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COMPACT LEAVES WITH ABELIAN HOLONOMY
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1. Introduction and statement of the results. In this paper we
investigate the behaviour of codimension-one foliations in neighborhoods
of their compact leaves with abelian holonomy. If the foliations are C*
class, we have three cases which occur independently. The following
theorem is the precise formulation.

THEOREM 1. Let & be a transversely orientable codimension-one C”
foliation on an orientable C™ manifold M and F, a compact leaf of F.
Suppose that 2 < r < . Let T be a tubular neighborhood of Fy and U,
the union of F, and a connected component of T — F,. We denote by
@ . (F,) the one-sided holonomy group of F, which is defined by the restricted
foliation # |U,. Suppose that @, (F,) is an abelian group, then only one
of the following three cases occurs.

(1) For all neighborhoods Vof F,, the restricted foliation &# | VN U,
has a compact leaf which is not F,.

(2) Thereisa neighborhood V of F, such that all leaves of # | VN U,
except Fy are dense in VN U,. In this case @ .(F,) ts a free abelian
group of the rank = 2.

(8) There are a meighborhood V of F, and a conwnected oriented
codimension-one submanifold N of F, as follows. We denote by F, the
compact manifold with boundary obtained by attaching two copies N,
and N, of N to F,— N, so that 0F, = N, UN,. Let f:]0, ¢) —]0, 0) be a
contracting C™ diffeomorphism satisfying f(0) = 0. We denote by X, the
quotient manifold obtained from F, x [0, €) by identifying (x, t) € N, X
[0, &) and (z, f(t))e N, X [0, 0). We have a foliation F#; on X; whose
leaves consist of some family of the sets F, x {t}, t€[0, ¢). Then for
some f as above, there ts a C™ diffeomorphism h: VN U, — X, which maps
each leaf of & | VN U, onto some leaf of F;. F |VNU, determines
the homology class [Nle H, (F;, Z) uniquely and the germ at 0 of f
uniquely up to conjugation. In this case @ (F,) is an infinite cyclic
group.

We can reformulate Theorem 1 in a following weaker form. Folia-
tions of the type in Theorem 1* were studied by Reeb [8] and Theorem 1*
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can be considered as a strengthened form of the results of [8]. Theorem
1* says that Theorem 5 of [8] is valid even if supposing C? in place of
analyticity of foliations.

THEOREM 1*. Let & be a transversely orientable codimension-one
C" foliation on M X [0, 1] where M is a connected orientable closed C™
manifold, 2 =< r < . Suppose that all leaves of F are transverse to
{x} x [0, 1] for all xe M and that Z has only two compact leaves M x {0}
and Mx{1}. As usual we have a homomorphism @: w,(M, x,)—Diff; ([0, 1])
where x,€ M and Diff; ([0, 1]) s the group of all orientation-preserving
C" diffeomorphisms: [0,1] — [0, 1]. [Let w: ([0, 1], {0, 1}) — (M, x,) be a
closed path, then we have a foliation #, on [0, 1] x [0, 1] induced from
F by the map o X id: [0,1] x [0, 1] = M x [0, 1]. We define f.(t) €[0, 1]
so that (¢, 0) and (f.(t), 1) are the endpoints of a leaf of F,. Let O([w]) =
foi 10, 11— [0, 1] where [@] means the homotopy class of w, then @ is a
well-defined homomorphism.] If we suppose that the image of @ 1is
abelian, then only one of the following occurs.

(1) All leaves except the compact leaves are dense and Image () is
a free abelian group of the rank = 2.

(2) All leaves are proper. All leaves except the compact leaves are
mutually C* diffeomorphic and are covering spaces of M whose covering
transformation groups are infinite cyclic groups. Image (D) is an infinite
cyclic group.

(1) and (3) of Theorem 1 clearly occur for some foliations. In §4 we
construct a C= foliation which admits (2) of Theorem 1. Pay attention
to the example of Sacksteder [9]. It shows that the hypothesis that the
holonomy group is abelian is a necessary condition. Furthermore we can
construct a topological foliation as to which Theorem 1 and 1* are not
valid (Theorem 2). But we can say nothing about the C' case.

