ON SOME TYPES OF ISOPARAMETRIC HYPERSURFACES IN SPHERES I

HIDEKI OZEKI AND MASARU TAKEUCHI

(Received August 6, 1974)

1. Introduction. We shall exhibit two series of non-homogeneous isoparametric hypersurfaces in spheres in this paper, and then give a classification of some types of isoparametric hypersurfaces in a forthcoming paper.

We begin with a few definitions and notations to explain our results more precisely. Let M be a Riemannian manifold with metric $(,)$. The induced inner product on cotangent vectors is also denoted by $(,)$. A differentiable function f defined on an open set U in M is called isoparametric if $df \wedge d(df, df) = 0$ and $df \wedge d(\Delta f) = 0$, where Δ denotes the Laplacian on M. A hypersurface M (a submanifold of codim 1) in M is called isoparametric if, for each point p of M, there exist an open neighborhood U of p in M and an isoparametric function f defined on U such that $U \cap M = \{ q \in U \mid f(q) = f(p) \}$.

Let $\mathcal{S} = \{ M_t \mid t \in I \}$ be a family of hypersurfaces in \bar{M} parametrized by an open interval I. \mathcal{S} is called a family of isoparametric hypersurfaces if there exist an open set U in \bar{M} and an isoparametric function f on U such that $M_t = f^{-1}(t)$ for each $t \in I$. Two families $\mathcal{S} = \{ M_t \mid t \in I \}$ and $\mathcal{S}' = \{ M'_t \mid t' \in I' \}$ of isoparametric hypersurfaces in \bar{M} are identified if there exists a diffeomorphism φ of I onto I' such that $M_t = M'_{\varphi(t)}$ for each $t \in I$. Also, if we have an imbedding φ of I into I' such that $M_t \subset M'_{\varphi(t)}$ for each $t \in I$, then we write $\mathcal{S} \subset \mathcal{S}'$.

Now, let $\bar{M} = S^{N-1}$ be the unit sphere in an N-dimensional Euclidean space \mathbb{R}^N centered at the origin, and M a locally closed hypersurface in \bar{M}. M is said to be homogeneous if a suitable subgroup of $O(N)$ acts transitively on M where $O(N)$ denotes the real orthogonal group of \mathbb{R}^N. It is known that M is isoparametric if and only if M has locally constant principal curvatures (Cartan [2]). Thus, every homogeneous hypersurface in S^{N-1} is isoparametric. Two hypersurfaces M and M' in S^{N-1} are said to be equivalent if a suitable orthogonal transformation of \mathbb{R}^N transforms M onto M'. Similarly, two families of isoparametric hypersurfaces in
S^{n-1} are equivalent if a suitable orthogonal transformation of R^n transforms one to the other.

The following results are due to Münzner [5]. For every connected isoparametric hypersurface M in S^{n-1}, there exists a unique maximal (relative to the above order \subset) family $\mathcal{M} = \{M_t | t \in I\}$ of isoparametric hypersurfaces in S^{n-1} such that each M_t is closed in S^{n-1} and for some t M_t is an open submanifold of M. If M and M' are equivalent, then \mathcal{M} and \mathcal{M}' are equivalent in our sense. Further the classification problem of such maximal families is reduced to an algebraic one in the following way. Let F be a homogeneous polynomial function of degree g on R^n. For $g > 2$, let m_1 and m_2 be positive such that $m_1 + m_2 + m_1 + m_2 + \cdots = N - 2$, and let $m_1 = N - 2 > 0$ for $g = 1$. Assume F satisfies

\[
(M) \quad \begin{cases}
(dF, dF) = g^{n-2} \\
\Delta F = cr^{g-2}
\end{cases}
\]

where $c = (1/2)(m_1 - m_2)g^2$ for $g \geq 2$ and $c = 0$ for $g = 1$ and where r is the radius function and Δ is the Laplacian on R^n. Then the restriction f of F to S^{n-1} is isoparametric on S^{n-1}, and $\mathcal{J} = \{M_t = f^{-1}(t) | t \in (-1, 1)\}$ is a maximal family of isoparametric hypersurfaces in S^{n-1} such that each M_t is connected and closed. Conversely, any maximal family of isoparametric hypersurfaces in S^{n-1} is given in the above way. Such two families \mathcal{J} and \mathcal{J}', are equivalent if and only if there exists an element σ in $O(N)$ such that

\[F(\sigma^{-1}x) = \pm F'(X) \quad x \in R^n.\]

In this case, F and F'' are said to be equivalent. Münzner also has shown that the above (M) has a solution only if $g = 1, 2, 3, 4$ or 6 and that $m_1 = m_2$ if $g = 3$.

Geometrically, the above integers g, m, and m_2 are related to each isoparametric hypersurface M_t as follows. Consider the unit normal vector field $X_t = \text{grad } f / (df, df)^{1/2}$ for each M_t. Let

$k_1(t) > \cdots > k_{g(t)}(t)$

be the distinct principal curvatures of M_t relative to X_t and $m_j(t)$ the multiplicity of $k_j(t)$ for each j. Then $g(t)$ and $m_j(t)$ are constant, and we have

\[
\begin{align*}
g(t) &= g(t), \\
m_1 &= m_i(t) = m_2(t) = \cdots, \\
m_2 &= m_3(t) = m_4(t) = \cdots, \\
k_j(t) &= \cot \left(\frac{1}{g} ((j - 1)\pi + \cos^{-1}(t)) \right)
\end{align*}
\]
for \(j = 1, 2, \ldots, g \).

We come to the problem of classifying equivalent classes of polynomials \(F \) satisfying the above condition (M). In the case where \(g = 1 \) or \(g = 2 \) it is easy. Cartan solved it in the case \(g = 3 \) ([3]) and proposed a problem: Is every closed isoparametric hypersurface in \(S^{n-1} \) homogeneous? Recently, Takagi [6] classified the case where \(g = 4 \) and \(m_1 \) or \(m_2 = 1 \), and his result still shows that the obtained ones are homogeneous.

In the present paper I, we shall investigate a homogeneous polynomial function \(F \) satisfying the differential equations (M) of Münzner in the case \(g = 4 \). To such an \(F \), we associate \(m_1 + 1 \) quadratic forms \(\{ p_a \} \) and \(m_1 + 1 \) cubic forms \(\{ q_a \} \) in \(m_1 + 2m_2 \) variables, and give a complete characterization of \(F \) in terms of \(\{ p_a \} \) and \(\{ q_a \} \) in Theorem 1. Using this, two series of non-homogeneous isoparametric hypersurfaces in spheres will be constructed in Theorem 2.

