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CUT LOCI IN RIEMANNIAN MANIFOLDS
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1. Introduction. In this paper we study the structure of the
cut locus C(p) of a point p in a Riemannian manifold M, in the comple-
ment of the set Q,(p) of points conjugate to p along a minimizing geodesiec.
The principal tool is a vector field constructed as follows: Let Vc T,M be
an open subset on which exp, is a diffeomorphism onto an open set in M.
For each Xe V let v4(t) = exp, tX be the geodesic from p in the direction
of X; and for each ¢ such that tXe V, let Y., ,» be the tangent to v,
at ¢t having length equal to the length of the segment of v, going from
p to exp,tX. Using the vector fields Y obtained in this way we are
able to apply differential methods to the study of the cut locus away from
Qu(p). '

The main results are: (i) A description of C(p) — Q,(») locally as an
intersection of a finite number of smooth (n — 1)-dimensional manifolds
and finitely many open sets given by smooth inequalities (n = dim M).
(ii) For real analytic manifolds, a triangulation theorem for open subsets
of C(p) — Q,(p) whose closure is disjoint from @Q,(p). This second result
is a consequence of a theorem of Lojasiewicz [3] on the triangulability of
semi-analytic sets.

Also, we give a description of what happens to the cut locus when
taking quotients by groups I of isometries which act properly discon-
tinuously (and freely). We show that if 4, is the fundamental domain of
I’ centered at p, E, = M — C(p), and if n: M — M/I" is the projection,
then C(zp) = #(3(4, N E,)).

2. Local structure of the cut locus. Let M be a complete C=
Riemannian manifold of dimension =, {---, --+> the Riemannian inner
product, and ||---|| the associated norm. For each pe M, exp,: T,M— M
denotes the exponential map, C(p) the cut locus of p in M, and Q(p) the
first conjugate locus of p in M. Let C(p) and Q(p) be the corresponding
loci in T,M, and let @y(p) = C(p) N @(p). Then define Q,(p) = exp, Qy(p);
S0 Q,(p) is the set of all points which are conjugate to » along some
minimizing geodesic. It is easy to see that all of these sets are closed.

For each Xe T,M, we will identify T,(T,M) with T,M in the usual
way. If Xe T,M and exp, is non-singular at X, then let Vc T,M be an
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open set about X on which exp, is a diffeomorphism onto an open set in
M; and define a vector field Y on exp, V by: Y, = (exp,)(Z) for all ge
exp, V, where ¢ = exp, Z, Ze V. Then Y is a C~ vector field on exp, V.

DEFINITION 2.1. Y is the distance vector field determined by p and V.

Alternatively, Y can be described as the field of tangents to the
geodesics v,: ¢t +— exp, tZ, as Z ranges over V, which have length at each
exp,tZ equal to the length of the segment of v, from » to exp,tZ.

LEMMA 2.2. For each qeexp,V and each X, T,M,
XY = <X, Y/{¥, YU if ||Y,[|+#0.

Proor. Let g =exp,Z, Zc V; and let X, = (exp,.)'X,. Define a
variation of the geodesic v,: t+— exp, tZ by: Q(t, s) = exp, [¢((Z/|| Z|]) + sX)].
This is a one-parameter family of geodesics emanating from p which are
all parameterized proportionally to arc-length, so the longitudinal curves
have parallel tangent vector fields. For s = 0, ¢ is arc-length. Let L(s) =

SG<T, T)'*dt where Q,(0/0t) = T and a = || Y,||(= constant). By the formula

for first variation of arc-length and the fact that Q.(d/0s) = 0 when ¢ =
0,s=0, we get L'(0) = <X, T = <X, Y)Y, Y. Since L'(0) =
X,||Y||, the result follows. q.e.d.