THEOREM 2. Let S, be the closed orientable surface of genus g, then
there is a transversely orientable codimension-one topological foliation F
on S, x [0, 1] as follows.

(1) All leaves of F# are C= submanifolds and transverse to {x} X
[0, 1] for all x€ S, and F has only two compact leaves S, x {0} and
S, x {1}.

(2) Image(®) (defined as in Theorem 1*) is a free abelian group
of rank g.

(3) All leaves are proper.

(4) There is a sequence F,, F', ---, F, of the leaves of F such that
F,is 8, x {0} and F, S F,& --- S F,.
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2. Definitions and notations.

2.1. The fundamental references on foliations are Reeb [7], Haefliger
[2] and Lawson [5]. In spite of their existence, we will start from the
definitions for the sake of the self-containedness and technical advantage.

Let M be a C" wm-manifold, 0 < r < w. A subset &% of the C~
structure & C {(U, f) | U is an open set of M. f:U— R" is an injective
homeomorphism.} of M is called a codimension q C* foliation if & satisfies
the following conditions (1) and (2).

(1) {U|(U, f)e s} is an open covering of M and f(U) = R™ for
all (U, f)e #.

(2) For all pairs (U, 1), (U, f)e.&# with U NU,+ @, the C”
diffeomorphism fiof;: f(U, N U,)(CR" = R* X R")— R = R” X R" has
the form

fiofii(w, y) = (a(=, ¥), B))

where ze R?, ye R?, a: R* Xx R*"— R? is a C” local submersion and
B:R"— R" is a C" local diffeomorphism.

Two foliations &, and &, are equivalent if &, U #, satisfies the con-
dition (2). A foliation & is called transversely orientable if & is equivalent
to another foliation &, such that in the definition of &, all @ of the
condition (2) are orientation-preserving.

Let .# be a foliation on M. The condition (2) guarantees that

SR x {y) NST(R? X {BW)) = U.N fi(B? x {y})
= U, N fT(R? x {8}

and f;'(R? x {y}) U fr(R? x {B(y)})) is a submanifold of U, UU,. We say
that f;(R? x {y}) and fi'(R* x {B(y)}) are adjacent. Then we have an
equivalence relation on the family

{f7(R? x{yh | (U, f)e F,ye R’}

defined by the relation adjacent. The union F' of all subsets in an
equivalence class is called a leaf of & and F' has naturally a structure
of C™ manifold of dimension p.

If the topology of a leaf F' as a subset of M and the topology as a
p-manifold coincide, F' is called proper.

If & is a codimension ¢ C" foliation on M, and f: M,— M, is a C"
map which is transverse to all leaves of &, then there is a codimension
q C" foliation f*# whose leaves are connected components of f~'(F’) where
F runs through the leaves of #. We call f* the foliation induced by
f from #. If fis an inclusion, we call f* the restricted foliation and
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we write f*& = . | M.

2.2. Now we restrict our attention to transversely orientable codimen-
sion-one C" foliation .# on an orientable manifold M. We give a definition
of holonomy groups in a style which is useful in the following arguments
and which is a slight modification of that of Hirsch [3].

We suppose » = 1 and we remark that in the C° case the following
arguments can be suitably modified by using Siebenmann [10] and Hirsch
[3]-

Let &# be a transversely orientable codimension-one C” foliation on
an orientable C" n-manifold, » = 1. Therefore we may suppose that all
B of 2.1 (2) are orientation-preserving. Transverse orientability of F~
and the partition of unity imply the existence of a non-singular vector
field X which is transverse to all leaves of <. Let : M x R— M be
the associated flow of X. Then @ |@({z} X R) and f*|®({x} x R) have
derivatives at 0 € R of the same sign for all x€ M and (U, f) e & satisfy-
ing xe€ U where f* is the composition of f and the projection of R*™'X R
to the last factor R, or of the opposite sign. We suppose the former
without the loss of generality.

