M. Let C(p) and Q(p) be the corresponding
loci in T9M, and let Q0(p) - C(p) Π Q(p). Then define Q0(p) = expp QQ(p);
so QQ(p) is the set of all points which are conjugate to p along some
minimizing geodesic. It is easy to see that all of these sets are closed.

For each Xe TPM, we will identify TX(TPM) with TPM in the usual
way. If Xe TPM and expp is non-singular at X, then let Fc TPM be an
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open set about X on which expp is a diffeomorphism onto an open set in
M; and define a vector field Y on expp V by: Yq = (expp)*(J£) for all qe
expp V, where q = exp^ Z, Ze V. Then Y is a C°° vector field on exp^ V.

DEFINITION 2.1. Y is the distance vector field determined by p and F.

Alternatively, Y can be described as the field of tangents to the
geodesies 7Z: t H* expp ί J2Γ, as ^ ranges over V, which have length at each
expp tZ equal to the length of the segment of 7Z from p to expp ίZ.

LEMMA 2.2. For each q e exp^ V and each Xq e TqM,

v \ \ Y \ \ — /Y Y\//Y yy/ 2 <ϊf M Y II -4- 0
-A ff 1 1 L I I — V^gj -*• ff// \ -1 9> -1 flf/ V I I -*• q I I ̂  U

PROOF. Let q = exppZ, Zε V; and let X0 = (exp,*)"1-^- Define a
variation of the geodesic 7^: ί ι-> exp^ tZ by: Q(ί, s) = expp [ί((27|| Z\\) + &Xo)].
This is a one-parameter family of geodesies emanating from p which are
all parameterized proportionally to arc-length, so the longitudinal curves
have parallel tangent vector fields. For s — 0, t is arc-length. Let L(s) ~

Γ<T, Tyl2dt where Q*(d/dt) = T and a = \\ Yq \ (= constant). By the formula
Jo

for first variation of arc-length and the fact that Q*(d/ds) = 0 when t =
0, 8 - 0, we get L'(0) - <*„ Tff> - <Xg, Y^XY,, Yg>-1/2. Since L'(0) =
-3Γ f f | |Y | | , the result follows. q.e.d.

Suppose r e C(p) — Q0(p), and λ — /o(p, r) where p(p, r) is the Rieman-
nian distance. Then there are at least two minimizing geodesies from p
to r, so expp^r) Π Sλ(0) has at least two elements. (Here, Sλ(0) = {Xe
TPM\ \\X\\ = λ}). If {Xi} is a sequence of infinitely many vectors in
exp~x(r) Π Sλ(Q), then there is a convergent subsequence which we again
denote by {J5ΓJ. If Xt^XQ as i-τ* <χ>, then JΓoeexp^1^) n Sχθ) is a con-
jugate point of p contrary to hypothesis. Therefore exp"1^) Π Sλ(Q) is a
finite set which we denote by {-3Γ<|1 ̂  i ^ kp(r)}. kp(r) is the number of
distinct minimizing geodesies from p to r. For each ί = 1, •••, A^(r), let
C/i be an open set about JS^ such that expp: Ul — •* M is a diffeomorphism
onto an open set about r. We may assume that expp ( Ul) — ί7r for all ί,
where Ur is a fixed convex normal neighborhood of r.

Suppose there is a sequence q, e Z7r converging to r having a sequence
of minimizing geodesies 7j (ί) = expp (ίJΓ9Vll^yll) which satisfy the following
conditions: (i) X*s e TPM, \\Xq>\\ = ρ(p, qj, (ii) 0 ̂  t ̂  /o(p, qs), (iii) exp, X^ -
qj9 (iv) JΓ '̂ ί U { Ul 1^ ί ^ kp(r)} for all j. Then by choosing subsequences
if necessary, we may assume that Xqs — > Xre Sλ(Q). But then Xr is one
of the Xi9 so the vectors Xqs eventually lie in Ul contrary to hypothesis.
Therefore, by shrinking Ur if necessary (and also shrinking the Ul so

Ul = Ur still holds for all i), we may assume that every minimizing
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geodesic from p to a point of Ur has the form t — *expp (tZ/\\Z\\) for some
Ze Uf, 1 ̂  i -^ kp(r). This implies that if we follow through the above
constructions for each point q e C(p) Γ) Z7r, then kp(q) <^ kp(r). Since C(p) —
Q0(p) is open in C(p), kp: C(p) — Q0(p) — » Z+ is upper semi-continuous.