Suppose r € C(p) — Q«(p), and N = o(p, r) where o(p, r) is the Rieman-
nian distance. Then there are at least two minimizing geodesics from p
to 7, so exp;'(r) N S;(0) has at least two elements. (Here, S;(0) = {Xe
T,M|||X||=M). If {X;} is a sequence of infinitely many vectors in
exp;'(r) N S;(0), then there is a convergent subsequence which we again
denote by {X;}. If X;— X, as ¢— oo, then X, exp;"' (r) N S;(0) is a con-
jugate point of p contrary to hypothesis. Therefore exp,'(r) N S;(0) is a
finite set which we denote by {X;|1 <7 < k,(r)}. Fk,(r) is the number of
distinct minimizing geodesics from p to ». For each 7 =1, ---, k,(r), let
U; be an open set about X; such that exp,: U; — M is a diffeomorphism
onto an open set about r. We may assume that exp, (U;) =U, for all 4,
where U, is a fixed convex normal neighborhood of .

Suppose there is a sequence ¢;¢ U, converging to r having a sequence
of minimizing geodesics v;(t) = exp, (t¢X%/|| X?/||) which satisfy the following
conditions: (i) X*e T, M, || X’ || = o(p, q;), (i) 0 = ¢ =< o(, ¢,), (iii) exp, X" =
q;, iv) X% ¢ U{Ur|1 <1< k,(r)} for all j. Then by choosing subsequences
if necessary, we may assume that X% — X"e S;(0). But then X" is one
of the X;, so the vectors X% eventually lie in U; contrary to hypothesis.
Therefore, by shrinking U, if necessary (and also shrinking the U; so
exp, Ui = U, still holds for all 7), we may assume that every minimizing
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geodesic from p to a point of U, has the form ¢ — exp, (¢Z/|| Z||) for some
Ze U;,1 £t =<k, (r). This implies that if we follow through the above
constructions for each point g € C(p) N U,, then k,(q) < k,(r). Since C(p) —
Qy(p) is open in C(p), k,: C(p) — Q,(p) — Z* is upper semi-continuous.

For each re C(p) — Q\(p) let {Y7|1 <7 =<Fk,(r)} be the set of distance
vector fields on U, determined by p and the open sets U; c T,M. Then
[1(Y?),]l = p(p, r) for all ¢; and the vectors (Y7), are distinct since if two
coincided then their geodesics would coincide, implying that the corre-
sponding X; coincide. Therefore, the vectors (Y7), are either pairwise
independent, or certain pairs occur as negatives of each other. We may
assume, by shrinking U, further if necessary, that throughout U, the
vectors Y7 are either pairwise independent or certain pairs occur as negative
multiples of each other (where the numbers in the multiples may be
restricted to lie as near —1 as we like by choosing U, sufficiently small).

Define functions

95(0) = (YDl = [(X5)ll, L = 4, 5 = kylr)

These are C~ functions on U, — {p}, and clearly g¢;; = — ¢}; for all 4, j.
For each pair ¢ = 7, let:

K3 = {ge U,|gi{q) = 0}
Hy; = {ge U,|gi(q) > 0}
Cy=K;N(N{HLLZSTZ k(1)) .

ProrosiTION 2.3. C(p) N U, = U {Cyli < J}-

Proor. If qe C(p) N U, then since U,C M — Q,(p), it follows that
there are at least two minimizing geodesics from p to q. If Y7, Y] are
the corresponding distance vector fields then o(p, ) = |[(Y7),I| = [[(¥YD,]l,
and all other geodesics from p to ¢, have length = o(p, ¢). This proves
that ge Cj;. Conversely, if ¢;;(q) = 0 for 4, # 4, and g;,(q) =0 for all
1 <7 < ky(r), then ||(Y7),]| = o(p, q) since this is the shortest of the (Y7),
and one of them must have length po(p, ¢). The geodesics corresponding
to Y/, Y are distinct and minimizing so g€ C(p). g.e.d.

PROPOSITION 2.4. For each pair @+ j, the set Ki; is a smooth submani-
fold of dimension m — 1.

Proor. Let ge K7; and X, € T,M any vector. Then

X945 = X Y7l — XN YD = [[(Y)|THX,, (Y0 — (Yo

Since (Y7), # (Y7),, thereis X, e T,M such that <X, (Y7),— (Y}) # 0 so
9% U, — R' has maximal rank at q. The result then follows from the
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implicit function theorem. q.e.d.