Let F' be a compact leaf of . Triangulate F and take its duall
cell decomposition F'=J;., A4;. By restarting from another finer triangula-
tion of F' if necessary, we can suppose that for all x €4 there are a
positive number ¢; and a chart (U, f;) € & such that @(B; x [—¢;, &]) C
U, where B, = U {4, |4, NA; # @}. We denote by 2, the subset

P(4; X [0, &]) N fF7([az b:])
where
a;, = Max {ffop(x, —¢;) |x€ A;} and b, = Min{f}op(z, ¢;) |2 A,}.

Let S={Q2,|ne4} and m = #(4) < <. An S chain means a sequence
o= (2, -, 2)suchthat 2,eSand 2, N 2,_, # ,1=1, ---, k. We call
k the length of w. An Q, plaque means a set of the form 2, N f;7 (R x
{y}), ye B. We denote by 2,/ the set of all 2, plaques. 2;/%# can
be identified with an interval by the map f;: 2,/ — R induced from
¥ 2,— R. An 9, plaque P, admits an S chain w = (2,, ---, 2;) if there
are 2, plaques P,, 1 =0, ---, k,such that P,__ NP, = J,1=1,---, k. In
this case 2,_,N 2, is a disk and P,_, determines P, uniquely by the con-
dition P,_,N P, + @. So P, determines P, uniquely. Thus an S chain
w = (2 -+, 2,) defines a local C™ map

G(w): Q)| F — 2,/ F
whose domain DG(w) C 2,/ is the set of all 2, plaques admitting .
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We call G(w) the geometric holonomy of w. If w, = (2,, -+, 2,) and w, =
2, -+, Q) are S chains and 2, = 2}, let w, $ w, = (2, - -+, 24, 21, -+, 2)).
Then G(w, # ®,) = G(w,) > G(w,) and DG(w, # ;) = DG(w,) N G(w,) (DG(wy)).

A homotopy in S is a sequence of S chains w,, ---, ®, such that o,
is obtained from w,_, by inserting an element 2¢ S or w,_, from w, for
1=1,.--,q9. We call w, and w, homotopic. Note that w, and w, are
coterminous. In this case G(w,) = G(w,) on N{-, DG(w,).

Choose an element 2,€8S. Let w(S, 2,) be the set of homotopy
classes of all S chains w = (2,, ---, 2,) such that 2, = 2, = 2,. Wecan
induce a group operation on 7,(S, 2,) from the operation %.

Let Gz, be the group of the germs f», at the plaque P, = 2,N F of all
orientation-preserving local C* diffeomorphisms f: 2,/ — 2./ satisfy-
ing f(Py) = P,. Note that 2,/ is a compact connected one-dimensional
manifold and P, is an interior point of 2,/ %. If w, and w, are homotopic
closed S chains at 2., the germs (G(®,))s, and (G(®,))», coincide as already
seen. Thus we have a map

G: (S, 2,) — G5,

which is clearly a homomorphism. Let H;, be the group of the germs f,
at 0 of all orientation-preserving local C* diffeomorphism f: R — R satisfy-
ing f(0) =0 and ¢: 2,/ — R a C" imbedding satisfying ¢«(P,) = 0. We
define a homomorphism

H: r(S, 2,) — HJ

by H(w]) = (¢to G(®w)-¢"),. The image of the homomorphism H is called
the holonomy group of F, which is unique up to conjugation. Let HI
be the group of the germs f, at 0 of all local C” diffeomorphisms
f:[0, ) — [0, ) satisfying f(0) = 0 and r: Hf — H; the homomorphism
induced by the restriction. The image of 7o H is called a omne-sided
holonomy group of F and denoted by @, (F).

Choose a point 2,€ 2, N F. A path u:[0,1]— F is contained in an
S chain w = (2, ---, 2,) if there is a subdivision 0 = ¢, < +++ < ., such
that (¢, ¢, )2, =0, -+, k.

LEMMA 1. (1) For all aen(F, xy), we can find a closed path
u: ([0, 1], {0, 1) —(F, z4) representing a which s contained in some S chain
0= (2 -, 2,) with 2, = 2, = Q..

(2) If a path u; is contained in an S chain w,, 1+ =1, 2, then u,
and u, are homotopic relative to {0, 1} if and only if w, and w, are
homotopic.