The polynomial functions \(F \) defining them are given explicitly as follows. We denote by \(F \) the real quaternion algebra \(H \) or the real Cayley algebra \(K \), and by \(u \rightarrow \bar{u} \) the canonical involution of \(F \). For the \(n \)-column vector space \(F^n \) over \(F \), the canonical inner product is denoted by \((,) \). For each positive integer \(r \), the space \(F^{2(r+1)} \) can be identified with \(R^N \) where \(N = 8(r + 1) \) or \(16(r + 1) \). For a point \(x = u \times v \in F^{r+1} \times F^{r+1} = F^{2(r+1)} \), we set

\[
\begin{align*}
 u &= \begin{pmatrix} u_0 \\ u_1 \end{pmatrix}, \\
 v &= \begin{pmatrix} v_0 \\ v_1 \end{pmatrix}
\end{align*}
\]

where \(u_0, v_0 \in F, u_1, v_1 \in F^r \). Then we put

\[
F_s(u \times v) = 4(\| uv \|^2 - (u, v)^2) + (\| u_1 \|^2 - \| v_1 \|^2 + 2(u_0, v_0))^2
\]

where \(\| \| \) denotes the length of a vector, and

\[
F = r^4 - 2F_s.
\]

Then \(M_t = \{ x \in S^{n-1} \mid F(x) = t \} \) for each \(t \) in \((-1, 1)\) is isoparametric and its multiplicities \(m_1 \) and \(m_2 \) are given by

\[
m_1 = 3 \quad \text{and} \quad m_2 = 4r
\]

or

\[
m_1 = 7 \quad \text{and} \quad m_2 = 8r
\]

respectively according to \(F = H \) or \(K \).

The homogeneous isoparametric hypersurfaces in spheres have been classified by Hsiang-Lawson [4]. In Part II, we shall give an explicit form of \(F \) for each of them, and classify the polynomials \(F \) satisfying
the condition (M) in the case where \(g = 4 \) and \(m_1 \) or \(m_2 = 2 \). It will be shown that every closed isoparametric hypersurface in this case is homogeneous.

We thank Prof. T. Takahashi and Prof. R. Takagi for many helpful discussions.

2. Preliminaries. First we introduce a few notations for operations on polynomial functions and give some of their elementary properties. These notations and properties will be used consistently throughout our papers I and II.

Let \(R^n \) be an \(n \)-dimensional Euclidean space with inner product \((,\)\) and \(r \) the radius function of \(R^n \). The induced inner product on the dual space is also denoted by \((,\)\). For any polynomial functions \(f \) and \(g \) on \(R^n \), we denote by \(\langle f, g \rangle \) the polynomial function on \(R^n \) defined by

\[
\langle f, g \rangle(x) = ((df)_x, (dg)_x) \quad x \in R^n.
\]

The mapping \((f, g) \rightarrow \langle f, g \rangle \) is bilinear and symmetric, and also satisfies

\[
\langle f, g_1 + g_2, h \rangle = \langle f, g_1, h \rangle + \langle f, g_2, h \rangle.
\]

Let \(\{x_1, \ldots, x_n\} \) be an orthonormal coordinate system for \(R^n \). Then \(\langle f, g \rangle \) is equivalently defined by

\[
\langle f, g \rangle = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} \frac{\partial g}{\partial x_i}.
\]

Especially, for a homogeneous polynomial \(f \) of degree \(k \) on \(R^n \), and for any positive integer \(l \) we have

\[
\langle r^{k+l}, f \rangle = 2klfr^{k+l-1}.
\]

We denote by \(\Delta \) the Laplacian on \(R^n \), that is,

\[
\Delta = \sum_{i=1}^{n} \frac{\partial^2}{(\partial x_i)^2}.
\]

Then, for any positive integer \(k \), we have

\[
\Delta r^{2k} = 2l(n + 2k - 2) r^{2(k-1)}.
\]

Let \(V \) be a linear subspace of \(R^n \). We introduce the restriction forms of \(\langle , \rangle \) and \(\Delta \) as follows. Let \(W \) be the orthogonal complement of \(V \) so that we have \(R^n = V \oplus W \) (orthogonal decomposition). Choose orthonormal coordinate systems \(\{v_i\} \) and \(\{w_j\} \) for \(V \) and \(W \) respectively. Then any polynomial functions \(f \) and \(g \) on \(R^n \) can be expressed as polynomials in variables \(\{v_i\} \) and \(\{w_j\} \). We put
They are determined independently on the choices of coordinate systems, and sometimes they will be also denoted by $\langle f, g \rangle_{(v_i)}$ and $\Delta_{(v_i)}f$. From the definitions it follows that, for an arbitrary orthogonal decomposition $R^* = V \oplus W$, we have

\begin{equation}
\langle f, g \rangle = \langle f, g \rangle_v + \langle f, g \rangle_w \tag{2.9}
\end{equation}
and

\begin{equation}
\Delta f = \Delta_v f + \Delta_w f. \tag{2.10}
\end{equation}

Let f be a polynomial function on R^n, and V a linear subspace of R^*. f is said to be homogeneous of degree k on V if f is homogeneous of degree k with respect to the variables $\{v_i\}$ in the expression of f as a polynomial in $\{v_i\}$ and $\{w_i\}$.

Let V be a linear subspace of R^*. Every polynomial function f on V can be considered also as a polynomial function on R^* canonically through the orthogonal decomposition $R^* = V \oplus W$. By this identification, it follows that for polynomial functions f and g on V we have

\begin{equation}
\langle f, g \rangle_v = \langle f, g \rangle \tag{2.11}
\end{equation}
and

\begin{equation}
\Delta_v f = \Delta f. \tag{2.12}
\end{equation}

Finally, for a quadratic form f on R^n, we define a symmetric linear mapping $\eta(f)$ of R^* by

\begin{equation}
\eta(f)(x), x' = f(x, x') \tag{2.13}
\end{equation}
where f is considered in the usual way as a symmetric bilinear form on R^n. The correspondence $f \rightarrow \eta(f)$ is one to one from the set of quadratic forms on R^n onto the set of symmetric linear mappings of R^n.

For quadratic forms f and g on R^n, we have

\begin{equation}
\eta(\langle f, g \rangle) = 2(\eta(f)\eta(g) + \eta(g)\eta(f)) \tag{2.14}
\end{equation}
and especially

\begin{equation}
\eta(\langle f, f \rangle) = 4(\eta(f))^2. \tag{2.15}
\end{equation}
Furthermore, we have
They can be verified easily.

Now, let S^{n-1} be the unit sphere in \mathbb{R}^n centered at the origin. We need the following preliminary lemmas.