REMARK 2.5. T,K; = ((Y?), — (Y]),)* since the right side is the
kernel of dg;; at q.

PROPOSITION 2.6. If qe Ki; N Ki,; — Qp), for i, 5 1y, J # 1y, 1s then
the intersection ts transverse at q.

ProOF. Let Y7, Y7, Y7 be the distance vector fields determined by
U;, U;, U;. Then they all have the same length at ¢. If they span a
three-dimensional space at g, then the vectors (Y7), (Yi), — (Y7 (Y), —
(Y7), also span a three-dimensional space. Therefore ((Y7), — (Y7),)* and
(Y1), — (Y7),)* are transverse. If (Y}), (Y7), (Y%), span a two-dimen-
sional space then two of the vectors are negatives of each other and the
third is independent of both. If (Y}), = — (Y7), then (Y7), — (¥7), =
—2(Y7), and (Y7),— (Y7), are independent so their normal spaces are trans-
verse. The same argument applies if (Y7), = — (Y7),. If (Y7), = — (¥i),
then (Y7), is independent of both others so (Y7), — (¥7), and (Y7), — (Y7), =

— ((¥7),) + (Y7),) are independent. q.e.d.

REMARK. It is not clear whether higher numbers of intersections are
transverse, or whether intersections Ki; N Ki;, are transverse if all the
indices 1,, 7., 7, J, are distinct.

All the previous constructions obviously carry over to the case of a
real analytic Riemannian manifold with an analytic metric. In particular,
the functions: ¢j;: U, — R' are analytic.

Suppose M is a real analytic manifold, ahd Sc M is a subset. If
Uc M is any open subset, and if f, ---, f» are real-valued functions
defined on U, then we say that S is described in U by the functions f,,
<o, fr if SN U is a finite union of finite intersections of sets of the form:
{xe Ulfiz) > 0} or {we U|fi(x) = 0}.

A subset Sc M is semi-analytic if and only if for each point xe M
(not necessarily in S) there is an open set U,c M about «, and a finite
set of real-analytic functions f,, ---, f, defined on U, such that S is
described in U, by these functions.

Then we have:

THEOREM 2.7. Every relatively open subset V of C(p) — Q.(p) whose
closure in M 1is disjoint from Q.(p) lies in an open semi-analytic subset

of C(p) — Qu().

Proor. Cover Q,(p) by a locally finite collection {B,} of closed metric
balls having centers g, and radii », such that (i) VN (U.B.) = @, (ii)
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Q(p) € U. (B3), where B¢ is the interior of B,. Let S = C(p) — (U« B.),
so S C(p) — Qy(p). Define functions k,: M— R' by hu(q) = 0(qe, ) — Ta
Then S = {ge C(p)|ha(q) > 0, all @}). Now if re S, then let the open set
U, and the functions g¢j; be constructed as before. By shrinking U, if
necessary we may assume it meets only a finite number of the balls B,.
Then the functions g, together with those hk, such that U,N B, = @,
describe S in U,. If r¢S there is an open set U about » disjoint from
S, so any non-zero constant describes S in U. g.e.d.

COROLLARY 2.8. If M is a complete real analytic Riemannian mani-
Sold and V C(p) — Qu(p) ts a relatively open subset whose closure in
M s disjoint from Q,(p), them V lies in an open subset of C(p) — Qy(p)
which has an analytic triangulation.

ProoF. This is an immediate consequence of Theorem (2.7 and a
theorem of S. Lojasiewicz ([3]). g.e.d.

REMARK 2.9. Lojasiewicz also showed ([4]) that a semi-analytic set
has a Whitney stratification.

COROLLARY 2.10. In an analytic manifold, if C(p) N Q(p) = @ then
C(p) is a semi-analytic set and is therefore stratifiable and triangulable.