The proof of Lemma 1 is easy and we omit it. According to Lemma
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1, we have naturally an isomorphism i: 7,(F, x,) — 7,(S, 2,).

3. The proof of Theorem 1 and 1*. We will prove only Theorem 1
since Theorem 1* can be analogically proved. We consider the case when
(1) of Theorem 1 does not occur and suppose that & | U, has the only
compact leaf F, throughout this section. We use the notation of 2.2 with
Fy in the place of F' and we may assume that @(4; x [0, €;)) c U,. Let
2 =2,NnU,.

At first we show the following.

LEMMA 2. The one-sided holonomy group @, .(F,) of F, is a non-trivial
free abelian group.

PROOF. @_.(F)) is free abelian since @ (F,) is abelian by assumption
and the group H! has no torsion elements. We suppose that @, (F))is a
trivial group, out of which we will bring a contradiction. Let 4,, is the
set of all S chains = (2, 2, ---, 2,) such that # < 2m and 2,= 2, =
.. Recall that #(S) = m < . For all we€ 4,, we have a neighborhood
W, of the plaque P, in 2f/ % such that G(w)| W, is the identity map
since the germ at P, of G(w)| 2%/ is the identity. Let

W= n{Ww|weA2m} ’
then W is a neighborhood of P, since 4,, is a finite set. Take a plaque
Pe 2i/F — {Py}). Let

F = U{G(CU)(P)’(I) = (‘Qﬂy Tt ‘Qk); ‘QO = Q*’ kém} ’
F' is compact since @ runs through a finite set. Let @ = G(w)(P)C F and
Q*e R,,,/ are adjacent, that is G(w)(Q) = Q* where w, is the S chain
(24, D441). Thereis an S chain w, = (25, -+, 2F) such that j <m, 2F =
Q24 and 2F = 2,,,. Since w # 0, § ;'€ 4,, where w;' = (2f, ---, 2%),
P=G4%w $w;)(P)

= G(@,)7" o G(w,) ° G(w)(P)

= G(w,)7(Q*)
and then Q* = G(w,)(P)c F. Therefore F'is a leaf of & |U,. Further-
more F'N 2 is an 2 plaque for all 2€ S and F is C diffeomorphic to Fi.

This is a contradiction to the assumption that & | U, has no compact
leaf except F,. This completes the proof of Lemma 2.

We need the theorem of Kopell.

THEOREM (Kopell [4]). Let f:[0, a,] — [0, b,] and g:][0, a,] — [0, b,] be
orientation-preserving C* diffeomorphisms. Suppose that there is 0 <
a < Min {a,, a,} satisfying the following.
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(1) There is t,€(0, a) such that f(t,) = t,.

(2) g@) <t for all te(0, a).

(8) fog and gof can be defined on [0, a) and coincide there.
Then f|[0, a) ts the identity map.

By using this theorem we prove the following lemma, which shows
some character of the elements of abelian holonomy groups.

LEMMA 3. For all closed S chain w, = (2, -+, 2,) at 2, that is
2y = 2, = .y, such that the germ (G(w,) | 25/ F )., 18 not the identity, there
18 a neighborhood W.,, of P, in Q3;/F such that G(w,)| W.,, has no fixed
point except Pi.

ProOOF. Let ¢: 2{/F# — [0, a) be a C diffeomorphism and let H(w) =
toG(w)oc? for all closed S chains w at 2,. Since the group 9.(F,) is
abelian and 4,,, defined in the proof of Lemma 2, is a finite set, there
is a positive number ¢ such that

(1) [0, e]c (DG(w)) for all w e 4,, U {w};

(2) H(w)e° H(w,) and H(w,) > H(w) are defined on [0, €] and coincide
there for all w e 4,,.

We are going to show that ¢7'([0, ¢)) has the property of W, in Lemma
3. We suppose that there is ¢, € (0, €) satisfying that H(w,)(t) = t, out
of which we will bring a contradiction.

We may suppose that there is ¢, such that 0 <t <t, and f(f) =t
for all te (¢, t,), without loss of generality. In fact let

K = {te(0, ) | H(w,)(¢) # ¢},
then K is a non-empty open subset since the germ at 0 of H(w,) is not
the identity. Let (b, ¢) be a connected component of K. Then H(w,)(b) =
b and H(w,)(¢) = ¢. It is sufficient to take ¢ in place of ¢, and let ¢, = b.