For each r e C(p) — Q0(p) let { Y; \ 1 ̂  i ^ /^(r)} be the set of distance
vector fields on Ur determined by p and the open sets Ul c TPM. Then
||(Yί) r | | = p(p, r) for all ί; and the vectors (Yl)r are distinct since if two
coincided then their geodesies would coincide, implying that the corre-
sponding Xt coincide. Therefore, the vectors (Yl)r are either pairwise
independent, or certain pairs occur as negatives of each other. We may
assume, by shrinking Ur further if necessary, that throughout Ur the
vectors Yl are either pairwise independent or certain pairs occur as negative
multiples of each other (where the numbers in the multiples may be
restricted to lie as near —1 as we like by choosing Ur sufficiently small).

Define functions

ΛΛff) = ll(ϊϊ). I I - IK*?). I I , 1 £ i, 3 ̂  k,(r) .

These are C°° functions on Ur — {p}, and clearly gr

is = — gr

j{ for all i, j.
For each pair i =£ j, let:

PROPOSITION 2.3. C(p) n Ur = (J {Cls\ί < j}.

PROOF. If q e C(p) Π Ur then since Ur c M - Q0(p), it follows that
there are at least two minimizing geodesies from p to q. If Yf, Yj are
the corresponding distance vector fields then ρ(p, q) = | | (Yi r ) f f | | = ||(yj)J|,
and all other geodesies from p to q, have length ^> p(p9 q). This proves
that q e Cr

ijt Conversely, if &1<2(?) = 0 for ^ Φ i2, and gitl(q) ^ 0 for all
1 ^ i ^ kp(r), then IKΓ^H = p(p, q) since this is the shortest of the (Yϊ)q

and one of them must have length p(p, q). The geodesies corresponding
to Y£, Yζ are distinct and minimizing so q e C(p). q.e.d.

PROPOSITION 2.4. For each pair i =£ j, the set K >3 is a smooth submani-
fold of dimension n — 1.

PROOF. Let qeK^ and Xge TqM any vector. Then

Xqgr. = Xq\\γr\\ - Xq\\Y;)\\ =

Since ( Γ/), ̂  ( Yj)9f there is X, e TqM such that <JΓ?, ( Yl\ - ( Fj)7> φ 0 so
flfj : ?7r — > Λ1 has maximal rank at #. The result then follows from the
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implicit function theorem. q.e.d.

REMARK 2.5. TqK^ = ((Yί)q - (Γ/),)1 since the right side is the
kernel of dglό at q.

PROPOSITION 2.6. // qeKr

hJ n Kΐ23- - Qo(p), for i, Φ i2, j Φ il9 iz, then
the intersection is transverse at q.

PROOF. Let Yj, Yfl9 YJ2 be the distance vector fields determined by
Uj, Ufl9 Uζ. Then they all have the same length at q. If they span a
three-dimensional space at q, then the vectors (Γ/)ff, (Yί)Q — (Yj)q9 (Yζ)q —
(Yj)q also span a three-dimensional space. Therefore ((Yl)q — (YfiqY and
((YQq - (Y^qy are transverse. If (Γ/)ff, (Y$q, (Yl)q, span a two-dimen-
sional space then two of the vectors are negatives of each other and the
third is independent of both. If (Γ;)ff - - (Y;)q then (YQq - (Γj), =
— 2(Yj)q and ( Y 2)q — ( Fj)ff are independent so their normal spaces are trans-
verse. The same argument applies if (YQq = - (YQq. If ( YQq = - (Yyg,
then ( Γ;)ff is independent of both others so ( Yl)q - ( Yj)g and ( YQq - ( Γj)ff =

q) + (Γj)ff) are independent. q.e.d.