Lemma 1. Let F be a homogeneous polynomial function of degree g on \mathbb{R}^n satisfying

$$\langle F, F \rangle = g^2 r^{2g-2}.$$

Then the restriction f of F to S^{n-1} is singular at a point x of S^{n-1} if and only if

$$(dF)_x = \pm (dr^g)_x.$$

Proof. By definition, f is singular at x if and only if $(df)_x = 0$. Note that a tangent vector X in $T_x(\mathbb{R}^n)$ is contained in $T_x(S^{n-1})$ if and only if $(dr^g)_x(X) = 0$.

Thus, $(df)_x = 0$ if and only if

$$(dF)_x = c (dr^g)_x$$

for some constant c. Since $(dF, dF) = \langle F, F \rangle = (dr^g, dr^g)$ from our assumption, we see that $(df)_x = 0$ if and only if

$$(dF)_x = \pm (dr^g)_x.$$

q.e.d.

Lemma 2. Let F be as in Lemma 1. Then the restriction f of F to S^{n-1} ranges from -1 to 1 unless it is constant, and f is singular at a point x of S^{n-1} if and only if $F(x) = \pm 1$.

Proof. Let x be a point of S^{n-1} and choose an orthonormal coordinate system $\{u_1, \ldots, u_{N-1}, z\}$ such that $z(x) = 1$ and $u_i(x) = 0$ for $i = 1, 2, \ldots, N-1$. We expand F as a polynomial in z as

$$F = a_0 z^g + a_1 z^{g-1} + \cdots + a_g$$

where a_h is a homogeneous polynomial of degree h in u_1, \ldots, u_{N-1}. We have

$$(dF)_x = \left(\frac{\partial F}{\partial z} \right)(x)(dz)_x + \sum_{i=1}^{N-1} \left(\frac{\partial F}{\partial u_i} \right)(x)(du_i)_x$$

$$= ga_0 (dz)_x + \sum_{i=1}^{N-1} \left(\frac{\partial F}{\partial u_i} \right)(x)(du_i)_x$$

and

$$\Delta f = 2 \text{Tr} \left(\gamma(f) \right).$$
(d\rho^*)_x = g(r^* \, r \, dr)_x = g(dz)_x.

First suppose that \(f \) is singular at \(x \). Then, by Lemma 1 we have
\[(dF)_x = \pm (dr^*)_x,\] and hence \(a_0 = \pm 1 \). This shows \(F(x) = a_0 = \pm 1 \). Conversely, suppose \(F(x) = \pm 1 \), i.e., \(a_0 = \pm 1 \). We have

\[\langle F, F \rangle(x) = \langle (dF)_x, (dF)_x \rangle = g^2 a_0^2 + \sum_{i=1}^{N-1} \left(\frac{\partial F}{\partial u_i}(x) \right)^2. \]

Since \(\langle F, F \rangle = g^2 r^* = \langle F, F \rangle(x) = g^2 \), and hence we have \((\partial F/\partial u_i)(x) = 0 \) for \(i = 1, 2, \ldots, N-1 \). Thus, we have \((dF)_x = \pm (dr^*)_x \), and hence \(f \) is singular at \(x \) by Lemma 1.

We have proved the latter assertion in Lemma 2. The former assertion follows from the latter since \(S^{N-1} \) is compact. q.e.d.

Lemma 3. Let \(F \) be as in Lemma 1, and put
\[F = \sum_{i_1, \ldots, i_N} a_{i_1} \cdots x_{i_1}^i \cdots x_{i_N}^i \]
where \(\{x_1, \ldots, x_N\} \) is an orthonormal coordinate system for \(\mathbb{R}^N \). Assume that the degree \(g \) is even and \(F \) satisfies
\[F \big|_{x_{i_1} = \cdots = x_{i_N} = 0} = \left(\sum_{i=1}^k x_i^i \right)^{g/2}. \]
Then we have
\[a_{i_1 \cdots i_N} = 0 \]
whenever \(i_1 + \cdots + i_k = g - 1 \).

Proof. Put \(F = \sum F_h \) where \(F_h \) is the homogeneous part of degree \(h \) in the variables \(x_1, \ldots, x_k \):
\[F_h = \sum_{i_1, \ldots, i_N} a_{i_1} \cdots x_{i_1}^i \cdots x_{i_N}^i. \]
The assumption says \(F_g = (\sum x_i^i)^{g/2} \). We shall show \(F_{g-1} = 0 \). Put
\[G = F_{g-2} + \cdots + F_0, \]
so that we have
\[F = F_g + F_{g-1} + G. \]
Now, we have
\[\frac{\partial F}{\partial x_i} = g x_i \left(\sum_{i=1}^k x_i^i \right)^{(g/2) - 1} + \frac{\partial F_{g-1}}{\partial x_i} + \frac{\partial G}{\partial x_i}. \]
for $i = 1, \ldots, k$, and
\[
\frac{\partial F}{\partial x_i} = \frac{\partial F_{i-1}}{\partial x_i} + \frac{\partial G}{\partial x_i}
\]
for $j = k + 1, \ldots, N$, and hence
\[
\langle F, F \rangle = \sum_{i=1}^{k} \left(\frac{\partial F}{\partial x_i} \right)^2 + \sum_{j=k+1}^{N} \left(\frac{\partial F}{\partial x_j} \right)^2
\]
\[
= \sum_{i=1}^{k} \left(g^i x_i \left(\sum_{i=1}^{k} x_i^2 \right)^{g-2} + \left(\frac{\partial F_{i-1}}{\partial x_i} \right)^2 + \left(\frac{\partial G}{\partial x_i} \right)^2 \right)
\]
\[
+ 2gx_i \left(\sum_{i=1}^{k} x_i^2 \right)^{(g/2)-1} \left(\frac{\partial F_{i-1}}{\partial x_i} + \frac{\partial G}{\partial x_i} \right) + 2 \frac{\partial F_{i-1}}{\partial x_i} \frac{\partial G}{\partial x_i} \right)
\]
\[
+ \sum_{j=k+1}^{N} \left(\frac{\partial F_{j-1}}{\partial x_j} \right)^2 + \left(\frac{\partial G}{\partial x_j} \right)^2 + 2 \frac{\partial F_{j-1}}{\partial x_i} \frac{\partial G}{\partial x_i} \right).
\]
On the other hand, we have
\[
\langle F, F \rangle = g^2 x^2 g-2 = g^2 \left(\sum_{i=1}^{k} x_i^2 + \sum_{j=k+1}^{N} x_j^2 \right)^{g-1} .
\]
Comparing the homogeneous terms of degree $2g - 2$ in the variables x_1, \ldots, x_k in the above two equations, we get
\[
\sum_{j=k+1}^{N} \left(\frac{\partial F_{j-1}}{\partial x_j} \right)^2 = 0 ,
\]
and hence
\[
\frac{\partial F_{j-1}}{\partial x_j} = 0 \quad \text{for } j = k + 1, \ldots, N .
\]
Since F_{j-1} is linear in x_{k+1}, \ldots, x_N, we have $F_{j-1} = 0$. This proves Lemma 3. q.e.d.