Now we see that there is a closed S chain w, € 4,, such that
H(w))(t,) # t,. In fact if not, we can show that

F = U{G(wo)(Po)lw = (Qo, Tty Qk), ‘Qo = Q*, k ém}

is a compact leaf, where P, = ¢!(t,), by the same argument as in the proof
of Lemma 2. This is a contradiction.

We may suppose that H(w,)(t,) < ¢, by taking wi* in place of w, if
necessary. Let f= H(w,) and ¢ = H(w,). Since f£([0, t]) = [0, ¢,] and
9([0, t,]) = [0, t,), f*eg¥io -+ o friog*i(t) €0, t,] if te][0, t,], ¢, = 0 and v, =
0. Then

frogho «vv o fliog¥i(t) = fratrtuio ghteti(t)

since f and ¢g are commutative on [0, t,]. Let ¢, = lim,_. ¢"(¢,), which
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exists because the sequence ¢, g(f,), --- is monotonely decreasing and
bounded. Then

g(t,) = },I_I,E 9(9"(t) = IJ_TO gt t) = t, .
£(t) = lim £(g°(t) = lim g*(F (&) = lim g°(8) = t, -

Since g(t) < t for all te (¢, t,], there is ¢, such that ¢, <t < e and
g |[t, t;) is a contraction. Note that f(¢) = ¢, and f and g are C? and
commutative on [t, t;) C [0, ¢]. By applying the theorem of Kopell to f
and ¢ in the interval [t, t;), we see that f|[t, t;) is the identity map.
This is a contradiction, which completes the proof of Lemma 3.

Now we need the well-known theorem of Denjoy-Siegel.

THEOREM (Denjoy [1], Siegel [11]). Let f: S*— S* be a C* diffeomor-
phism. Then only one of the following occurs.

(1) {f*(x)]|v: positive integer} is dense in S* for all xe S*.

(2) There are x€ S* and a positive integer v such that f*(x) = x.

By using this theorem we show the following.

LEMMA 4. Let w, and w, be closed S chains at 2, such that the germs
at Py of G(w,) and G(w,) are not the identity. Then only one of the follow-
Ing 0CCuUrs.

(1) There is a meighborhood V of F, such that all leaves of
F | VNU,. except Fy are dense in VN U,.

(2) There are integers pt and v such that the germs at P, of G(w,)"
and G(w,)” coincide.

Proor. Let f= H(w,) and g = H(w,). By Lemma 3, there is ¢ > 0
such that

(1) £|]0, ¢] and ¢ ][0, €] have no fixed points except 0.

(2) fog and gof are defined on [0, ¢] and coincide there.
It is sufficient to consider the case where f and g are contractions. Since
770, ) = [0, &) and g¢([0, €]) [0, €), frog*o «++ o ftiog*i are defined on
[0, e] if ¢, = 0 and v, = 0, and coincide there with frt—Frio gt +4i,

Consider the equivalence relation ~ on (0, ¢) defined by ¢ ~ f(t), te€
(0, €). The quotient space (0, €)/~ is a C" manifold and C" diffeomorphic
to S'. We denote by [t] the equivalence class of ¢ € (0, €). If ¢, ~ ¢,, then
g(t) ~ g(t,) because of the commutativity of f and g. Thus we have a
C" diffeomorphism

gx: (0, &)/~ — (0, &)/~
such that g.([t]) = [9(¢)].



COMPACT LEAVES WITH ABELIAN HOLONOMY 267

By the theorem of Denjoy-Siegel, only one of the following occurs.

(1) {g9i(x)|v = 0} is dense for all z€ (0, &)/~.

(2) There are z€(0,¢)/~ and a positive number v such that
95x(x) = =.