REMARK. It is not clear whether higher numbers of intersections are
transverse, or whether intersections Kllh Π Kl2h are transverse if all the
indices iί9 jl9 iz, J2 are distinct.

All the previous constructions obviously carry over to the case of a
real analytic Riemannian manifold with an analytic metric. In particular,
the functions: g^: Ur — > R1 are analytic.

Suppose M is a real analytic manifold, aίid S(Σ.M is a subset. If
UdM is any open subset, and if fί9 •••,/* are real- valued functions
defined on U, then we say that S is described in U by the functions f19

• ,/fc if S TΊ U is a finite union of finite intersections of sets of the form:
{α e Ul/i(a0 > 0} or {αe l/Ί/<(αO - 0}.

A subset S c Λf is semi-analytic if and only if for each point α? e M
(not necessarily in S) there is an open set Uxa M about α?, and a finite
set of real-analytic functions fl9 , fk defined on UΛ such that S is
described in Ux by these functions.

Then we have:

THEOREM 2.7. Every relatively open subset V of C(p) — Q0(p) whose
closure in M is disjoint from Q0(p) lies in an open semi-analytic subset
of C(p) - Q0(p).

PROOF. Cover Q0(p) by a locally finite collection {Ba} of closed metric
balls having centers qa and radii rm such that (i) V Π (U«5α) = 0> (ϋ)
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Qo(p) c U« (£«), where Bi is the interior of Ba. Let S - C(p) - ((J« Ba),
so SdC(p) - QQ(p). Define functions ha: M-+ R'_by ha(q) = ρ(qa, q) - ra.
Then S = (qeC(p)\ha(q) > 0, all a}. Now if reS, then let the open set
Ur and the functions g^ be constructed as before. By shrinking Ur if
necessary we may assume it meets only a finite number of the balls Ba.
Then the functions g^ together with those ha such that Ur Γ) Ea φ 0,
describe S in Ur. If r £ S there is an open set U about r disjoint from
S, so any non-zero constant describes S in U. q.e.d.

COROLLARY 2.8. If M is a complete real analytic Riemannίan mani-
fold and Fc C(p) — QQ(p) is a relatively open subset whose closure in
M is disjoint from QQ(p), then V lies in an open subset of C(p) — Q0(p)
which has an analytic triangulation.

PROOF. This is an immediate consequence of Theorem (2.7) and a
theorem of S. Lojasiewicz ([3]). q.e.d.

REMARK 2.9. Lojasiewicz also showed ([4]) that a semi-analytic set
has a Whitney stratification.

COROLLARY 2.10. In an analytic manifold, if C(p) Π QQ(p) — 0 then
C(p) is a semi-analytic set and is therefore stratifiable and triangulable.

REMARK 2.11. (1) If we assume that the sets Klί9 and all their inter-
sections, are transverse to each other in C(p) — Q0(p), then C(p) Γ) Ur is
a finite union of C°° submanifolds of Ur. It is easy to see that the condi-
tions for a Whitney stratification are then satisfied. It is not known,
however, whether this implies triangulability. (2) In [8], A. Weinstein
proved that if M is a compact C°° manifold not homeomorphic to S2 then
M has a Riemannian metric and a point p such that C(p) Γ) Q(p) = 0.
This implies that C(p) Π QQ(p) = 0 so our local structure theorems (Pro-
positions 2.3 — 2.6) for C(p) apply to all of C(p). The same result holds
in the ,real analytic case.