3. Reductions. From now on we shall concern with isoparametric hypersurfaces in S^{N-1} with 4 distinct principal curvatures. So we investigate a homogeneous polynomial function F of degree 4 on R^n satisfying $\langle F, F \rangle = 16r^2$ and $\Delta F = 8(m_2 - m_1)r^2$. These two equations will be replaced by equivalent ones step by step, and in the latter part of this section two families $\{p_a\}$ and $\{q_a\}$ of polynomials will be associated to F on a suitable coordinate system. Our first purpose is to give a complete characterization of such an F in terms of $\{p_a\}$ and $\{q_a\}$ (Theorem 1 in §4).

Let m_1 and m_2 be two positive integers such that $N = 2(m_1 + m_2 + 1)$, and F a homogeneous polynomial function of degree 4 on R^n. Consider
the following two conditions on F;

(3.1) $\langle F, F \rangle = 16r^6$,

(3.2) $\Delta F = 8(m_2 - m_1)r^4$.

As a first step of reductions, we choose a unit vector e in \mathbb{R}^n such that the restriction f of F to S^{n-1} takes its maximum at the point e. Let X be the orthogonal complement of the 1-dimensional subspace Re so that we have

(3.3) $\mathbb{R}^n = X \oplus Re$.

Let z be the coordinate function on Re defined by $z(e) = 1$ and $\{x_1, \ldots, x_{n-1}\}$ an orthonormal coordinate system for X.

Lemma 4. Assume that F satisfies (3.1) and (3.2). Then, F can be written in the form

(3.4) $F = z^4 + Ax^2 + Bz + C$

where A, B and C are homogeneous polynomial functions on X of degree 2, 3 and 4 respectively, and A, B and C satisfy the following equations (1-1)~(1-8) listed below. Conversely, assume that a homogeneous polynomial function F of the above form (3.4) is given with A, B and C satisfying (1-1)~(1-8). Then F satisfies (3.1) and (3.2).

(1-1) $\langle A, A \rangle + 16A = 48\left(\sum_{i=1}^{N-1} x_i^2\right)$

(1-2) $\langle A, B \rangle + 4B = 0$

(1-3) $\langle B, B \rangle + 2\langle A, C \rangle + 4A^2 = 48\left(\sum_{i=1}^{N-1} x_i^2\right)^3$

(1-4) $\langle B, C \rangle + 2AB = 0$

(1-5) $\langle C, C \rangle + B^2 = 16\left(\sum_{i=1}^{N-1} x_i^2\right)^3$

(1-6) $\Delta A + 12 = 8(m_2 - m_1)$

(1-7) $\Delta B = 0$

(1-8) $\Delta C + 2A = 8(m_2 - m_1)\left(\sum_{i=1}^{N-1} x_i^2\right)$.

Proof. Assume that F satisfies (3.1) and (3.2). We first remark that the restriction f of F to S^{n-1} is not a constant. In fact, suppose that f is a constant c on S^{n-1}. Then we have $F = cr^4$. Since $\langle F, F \rangle = 16r^6$, we have $c = \pm 1$. On the other hand,
\[\Delta F = c \Delta r^4 = c(8 + 4N)r^2 = 8(m_2 - m_1)r^2. \]

Hence, \(\pm (8 + 4N) = 8(m_2 - m_1) \). It follows that \(m_1 = -1 \) or \(m_2 = -1 \). This is a contradiction.

By Lemma 2, we have \(F(e) = 1 \). By the choice of coordinates, we have

\[F \mid_{x_1 = \cdots = x_{N-1} = 0} = (z^3)^2. \]

Applying Lemma 3, we see that \(F \) has the form

\[F = z^4 + A x^2 + B z + C \]

where \(A, B \) and \(C \) are homogeneous polynomials in \(x_1, \cdots, x_{N-1} \) of degree 2, 3 and 4 respectively. We write (3.1) and (3.2) in terms of \(A, B \) and \(C \).

We have

\[\langle F, F \rangle = \left(\frac{\partial F}{\partial z} \right)^2 + \langle F, F \rangle \]

\[= 16z^4 + 4Az^2 + B^2 + 16Az^4 + 8Bz^3 + 4ABz + \langle F, F \rangle \]

\[= 16z^4 + (16A + \langle A, A \rangle)z^4 + (8B + 2\langle A, B \rangle)z^3 \]

\[+ (4A^2 + \langle B, B \rangle + 2\langle A, C \rangle)z^2 + (4AB + 2\langle B, C \rangle)z \]

\[+ B^2 + \langle C, C \rangle, \]

and

\[16r^4 = 16(z^3 + \sum x_i)^3 \]

\[= 16z^6 + 48(\sum x_i^2)z^4 + 48(\sum x_i^3)z^2 + 16(\sum x_i^3). \]

Comparing the coefficients of \(z^h \) for each \(h \), we see that (3.1) is equivalent to (1-1)\(\sim \)(1-5) as a whole.

Next, we have

\[\Delta F = \Delta_{\{x_i\}} F + \Delta_x F \]

\[= 12z^2 + 2A + (\Delta_x A)z^2 + (\Delta_x B)z + \Delta_x C, \]

and

\[8(m_2 - m_1)r^2 = 8(m_2 - m_1)(x^2 + \sum x_i^2). \]

Hence, (3.2) is equivalent to (1-6)\(\sim \)(1-8). Thus, we have the first assertion of Lemma 4.

The converse follows clearly from the above argument. q.e.d.

Lemma 5. Let \(A \) be a quadratic form on \(X \) satisfying (1-1) and (1-6). Then, \(X \) has a unique orthogonal decomposition

\[X = Y \oplus W \]

(3.5)
with \(\dim W = m_1 + 1 \) such that \(A \) has the form

\[
A = 2\left(\sum_{j=1}^{n} y_j^2 \right) - 6\left(\sum_{a=0}^{n} w_a^2 \right)
\]

where \(\{y_j\} \) and \(\{w_a\} \) are orthonormal coordinate systems for \(Y \) and \(W \) respectively, and \(n = m_1 + 2m_2 \). Conversely, if \(A \) is of the above form with respect to an orthogonal decomposition \(X = Y \oplus W \) with \(\dim W = m_1 + 1 \), then \(A \) satisfies (1-1) and (1-6).