At first we consider the case (1). Let V be a neighborhood of F,
such that V' N U, consists of the leaves of & | U, which contains a plaque
e W='(0, e]) c 2./. We are going to show all leaves of & | VN U,
except F, are dense in VN U,. Let P = ¢(t), t€ (0, €) and F be a leaf of
& | VN U, which contains P. Let K={Qe W|Qc F}. It is sufficient
to show that K is dense in W. Let W* be an arbitrary open set of W.
There is a positive integer v such that ¢g*(t) ~ t* €« W*). There is an
integer ¢ such that t* = f#0¢*(t) by the definition of ~. Then

P* — l—l(t*)
= G(@))"° G(w,)"(P)
= G(of # w))(P)

and P*c F. Therefore P*c KN W*, which implies that K is dense in W.

Secondly we consider the case (2). Let x = [¢t]. Since f and g are
contractions and g*(t) ~ ¢, there is a positive integer ¢ such that g*(t) =
f“(t). Note that f~“og* is defined at least on [0, £]. Since g¢*(f*(t)) =
g @) = X)) = fA(f*(¢)), there is a sequence ¢, f(t), f*(t), - -+ of fixed
points of f#og* which converges to 0. Therefore by Lemma 3, the germ
at P, of G(w;y* % w}) is the identity. This completes the proof of Lemma 4.

If the one-sided holonomy group 9,(F}) is a free abelian group of
rank = 2, there are G(w,)r, and G(w,)p, which do not admit (2) of Lemma
4. Then (2) of Theorem 1 occurs.

The rest is the case where (1) of Theorem 1 does not occur and
@ (F,) is an infinite cyclic group. Let j: @, (F,) — Z be the isomorphism
which maps contractions to positive integers. Since @, (F},) is abelian,
there is an epimorphism a: H,(F, Z)— ®,(F, such that aoch = roHoj
where h:w(F,, x,) — H,(F,, Z) is the Hurewicz homomorphism. Thus we
have a diagram

T(Fy, %) —;7 708,20 22 0.(F) —ﬂ; Z .

| -~
b e
|
Hl(FO’ Z)

In the exact sequence
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0 — Ext (Hy(Fy, Z), Z) — H\(F,, Z) —— Hom (H(Fy, Z), Z) — 0

B is an isomorphism since Hy(F;, Z) is free and Ext (H\(F, Z), Z) is
trivial. Leté=d-p (joa)e H, ,(F,, Z) where d: H(F,, Z)— H,_(F,, Z)
is the Poincaré duality isomorphism.

Now we need the theorem of Nakatsuka which is on the line of
Thom’s representation theorem of codimension-one integral homology
classes [12].

THEOREM (Nakatsuka [6]). Let M be a compact connected orientable
mantifold of dimension n =3 and 6 H, (M, Z). Then there is a con-
nected orientable (n — 1)-submanifold N M such that 6§ = [N] if and only
if there is a homology class a € H\(M, Z) such that the intersection number
f-a is 1.

Since joacHom (H(F, Z), Z) is an epimorphism, 6 satisfies the
condition of the theorem of Nakatsuka. Thus we have a connected oriented
submanifold Nc F, such that § = [N]e H,_(F,, Z).

Retriangulate F, so that N is a subcomplex. We use the same
notation as 2.2. Let S’ ={2,| 2NN+ @}and E= U {4,]| 2,€S’}. Clearly
E is homotopy equivalent to N. We may assume that 2,€S" and x,< N.
Let w = (2, ---, 2,) be a closed S’ chain at 2,, thatis 2, = 2, = 2, and
all 2,€ 8. There is a closed path c¢: ([0, 1], {0, 1}) — (&V, x.) contained by
. Since joaoh(c]) is the intersection number of i([c]) and ¢ in F, and
N has a trivial normal bundle in F,, joaoh([c]) = 0. Then

H(w), = r° Hoi([c])
= ao h([c])
= jtogoao h(c])
= 77'(0)
= the identity .

Let 4}, be the set of all closed S’ chains at 2. of length <2m. For
each we 4;,, there is a neighborhood D, of P, in 25/% such that
G(w)| D, is the identity. Let D = MNuc4;, D.- By the same argument as
the proof of Lemma 2, we can show that F' = .., G(®)(P) is a compact
leaf which is diffeomorphic to E for each Pe D where J is the set of
all S’ chains w = (£2,, ---, 2,) satisfying that k¥ < m and 2, = 2,. Further-
more there is a C” diffeomorphism &: E x [0, 1] = K = U,.; G(w)(D) such
that

(1) &|E x {0} is the identity,

(2) &} x [0, 1) c »({x} x R) for all xe E,
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(8) &(E x {t}) is a leaf of # | K for all t€]|0, 1].