3. Cut loci and Riemannian coverings. Next we will consider the
relation between the cut locus C(p) of a point p e M and the cut locus
C(πp) of πp e M/Γ, where Γ is a group of isometries of M acting properly
discontinuously, and π:M—>M/Γ is the Riemannian covering projection.
(There seems to be some disparity in the use of the term "properly
discontinuous". We have followed the definition in Spanier [7]: Γ is
properly discontinuous if for each p e M there is an open set U about p
such that if gUΓi g'Uφ 0 for any two g, g'e Γ then g = g').

DEFINITION 3.1.
(i) For each pair of points p, qe M with p Φ q let
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Hp,q = {reM\p(p, r) < p(q, r)}

Aptq = {reM\p(p, r) - p(q, r)} = Aq,p .

(ii) If Γ is a group of isometries acting properly discontinuously on
M, let

Ap = n{Hp,gp\geΓ,g^e} .

Δp is the normal fundamental domain of Γ centered at p.

The following facts about these sets are well-known (see for example,
H. Busemann [1]).

PROPOSITION 3.2.
( 1 ) HpιQ, Ap are open and star-like with respect to p (i.e. they contain

all minimizing geodesic segments from p to any of their points)}
( 2 ) Every geodesic segment emanating from p which minimizes arc-

length between its end-points intersects dAp in at most one point]
( 3 ) gΔp = Agp for all geΓ, and g^Δp Γ) gzΔp = 0 if g, Φ g2;
(4) \J{Ig, geΓ} = M;
( 5 ) The collection of sets Δgp is locally finite]
(6) Γ is generated by the positive powers of those geΓ such that

4nl,P^0;
( 7 ) Let Eπp = M/Γ - C(πp). Then Eπp c πAp.

Suppose ge Γ, g ^ e, and ge AptOP — (C(p) Π C(gp)). Then there are
unique minimizing geodesies 7ι, 72 from p to g, gp to q respectively. Let
Xlf X2 be tangent vectors to 7ι, 72 at p, gp such that | | -Xi | | = | |-3Γ 2 | | —
P(P, ^); and let U19 U2 be open sets about Xl9 X2 on which expp, exp^ are
diίfeomorphisms onto open subsets of M. Let YΊ, Y2 be the distance vector
fields determined by these objects. We may assume that U = expp U± =
expgp U2, and U is so small that U Γ) (C(p) U C(gp)) = 0 . Since p Φ gp,
it follows that (YΊ)g ^ (Yz)q so by the same argument as in Proposition
2.4, we see that the set {re U\ | | (Yi) r | | = I K ^ r l l ) is a smooth submanifold
of dimension ' n — 1, with tangent space ((YΊ)r — (Y^rY at r. Since

this submanifold is Ap,qp Π U. Summarizing:

PROPOSITION 3.3. For each peM and each geΓ, g ̂  e, Ap>gp - (C(p) U
C(gp)) is a smooth submanifold of dimension n — 1, having tangent space

- (Y2)qY at each q.

It is easy to see that for each g Φ β, we have the disjoint union:
M = AP)3P u Hp,gp U H9PιP. Since Ap = Π {Hptgp \ g Φ e} and the Agp are locally
finite, it follows that Δp - Π {Ap,gp U HptOP\g ^ e}.
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PROPOSITION 3.4. For each g^=e, Δp n Jgpc:Ap,gp.

PROOF. Let TI, T2 be minimizing geodesies from p to q and gp to q,
where qe Δp Γ) /^. Suppose /?(p, #) < /o(^p, #). Then all points qf on 72

sufficiently near # also satisfy ρ(p, q'} < ρ(gp, q'). But we must have
q' 6 Δgp, which is a contradiction. The opposite inequality is proved impos-
sible by the same argument. q.e.d.

PROPOSITION 3.5.

3AP = \J{JpnJgp\g^e}

= U {34, Π dAgp gφe]

and these unions are locally finite.