REMARK 2.11. (1) If we assume that the sets Kj;, and all their inter-
sections, are transverse to each other in C(p) — Q,(p), then C(p)N U, is
a finite union of C~ submanifolds of U,. It is easy to see that the condi-
tions for a Whitney stratification are then satisfied. It is not known,
however, whether this implies triangulability. (2) In [8], A. Weinstein
proved that if M is a compact C* manifold not homeomorphic to S? then
M has a Riemannian metric and a point p such that C(p) N Qp) = &.
This implies that C(p) N Q(p) = @ so our local structure theorems (Pro-
positions 2.3 — 2.6) for C(p) apply to all of C(p). The same result holds
in the real analytic case.

3. Cut loci and Riemannian coverings. Next we will consider the
relation between the cut locus C(p) of a point pe M and the cut locus
C(mp) of mpe M/I", where I" is a group of isometries of M acting properly
discontinuously, and 7: M — M/I" is the Riemannian covering projection.
(There seems to be some disparity in the use of the term “properly
discontinuous”. We have followed the definition in Spanier [7]: I' is
properly discontinuous if for each pe M there is an open set U about p
such that if gUN g’ U= @ for any two g, g’e " then g = ¢').

DEFINITION 3.1.
(i) For each pair of points p, ge M with p = q let
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Hp»q = {Ire Mlp(p’ ,r) < p(q’ ’)")}
A,,={reM|o(p, r) = 0(q, 1)} = A¢» .
(ii) If I" is a group of isometries acting properly discontinuously on
M, let
Ap: n{Hp,gp[ge[',g:'é e} .

4, is the normal fundamental domain of I" centered at p.

The following facts about these sets are well-known (see for example,
H. Busemann [1]).

ProrosITION 3.2.

(1) H,,4, are open and star-like with respect to p (i.e. they contain
all minimizing geodesic segments from p to any of their points);

(2) Ewvery geodesic segment emanating from p which minimsizes arc-
length between its end-points intersects 04, in at most one point;

(3) 94, =4, for all geI', and 94,0 g:4, = @ if ¢ % 0

(4) Uld,lgelt =M

(5) The collection of sets 4,, is locally finite;

(6) I' is generated by the positive powers of those ge I such that
4,N 4, # @;

(7) Let E. = M/I" — C(xp). Then E. Crd.

Suppose ge ', g # e, and qe 4,,,, — (C(p) N C(gp)). Then there are
unique minimizing geodesics v,, v, from » to ¢, gp to g respectively. Let
X, X, be tangent vectors to v, v, at p, gp such that ||X,|| = ||X.]| =
o(p, 9); and let U, U, be open sets about X, X, on which exp,, exp,, are
diffeomorphisms onto open subsets of M. Let Y, Y, be the distance vector
fields determined by these objects. We may assume that U = exp, U, =
exp,, U,, and U is so small that UN (C(p) U C(gp)) = @. Since p =+ gp,
it follows that (Y,), # (Y.), so by the same argument as in Proposition
2.4, we see that the set {re U||[(Y).|| = ||(Y).]|} is a smooth submanifold
of dimension » — 1, with tangent space ((Y,). — (¥.).)* at r. Since

1 (Yo). [l = o(gp, 1),
‘this submanifold is 4,,, N U. Summarizing:

PROPOSITION 3.3. For each pe M and each ge I', g # ¢, A,,,, — (C(p) U

C(gp)) is a smooth submanifold of dimension n — 1, having tangent space
((Yy), — (Yo)))* at each q.

It is easy to see that for each g = ¢, we have the disjoint union:

M= A4,,,UH,, U H,, Sinced,={H,,|g+ ¢ and the 4,, are locally
finite, it follows that 4, = N {4,,,, U H,,,,|9 # €}.
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PROPOSITION 3.4. For each g+e, 4, 4,,C A,,,,.

ProoF. Let 7, 7, be minimizing geodesics from » to ¢ and gp to g,
where qe 4, N 4,,. Suppose p(p, q) < 0(¢9p, ¢). Then all points ¢’ on 7,
sufficiently near ¢ also satisfy o(p, ¢) < o(9p, ¢'). But we must have
q' € 4,,, which is a contradiction. The opposite inequality is proved impos-
sible by the same argument. q.e.d.