Since for all closed path ¢ in F, — Int (E) the intersection number of
cand @ is 0, there is a C" imbedding 7: (F, — Int (F)) x [0, 1] — U, such
that

(1) »n|(F,— Int(E)) x {0} is the identity,

(2) 7z} x [0, 1]) c ({x} x R) for all x € F, — Int (),

(3) n((F, — Int (E)) x {t}) is a leaf of U, for all t€ ][0, 1].

By using & we can extend » to a C" imbedding 7: F, — U, satisfy-
ing (1), (2) and (3) of » when F, — Int (E) replaced by F,, where F is
defined in (8) of Theorem 1. We denote by z,e N; (¢ = 1, 2) the copies
of xe N. We may assume that 7(N, x [0, 1]) € 7(V; x [0, 1]). We define
@) [0, 1] by 7(x, t) = 7(x,, f.(t)) for all te [0, 1]. f, does not depend on
x€ N. Let f=f,. Itis clear that fis a C" contraction. This completes
the proof of Theorem 1.

4. The proof of Theorem 2 and examples. At first we give a method
to construct a C" foliation # on S, X [0, 1], whose leaves are all C~
submanifold and transverse to {x} x [0, 1] for all z€S,, from given
orientation-preserving C* diffeomorphisms f,, ---, f,: [0, 1] —[0, 1], 0 <
r < .

Take disjoint circles C,, -+, C, in S, such that S, — (C,U --- UC,)
is connected. Let U, ---, U, be disjoint closed tubular neighborhoods of
C, ---,C,. There are C~ diffeomorphisms 4;: C;, x [-1, 1] —U, 1 =1,
«vo, 9. Let a: [—1,1] —[0, 1] be a C map such that

(1) «() =0 in a neighborhood of —1,

(2) a() =1 in a neighborhood of 1.

Let &, be the foliation on U, x [0, 1] whose leaves are

{(M=, 3),t) |z C,y se[—1, 1], ¢t = a(s)t + (1 — a(s)fi(tn)} ,
toe[—1,1]. Let %, be the foliation on (S, — U,-, Int (U;)) x [0, 1] whose
leaves are (S, — U;-, Int (U))) x {t}, t€[0, 1]. By connecting .#,, &, ---,
&, together, we have a foliation # on S, x [0, 1] which clearly has the
desired property. Furthermore Image (@) is the subgroup of Diff; ([0, 1])
generated by f,, «--, f,.

ProOOF OF THEOREM 2. Choose numbersa,, ---, a,, b, ---, b, such that
0=a,<a,, <+ <@<a<b<b<-.--<b=1.
By induction we construct homeomorphisms f,, ---, f,: [0, 1] — [0, 1] as
follows.

(1) Take f,][a,, b] such that
fila) = ay, fi(b) = b, fit) <t  for all te(ayb) .
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(2) Suppose that f, -+, fi are already defined on [a,, bJ. Take
fk+1 I [a/k+1, bk+1] Such that

Siri(@ii1) = Crrry Frai(Brrr) = bigry frrr(b) = asy frn(t) < t
for all t€ (arsy, brsy) -

For each € (ar1, brs1) — [a, Di], there is the unique integer vy satisfying
Jen(®) € (ar, be]-  Let fi(t) = fizio fio fin(t) and fi(@rss) = Grsry filbrs) = Dits
fore=1,---, k.

Note that fi, -+, f, are mutually commutative.

Let & be the foliation on S, x [0, 1] obtained by using f;, ---, f, and
F, the leaf containing (S, — U;-, Int (U,)) x {t}. Image (@) is a free abelian
group of rank g. By considering the action of f, ---, f,, we see that

(1) F,,=8, x{0}, F,, =8, x{1}, F,  =F,_,--, F, =F,, and
F,, te(ay,bd,), are all leaves of #.