PROOF. Local finiteness follows from Proposition (3.2) (5), and Ip Π
Igp c dAp is clear if g =£ e. Suppose q e dAp and U is an open set about q
which meets only finitely many Δgp. Since q is a boundary point, there
is a sequence q{ e M — Δp converging to q. We may assume this lies in
U, and then by choosing a subsequence if necessary we may assume that
& e Δgp for some fixed g ^ e. Then q e Igp ΓΊ Ip. q.e.d.

Let gQ Φ β be fixed. Then by the same argument as in Proposition
(3.2) (1), one sees that f}{Hp,gp\g Φ e, gQ} is an open set about p. Denote
by int (Δp Π Igp) the set Ap,gp Π [Π{Hp,g,p\g' =£ e, g } ] . We will call these
the fac.es of Ap. The following is easy to verify:

PROPOSITION 3.6. __ Ip n Δgp = Ap>gp n [Γ\{Hp,g>p\g' Φ β, g}] and Δp n Δgp

is the closure of int (Δp n Igp).

PROPOSITION 3.7. For each g Φ e, int (Δp Π Igp) — (C(p) U C(gp)) is either
empty or a smooth submanifold of dimension n — 1.

PROPOSITION 3.8. Ifqe Ap>gp Π Ap,g,p - (C(p) U C(gp) U C(g'p)) then the
intersection is transverse at q.

PROOF. The proof is the same as the proof of Proposition 2.6.
q.e.d.

COROLLARY 3.9. // q e int (Δp n Igp) Π int (Δp n Δgfp) and

q $ C(p) U C(gp) U C(g'p), e Φ g Φ g' Φ e ,

then in a neighborhood of q, int (Δp Π Δgp) n int (Δp Π Δg,p) is a smooth
(n — 2)-dimensίonal submanifold.

For each peM, let Ep = M - C(p). It is well-known ([2], [8]) that
Ep is a cell diίfeomorphic to an open cell in Rn. Note that 3EP = C(p);
and
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d(Ap n E,) = (dAp n E,) u (Δ, n C(p» u (34 n C(p» .
PROPOSITION 3.10. C(πp) = π(d(Ap n Ep)).

PROOF. If q e dAp n Sp then there is a (unique) minimizing geodesic
7 from 2? to #. If q e J"p Γi Λ^, # ̂  β, let 7' be a minimizing geodesic from
gp to q. Then 7:7 and πΫ are minimizing geodesies from πp to ττg; but
we cannot have 7Γ7 = TTT' since then we would have gj — 7' so that gq =
q, and g =£ e has no fixed points. Therefore τr#e C(πp). If #e Jp n C(p)
then since π:Λp-+M/Γ is an isometry onto an open subset, π(q)eC(πp).
If q e d Λ p Γ [ C(p) then either: (i) q is conjugate to p along a minimizing
geodesic, so the same holds for πq and πp; or (ii) there are two distinct
minimizing geodesies from p to q, so the same is true for π(p) and π(q).
This proves that π(d(ApΓ\ Ep))dC(πp). Conversely, by Proposition (3.2)
(7), we have Eπpaπ(Ap). If q e C(πp) n τr(Jp) then since π:Λp—*M/Γ is an
isometry onto an open set, there is g e C(p) n ̂ p with g = π(q) (see this
by lifting geodesies from πp to g up to M). If qeC(πp) Γι π(dΛp), then
g = π# for some qedΛp = (dΔpn C(p)) U (34PΠ ̂ ). Thus C(πp)(=.π(d(Apn ,̂)).

q.e.d.

COROLLARY 3.11. // ΔpaEp then C(πp) = π(dAp).

COROLLARY 3.12. If Jpc Ep then the faces int (Δp n Jβp) α^ώ "edges"
int (Jp Π ̂ Γσ?>) Π int (Δp Π J"y/p) are smooth submanίfolds of dimension n — 1
cmc£ ^ — 2 respectively.

PROOF. In view of the previous propositions, it suffices to show that
the points q in these faces and edges lie outside the cut loci involved.
But since C(gp) = gC(p), it follows that if Ip c Ep then Δgp c Egp for all
geΓ. q.e.d.
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