ProroOSITION 3.5.
adp = U {Zp N Zyp|g 7+ e}
= U {04, N 0d4,,|9 + e}

and these unions are locally finite.

PrROOF. Local finiteness follows from Proposition (3.2) (5), and 4, N
4,,c 04, is clear if g+ e. Suppose gedd, and U is an open set about g
which meets only finitely many 4,,. Since ¢ is a boundary point, there
is a sequence q;€ M — 4, converging to ¢. We may assume this lies in
U, and then by choosing a subsequence if necessary we may assume that
q:€ 4,, for some fixed g = e. Then gqe 4,,N 4,. g.e.d.

Let g, = ¢ be fixed. Then by the same argument as in Proposition
(3.2) (1), one sees that M {H,,,,|9 + ¢, 9.} is an open set about p. Denote
by int (4, N 4,,) the set 4,,, N [N{H,,,9 +e¢ g}]. We will call these
the faces of 4,. The following is easy to verify:

PROPOSITION 8.6. 4,N4d,, = A, ,,N[N{H,,,ld #e 0}] and 4,N 4,
18 the closure of int (4, N 4,,).

PROPOSITION 3.7. For each g # e, int (4, N 4,,) — (C(p) U C(gp)) is either
empty or a smooth submanifold of dimension n — 1.

PROPOSITION 8.8. Ifqe A,,,,NA4,,, — (C(») UC(gp) U C(¢g'p)) then the
intersection is tramsverse at q.

Proor. The proof is the same as the proof of Proposition 2.6.
q.e.d.

COROLLARY 3.9. If qeint(d,N 4,,) Nint(4,N 4,,) and
qe¢CP)UCp)UC('p),e+g+9g #e,

then in a meighborhood of q, int (4, N 4,,) N int (4, N Ig;p) is a smooth
(n — 2)-dimensional submanifold.

For each pe M, let E, = M — C(p). It is well-known ([2], [8]) that
E, is a cell diffeomorphic to an open cell in R". Note that 0E, = C(p);
and
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o4, N E,) = (04, N E,) U (4, N C(p)) U (94, N C(»)) .
ProrosITION 3.10. C(np) = m(0(4, N E,)).

Proor. If qedd, N E, then there is a (unique) minimizing geodesic

v from p to q. If ged,N 4, g+ e, let v’ be a minimizing geodesic from
gp to ¢. Then 7y and 77’ are minimizing geodesics from 7p to 7mq; but
we cannot have 7y = w7’ since then we would have gv = 7' so that gq =
g, and g # ¢ has no fixed points. Therefore mge C(zp). If ge 4, N C(p)
then since 7: 4,— M/I" is an isometry onto an open subset, 7(q) € C(np).
If ge o4, N C(p) then either: (i) ¢ is conjugate to p along a minimizing
geodesic, so the same holds for mg and 7p; or (ii) there are two distinct
minimizing geodesics from p to ¢, so the same is true for 7(p) and 7(q).
This proves that n(0(4, N E,)) C C(zp). Conversely, by Proposition (3.2)
(7), we have K, cn(4,). If ge C(wp)N=n(4,) then since 7:4,— M/I" is an
isometry onto an open set, there is ge C(p)N4, with ¢ = 7(q) (see this
by lifting geodesics from 7p to g up to M). If ge C(mp) N w(d4,), then
g =7q for some q € 04,=(04,N C(p)) U (04,N E,). Thus C(zp)cn(d(4,N E,)).
q.e.d.

- COROLLARY 3.11. If 4,C E, then C(zwp) = (34,).

COROLLARY 3.12. If 4,C E, then the faces int (4, N 4,,) and “edges”
int (4, N 4,,) N int (4, N 4,.,) are smooth submanifolds of dimension n — 1
and n — 2 respectively.

Proor. In view of the previous propositions, it suffices to show that
the points ¢ in these faces and edges lie outside the cut loci involved.
But since C(gp) = gC(p), it follows that if 4,C E, then 4,,c E,, for all
gel. q.e.d.
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