(2) F,,_, = F.,, ,UF, UF,,

g—1

(8) F,,,=F,, ,UF,_ UF, UF,,

g—2

(¢) F,=F,UF,U---UF, UF, UF,,

(g+1) F,=F,UF, for all te(a, b),

(g + 2) F, is non-compact and proper for all ¢te (0, 1).
This completes the proof of Theorem 2.

REMARK. Although f;|[a;, b;] can be taken C=, the differentiability
may be broken at a,,, and b,,,.

ExAMPLE 1. Let the genus g = 2. Let f, f;: [0, 1] — [0, 1] be C*~
diffeomorphisms such that

£ =t/2 and fit) = <%>t for all te [0, 1/2]

where « is a positive irrational number € (0, 1). Let # be the foliation
on S, x [0, 1] obtained by using f; and f,. In a neighborhood of the compact
leaf S, x {0}, (2) of Theorem 1 occurs.

REMARK. This foliation may be not an example of (1) of Theorem 1*.
For the case (1) of Theorem 1* we need fe.%” such that &(f) is isomor-
phic to R' where the notations . and Z°(f) are in Lemma 3 of Kopell
[4]. We do not know whether such f exists or not.

ExaMPLE 2 (Sacksteder [9]). There are orientation-preserving C*
diffeomorphisms f;, f;: [0, 1] — [0, 1] such that the C* foliation on S, x [0, 1]

*)  The author thanks Professor Y. Saito for his correction.
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obtained by using f, and f, has an exceptional leaf F' (that is, neither
locally dense nor proper). Of course f, and f, are not commutative and
Image (@) is a non-commutative group.

ExAMPLE 3. Denjoy [1] constructed a C' diffeomorphism g: S'— S*

such that
(1) {¢*(x)|ve Z} is neither locally dense nor compact for all ze S?,

(2) zeNi={9’(@)||v]| = n} for some xz€ S!,
(3) z¢ N {9’()[|v] = n} for some ze S

Let p: R— S* be the universal covering and f: R— R a generator of
the covering transformation group of p: R— S'. Since (g9°p)7,(R) =
{1} c pym(R) = {1}, there is a C' diffeomorphism §: R— R such that
pod =geop and §(0) = Min{te p(g°p(0)) |0 < ¢}.

Then §(s) = Min{t€ p ' (gop(s)) | s < ¢t} for all s€ B. Really let 4 =
{seR|§(s) = Min{tep(gop(s)) | s <t}}. Let se R, then there is a con-
nected neighborhood U of p(s) satisfying UN g(U) = @. Let U be the
connected component, of p~(U), containing s. Then §(U) is the connected
component, of p~*(g(U)), containing §(s). If s€ A, then [s, §(s)] N (p~(g(U))—
§(0)) = @ and Uc A. Therefore A is open. If se R — A, then [s, g(s)]
contains a connected component of p~(g(U)) — §(U) and Uc R — A.
Therefore A is closed. Since 0c€ A, A is a non-empty closed open subset
of R. Therefore A = R.

Furthermore fog = gof. In fact suppose that fog(s) < §of(s) for
some s€ R. Since s < §(s) and f preserves the relation <, f(s) < fod(s) <
g(f(s)). Since

pofod(s) =peog(s) =gop(s) =gopof(s), fod(s)ep(geon(f(s)) .
This contradicts to the fact that F(f(s)) = Min {t € p~ (g p(f(s))) | f(s) < t}.
Suppose that fog(s) > gof(s) for some s€ R. Since f(s) < Gof(s), s <
fTlegof(s) < ftofeg(s) = g(s). Since f~'ogof(s)ep(gon(s)), this is a
contradiction.

Choose a homeomorphism a: (0, 1) — R and let f,, f;: [0, 1] — [0, 1] be
the homeomorphisms defined by

(1) £i(0) = £:(0) =0, fi(1) = f(1) =1,

(2) fi(s) = atofon(s), fi(s) = atogoa(s) for all s (0, 1).

The topological foliation on S, X [0, 1], obtained by using f, and f,, has
exceptional leaves. Image (®?) = Z ¢ Z.
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