Proof. We denote by \(\bar{A} \) the symmetric mapping \(\eta(A) \) of \(X \) associated to \(A \). Then (1-1) and (1-6) are equivalent to

\[
(\bar{A})^2 + 4\bar{A} - 12 I_X = 0
\]

and

\[
\text{Tr}(\bar{A}) = 4(m_2 - m_1) - 6
\]

respectively, where \(I_X \) denotes the identity mapping of \(X \). Assume (1-1) and (1-6). (1-1)' shows that an eigenvalue of \(\bar{A} \) is 2 or \(-6\). Decompose \(X \) into the eigenspaces:

\[
X = Y \oplus W
\]

where \(Y \) and \(W \) are the eigenspaces for the eigenvalues 2 and \(-6\) respectively. This is an orthogonal decomposition since \(\bar{A} \) is symmetric. From (1-6)' it follows that \(\dim Y = m_1 + 2m_2 \) and \(\dim W = m_1 + 1 \). This shows our first assertion. The converse is easily seen. q.e.d.

Lemma 6. Assume (1-1) and (1-6) for \(A \). Then, \(B \) satisfies (1-2) if and only if \(B \) is homogeneous of degree 2 on \(Y \) and of degree 1 on \(W \).

Proof. Write

\[
B = \sum_{h=0}^{3} B_h
\]

where \(B_h \) is the homogeneous part of degree \(h \) on \(W \) and hence of degree \(3 - h \) on \(Y \). Consider (1-2). Since \(A = 2(\sum y_j^2) - 6(\sum w_a^2) \) by Lemma 5, we have

\[
\langle A, B \rangle + 4B
\]

\[
= \langle A, B \rangle_Y + \langle A, B \rangle_W + 4B
\]

\[
= 2(\sum y_j^2, B)_Y - 6(\sum w_a^2, B)_W + 4B
\]

\[
= 2(2B_2 + 4B_1 + 6B_0, B)_W + 4B
\]

\[
= 2(2B_2 + 4B_1 + 6B_0, 2B + B_2 + 6B_0)
\]

\[
= -32B_2 - 16B_1 + 16B_0.
\]
Thus (1-2) is equivalent to $B_3 = 0$, $B_2 = 0$ and $B_0 = 0$. This shows Lemma 6.

Hereafter we assume (1-1), (1-6) together with (1-2). The orthogonal decomposition $X = Y \oplus W$ in Lemma 5 gives us the second reduction. Let \{\(y_\alpha\)\} and \{\(w_\alpha\)\} be orthonormal coordinate systems for Y and W respectively where j runs from 1 to $n = m_1 + 2m_2$ and α runs from 0 to m_1. In view of Lemma 6, we can define $m_1 + 1$ quadratic forms $p_{\alpha_1}, \ldots, p_{\alpha_{m_1}}$ on Y by

\[
B = 8 \sum_{\alpha=0}^{m_1} p_{\alpha} w_{\alpha} .
\]

For C, we put

\[
C = \sum_{h=0}^{4} C_h
\]

where C_h is the homogeneous part of degree h on W and hence of degree $4 - h$ on Y, and we define $m_1 + 1$ cubic forms $q_{\alpha_1}, \ldots, q_{\alpha_{m_1}}$ on Y by

\[
C_1 = 8 \sum_{\alpha=0}^{m_1} q_{\alpha} w_{\alpha} .
\]

Lemma 7. The equation (1-3) holds if and only if we have

(i) $C_4 = (\sum w_\alpha^2)^2$,
(ii) $C_3 = 0$,
(iii) $C_2 = 2 \sum_{\alpha,\beta} \langle p_{\alpha}, p_{\beta} \rangle w_\alpha w_\beta - 6(\sum y_\alpha^2)(\sum w_\alpha^2)$,
(iv) $C_1 = (\sum y_\alpha^2)^2 - 2 \sum p_\alpha^2$.

Proof. Recall (1-3):

\[
\langle B, B \rangle + 2 \langle A, C \rangle + 4 A^2 = 48(\sum x_i^2)^2 .
\]

We have

\[
4 A^2 = 4(2(\sum y_\alpha^2) - 6(\sum w_\alpha^2))^2 ,
\]

\[
\langle B, B \rangle = \langle B, B \rangle_Y + \langle B, B \rangle_W = 64 \sum_{\alpha,\beta} \langle p_{\alpha}, p_{\beta} \rangle w_\alpha w_\beta + 64 \sum p_\alpha^2 ,
\]

\[
2 \langle A, C \rangle = 2 \langle A, C \rangle_Y + 2 \langle A, C \rangle_W = 4(\sum y_\alpha^2, \sum C_h) - 12(\sum w_\alpha^2, \sum C_h) = 8(C_2 + 2C_2 + 3C_1 + 4C_0) - 24(4C_4 + 3C_3 + 2C_2 + C_1) - 96C_4 - 64C_5 - 32C_2 + 32C_0 .
\]
and
\[48(\sum x_i^2) = 48(\sum w^2_i) + 96(\sum y_i)(\sum w_i) + 48(\sum y_j^2). \]
Summarizing their homogeneous terms, (1-3) is equivalent to
\[4 \cdot 36(\sum w^2_i) - 96C_4 = 48(\sum w^2_i), \]
\[-64C_4 = 0, \]
\[-96(\sum y_i)(\sum w_i) + 64 \sum \langle p_a, p_b \rangle w_aw_b - 32C_4 = 96(\sum y_i)(\sum w_i), \]
\[16(\sum y_j^2) + 64 \sum p_a^2 + 32C_0 = 48(\sum y_i^2). \]
Now Lemma 7 follows. q.e.d.

REMARK 1. By Lemmas 4, 5, 6 and 7, it follows that the polynomial function \(F \) can be constructed uniquely from \(\{p_a\} \) and \(\{q_a\} \).

Our \(\{p_a\} \) and \(\{q_a\} \) associated to \(F \) depend on the choice of \(e \) in \(S^{N-1} \)
such that \(F(e) = 1 \) and on the choice of an orthonormal coordinate system \(\{w_a\} \) for \(W \). Let \(F' \) be another homogeneous polynomial function of degree 4 on \(R^N \) satisfying (3.1) and (3.2). Choose \(e' \) in \(S^{N-1} \) and \(\{w'_a\} \) for \(W' \) in the same way, so that we have \(\{p'_a\} \) and \(\{q'_a\} \) on \(F' \) associated to \(F' \).

We say that \(F \) and \(F' \) are \(O(N) \)-equivalent if there exists an element \(\sigma \) in \(O(N) \) such that
\[F'(x) = F(\sigma^{-1}x) \text{ for } x \in R^N. \]

Let \(V \) and \(V' \) be two finite-dimensional vector spaces over \(R \). For a linear isomorphism \(\tau \) of \(V \) onto \(V' \), and for a polynomial function \(f \) on \(V \), we denote by \(\tau f \) the polynomial function on \(V' \) obtained by
\[(\tau f)(v') = f(\tau^{-1}v'). \]

With these notations, we state the following two remarks for a later use.

REMARK 2. Suppose that \(F \) and \(F' \) are \(O(N) \)-equivalent by an element \(\sigma \) in \(O(N) \) such that \(\sigma(e) = e' \). Then \(\sigma \) induces orthonormal transformations \(\sigma_w : W \rightarrow W' \) and \(\sigma_y : Y \rightarrow Y' \). By a suitable choice of \(\{w'_a\} \) for \(W' \), we have
\[\sigma_y p_a = p'_a, \quad \sigma_y q_a = q'_a \]
for \(\alpha = 0, 1, \ldots, m \). Conversely, suppose that there exists an orthonormal transformation \(\tau \) of \(Y \) onto \(Y' \) such that
\[\tau p_a = p'_a, \quad \tau q_a = q'_a \]
for \(\alpha = 0, 1, \ldots, m \). Then \(F \) and \(F' \) are \(O(N) \)-equivalent by an element \(\sigma \) in \(O(N) \) such that \(\sigma(e) = e' \).
Remark 3. Consider the case where the isoparametric hypersurface in S^{n-1} defined by $F = c$ for some constant c is homogeneous by a subgroup of $O(N)$. Then it follows that the singular submanifold

$$M_0 = \{ x \in S^{n-1}; F(x) = 1 \}$$

is also homogeneous by the e-component of the same group. Therefore F and F' are $O(N)$-equivalent if and only if there exist an orthogonal matrix $(\tau_{a\beta})$ of degree $m_i + 1$ and an orthonormal transformation σ of Y onto Y' such that

$$p_\beta' = \sum_{a} \tau_{a\beta}(\sigma p_a),
q_\beta' = \sum_{a} \tau_{a\beta}(\sigma q_a)$$

for $\beta = 0, 1, \ldots, m_i$.

Remarks 2 and 3 are immediate consequences of the preceding lemmas.

4. A characterization by $\{p_a\}$ and $\{q_a\}$. We continue the argument of the preceding section under the assumptions (1-1), (1-2), (1-3) and (1-6). The equations (1-4), (1-5), (1-7) and (1-8) will be reformulated first in terms of B, C_0 and C_i, and then in terms of $\{p_a\}$ and $\{q_a\}$, using Lemmas 5, 6 and 7.

First we list the equations:

(2-1) \quad \langle B, C_z \rangle_Y = 8B(\sum w_n^z)
(2-2) \quad \langle B, C_0 \rangle_Y = 0
(2-3) \quad \langle B, C_z \rangle_w + \langle B, C_0 \rangle_Y + 4B(\sum y_j^z) = 0
(2-4) \quad \langle B, C_i \rangle_w = 0
(2-5) \quad \langle C_z, C_z \rangle_Y + 16C_4(\sum w_n^z) = 48(\sum y_j^z)^4(\sum w_n^z)^2
(2-6) \quad \langle C_z, C_i \rangle_Y + 4C_i(\sum w_n^z) = 0
(2-7) \quad \langle C_z, C_z \rangle_w + \langle C_z, C_i \rangle_Y + 2\langle C_z, C_0 \rangle_Y + B^2 = 48(\sum y_j^z)^4(\sum w_n^z)
(2-8) \quad \langle C_i, C_i \rangle_w + \langle C_i, C_0 \rangle_Y = 0
(2-9) \quad \langle C_i, C_i \rangle_w + \langle C_i, C_0 \rangle_Y = 16(\sum y_j^z)^3
(2-10) \quad \Delta_y B = 0
(2-11) \quad \Delta_y C_z = (8m_2 - 12m_i)(\sum w_n^z)
(2-12) \quad \Delta_y C_i = 0
(2-13) \quad \Delta_w C_z + \Delta_y C_0 = (8m_2 - 8m_1 - 4)(\sum y_j^z).
Lemma 8. The following implications hold:

(i) \((1-4) \Rightarrow (2-1), (2-2), (2-3) \text{ and } (2-4),\)

(ii) \((1-5) \Rightarrow (2-5), (2-6), (2-7), (2-8) \text{ and } (2-9),\)

(iii) \((1-7) \Rightarrow (2-10),\)

(iv) \((1-8) \Rightarrow (2-11), (2-12) \text{ and } (2-13).\)

Proof. In each of \((1-4), (1-5), (1-7) \text{ and } (1-8),\) we replace \(A\) by \(2(\sum y_j) - 6(\sum w_a^i),\) \(C\) by \(C_4 + C_5 + C_6 + C_7,\) and then \(C_4\) by \((\sum w_a^k)^t.\)

Decomposing the results into the homogeneous part with respect to the variables \(w_a's,\) we can conclude Lemma 8. We give here the proof of (i). The rest can be shown in a similar way.

Recall \((1-4):\)

\[\langle B, C \rangle + 2AB = 0.\]

We have

\[
\langle B, C \rangle = \langle B, C \rangle_r + \langle B, C \rangle_w
\]

\[= \langle B, C_4 \rangle_r + \langle B, C_5 \rangle_r + \langle B, C_6 \rangle_r + \langle B, C_7 \rangle_r
\]

\[+ \langle B, C_8 \rangle_w + \langle B, C_9 \rangle_w + \langle B, C_10 \rangle_w + \langle B, C_11 \rangle_w.\]

Note \(\langle B, C_4 \rangle_r = 0, \langle B, C_5 \rangle_w = 0,\) and \(\langle B, C_6 \rangle_w = \langle B, (\sum w_a^i)^t \rangle_w = 4B(\sum w_a^i).\)

Thus, we have

\[
\langle B, C \rangle + 2AB
\]

\[= \langle B, C_4 \rangle_r - 8B(\sum w_a^i)
\]

\[+ \langle B, C_5 \rangle_r
\]

\[+ \langle B, C_6 \rangle_r + \langle B, C_7 \rangle_w + 4B(\sum y_j^r)
\]

\[+ \langle B, C_8 \rangle_w,
\]

from which we can see easily \((1-4) \Rightarrow (2-1) \sim (2-4).\) \(\text{q.e.d.}\)

Now we reformulate the above equations \((2-1) \sim (2-13)\) in terms of \(\{p_a\} \text{ and } \{q_a\}\) as follows:

\[(3-1)\]

\[
\left\{ \begin{array}{c}
\langle \langle p_a, p_a \rangle, p_a \rangle = 16p_a, \\
da(\langle p_a, p_a \rangle) = 16m_a
\end{array} \right.
\]

for each \(\alpha;\)

\[(3-2)\]

\[2\langle \langle p_a, p_\beta \rangle, p_\beta \rangle + \langle \langle p_\beta, p_\beta \rangle, p_a \rangle = 16p_a\]

for distinct \(\alpha, \beta;\)

\[(3-3)\]

\[\langle \langle p_\alpha, p_\beta \rangle, p_\gamma \rangle + \langle \langle p_\beta, p_\gamma \rangle, p_\alpha \rangle + \langle \langle p_\gamma, p_\alpha \rangle, p_\beta \rangle = 0\]

for mutually distinct \(\alpha, \beta, \gamma;\)

\[(3-4)\]

\[\langle p_\alpha, q_\alpha \rangle = 0\]

for each \(\alpha;\)

\[(3-5)\]

\[\langle p_\alpha, q_\beta \rangle + \langle p_\beta, q_\alpha \rangle = 0\]

for distinct \(\alpha, \beta;\)
\begin{align}(3-6) \quad & \langle \langle p_\alpha, p_{\beta} \rangle, q_\gamma \rangle + \langle \langle p_\beta, p_\gamma \rangle, q_\alpha \rangle + \langle \langle p_\gamma, p_\alpha \rangle, q_\beta \rangle = 0 \\
& \text{for mutually distinct } \alpha, \beta, \gamma; \\
&(3-7) \quad \sum_{\alpha=0}^{m_1} p_\alpha q_\alpha = 0; \\
&(3-8) \quad 16 \left(\sum_{\alpha=0}^{m_1} q_\alpha^2 \right) = 16 G(\sum y_j) - \langle G, G \rangle; \\
&(3-9) \quad 8 \langle q_\alpha, q_\alpha \rangle = 8(\langle p_\alpha, p_\alpha \rangle(\sum y_j^2) - p_\alpha^2) + \langle \langle p_\alpha, p_\alpha \rangle, G \rangle \\
& \quad - 24G - 2 \sum_{j=0}^{m_1} \langle p_\alpha, p_\gamma \rangle^2 \quad \text{for each } \alpha; \\
&(3-10) \quad 8 \langle q_\alpha, q_\beta \rangle = 8(\langle p_\alpha, p_\beta \rangle(\sum y_j^2 - p_\alpha p_\beta) + \langle \langle p_\alpha, p_\beta \rangle, G \rangle \\
& \quad - 2 \sum_{j=0}^{m_1} \langle p_\alpha, p_\gamma \rangle \langle p_\beta, p_\gamma \rangle \quad \text{for distinct } \alpha, \beta; \\
\end{align}

where \(G = \sum_{\alpha=0}^{m_1} p_\alpha^2 \) and the indices \(\alpha, \beta, \gamma \) run from 0 to \(m_1 \).

Lemma 9. The following implications hold:

(i) \((2-1), (2-10), (2-11) \implies (3-1), (3-2), (3-3) \)

(ii) \((3-1), (3-2), (3-3) \implies (2-1), (2-10) \),

(iii) \((2-6) \implies (3-6); \)

(iv) \((2-4) \implies (3-7); \)

(v) \((2-9) \implies (3-8); \)

(vi) \((2-7) \implies (3-9), (3-10). \)

We give here the proofs of (i) and (iii). The rest can be proved similarly.

Proof of (i). Recall (2-10): \(\Delta \gamma B = 0. \) This is equivalent to \(\Delta p_\alpha = 0. \)

Consider (2-11):

\[
\Delta \gamma C_2 = (8m_2 - 12m_3)(\sum w_\gamma^2).
\]

Using \(C_2 = 2 \sum \langle p_\alpha, p_\beta \rangle w_\alpha w_\beta - 6(\sum y_j^2)(\sum w_\alpha^2), \) we get

\[
\Delta \gamma C_2 = 2 \sum \Delta \gamma \langle \langle p_\alpha, p_\beta \rangle \rangle w_\alpha w_\beta - 12(m_1 + 2m_2)(\sum w_\alpha^2).
\]

Thus, (2-11) can be written as

\[
2 \sum \Delta \gamma \langle \langle p_\alpha, p_\beta \rangle \rangle w_\alpha w_\beta = \{12(m_1 + 2m_2) + 8m_2 - 12m_3\}(\sum w_\alpha^2) = 32m_3(\sum w_\gamma^2).
\]

And hence we see that (2-11) is equivalent to

\begin{align}(2-11-1) \quad & \Delta \langle \langle p_\alpha, p_\alpha \rangle \rangle = 16m_2 \quad \text{for each } \alpha, \\
& \text{and} \end{align}
Now consider (2-1): \(\langle B, C_2 \rangle_Y = 8B(\sum w_i^2) \).

We have

\[
\langle B, C_2 \rangle_Y - 8B(\sum w_i^2) = 2\langle B, \sum \langle p_a, p_b \rangle w_a w_b \rangle_Y - 6\langle B, (\sum y_i^2)(\sum w_i^2) \rangle_Y - 8B(\sum w_i^2) = 16\sum p_a w_a, \sum \langle p_a, p_b \rangle w_a w_b \rangle_Y - 32B(\sum w_i^2) = 16\left\{ \sum \left\langle \langle p_a, p_b \rangle, p_\gamma \right\rangle w_a w_\beta w_\gamma - 16 \sum p_a w_a w_\beta \right\}.
\]

Now we have the implication (2-1), (2-10), (2-11) \(\Rightarrow \) (3-1), (3-2), (3-3).

From the above argument, we also have the implication (3-1), (3-2), (3-3) \(\Rightarrow \) (2-1), (2-10).

Proof of (iii). Recall (2-6): \(\langle C_2, C_i \rangle_Y + 4C_i(\sum w_i^2) = 0. \) By Lemma 7, \(C_2 = 2 \sum \langle p_a, p_b \rangle w_a w_b - 6(\sum y_i^2)(\sum w_i^2) \). We have

\[
\langle C_2, C_i \rangle_Y + 4C_i(\sum w_i^2) = 16\sum \langle p_a, p_b \rangle w_a w_b, \sum q_\tau w_\tau \rangle_Y - 6(\sum w_i^2)(\sum y_i^2), C_i \rangle_Y + 4C_i(\sum w_i^2) = 16 \sum \left\langle \langle p_a, p_b \rangle, q_\tau \rangle w_a w_\beta w_\gamma - 32C_i(\sum w_i^2) = 16\left\{ \sum \left\langle \langle p_a, p_b \rangle, q_\gamma \right\rangle w_a w_\beta w_\gamma - 16 \sum q_\alpha w_\alpha w_\beta \right\}.
\]

Thus, we see that (2-6) is equivalent to the following three conditions as a whole:

(2-6-1) \(\langle \langle p_a, p_a \rangle, q_\alpha \rangle = 16q_\alpha \) for each \(\alpha \);

(2-6-2) \(2\langle \langle p_a, p_b \rangle, q_\alpha \rangle + \langle \langle p_a, p_a \rangle, q_\beta \rangle = 16q_\beta \) for distinct \(\alpha, \beta \);

(2-6-3) \(\langle \langle p_a, p_b \rangle, q_\gamma \rangle + \langle \langle p_\beta, p_\gamma \rangle, q_\alpha \rangle + \langle \langle p_\gamma, p_\alpha \rangle, q_\beta \rangle = 0 \) for distinct \(\alpha, \beta, \gamma \).

Thus we have (2-6) \(\Rightarrow \) (3-6) = (2-6-3).

q.e.d.

Lemma 9 shows the first assertion of the following Theorem 1.

Theorem 1. Let \(m_1 \) and \(m_2 \) be positive integers such that \(N = 2(m_1 + m_2 + 1) \), and put \(n = m_1 + 2m_2 \).

Assume that a homogeneous polynomial function \(F \) of degree 4 on \(\mathbb{R}^n \) satisfies \(\langle F, F \rangle = 16r^4 \) and \(\Delta F = 8(m_2 - m_1)r^4 \). Then two families \{\(p_a \)\} and \{\(q_a \)\} of polynomials associated to \(F \) in § 3 satisfy the equations (3-1) \(\sim \) (3-10).

Conversely, assume that there are given \(m_1 + 1 \) quadratic forms \(p_0, \ldots, p_{m_1} \) and \(m_1 + 1 \) cubic forms \(q_0, \ldots, q_{m_1} \) both on \(\mathbb{R}^n \) such that they
satisfy the equations (3-1)~(3-10). Then the polynomial function F on \mathbb{R}^n constructed from $\{p_a\}$ and $\{q_a\}$ as in § 3 satisfies $\langle F, F \rangle = 16r^8$ and $\Delta F = 8(m - m_*)_r^8$.

To prove "the converse" in Theorem 1, it suffices, in view of Lemma 9, to show that (2-3), (2-5), (2-6), (2-8), (2-11), (2-12) and (2-13) follow from (3-1)~(3-10). We first show (2-3), (2-8) and (2-13) below, and then reformulate the rest in terms of $\{p_a\}$ and $\{q_a\}$. They will be proved in § 5.

Lemma 10. (2-3), (2-8) and (2-13) follow from (3-1)~(3-10).

Proof. Recall (2-3): $\langle B, C_2 \rangle_w + \langle B, C_0 \rangle_Y + 4B(\sum y_j^2) = 0$. We have

$$
\begin{align*}
\langle B, C_0 \rangle_Y &= \langle B, 2 \sum (p_a, p_b)w_aw_bw \rangle_w - \langle B, 6(\sum y_j^2)(\sum w_a^2) \rangle_w \\
&= 32 \sum p_a<p_a, p_b> w_a w_b - 96(\sum p_a w_a)(\sum y_j^2)
\end{align*}
$$

and

$$
\begin{align*}
\langle B, C_0 \rangle_Y &= \langle B, (\sum y_j^2)^2 \rangle_Y - \langle B, 2G \rangle_Y \\
&= 8B(\sum y_j^2) - 16 \sum <p_a, G> w_a.
\end{align*}
$$

Thus, we have

$$
\begin{align*}
\langle B, C_2 \rangle_w + \langle B, C_0 \rangle_Y + 4B(\sum y_j^2)
&= 32 \sum <p_a, p_b> p_aw_a - 16 \sum <p_a, G> w_a \\
&= 16(\sum w_a(2 \sum <p_a, p_b> p_b - <p_a, G>)).
\end{align*}
$$

Since $G = \sum p_j^2$, we have $\langle p_a, G \rangle = 2\sum b <p_a, p_b> p_b$, and hence we have (2-3).

Next recall (2-8): $\langle C_2, C_1 \rangle_w + \langle C_1, C_0 \rangle_Y = 0$. We have

$$
\begin{align*}
\langle C_2, C_1 \rangle_w &= \langle 2 \sum (p_a, p_b)w_aw_bw, 8 \sum q_aw_a \rangle_w \\
&- \langle 6(\sum y_j^2)(\sum w_a^2), 8 \sum q_aw_a \rangle_w \\
&= 32 \sum <p_a, p_b> q_aw_b - 96(\sum y_j^2)(\sum q_aw_a),
\end{align*}
$$

and

$$
\begin{align*}
\langle C_1, C_0 \rangle_Y &= \langle C_1, (\sum y_j^2)^2 \rangle_Y - 2\langle C_1, G \rangle_Y \\
&= 12C(\sum y_j^2) - 2\langle C_1, G \rangle_Y \\
&= 96(\sum y_j^2) \sum q_aw_a - 16 \sum <q_a, G> w_a.
\end{align*}
$$

Hence we have

$$
\begin{align*}
\langle C_2, C_1 \rangle_w + \langle C_1, C_0 \rangle_Y &
= 16(2 \sum <p_a, p_b> q_aw_a - \sum <q_a, G> w_a).
\end{align*}
$$
Now we see that (2-8) is equivalent to
\[2 \sum_{\beta} \langle p_{\alpha}, p_{\beta} \rangle q_{\beta} = \langle q_{\alpha}, G \rangle \]
for each \(\alpha \).

By definition, \(\langle q_{\alpha}, G \rangle = \langle q_{\alpha}, \sum p_{\beta}^2 \rangle = 2 \sum_{\beta} \langle q_{\alpha}, p_{\beta} \rangle p_{\beta} \). Using (3-4) and (3-5), we have
\[\langle q_{\alpha}, G \rangle = -2 \sum_{\beta} \langle p_{\alpha}, q_{\beta} \rangle p_{\beta} \]
Consider (3-7): \(\sum p_{\beta} q_{\beta} = 0 \). We have
\[0 = \langle p_{\alpha}, \sum p_{\beta} q_{\beta} \rangle = \sum_{\beta} \langle p_{\alpha}, p_{\beta} \rangle q_{\beta} + \sum_{\beta} \langle p_{\alpha}, q_{\beta} \rangle p_{\beta} \]
This proves the required equation.

Finally recall (2-13): \(\Delta w C_{2} + \Delta r C_{0} = (8(m_{2} - m_{4}) - 4)(\sum y_{i}^{2}) \). We have
\[
\begin{align*}
\Delta w C_{2} &= \Delta w \{ 2 \sum \langle p_{\alpha}, p_{\beta} \rangle w_{\alpha} w_{\beta} - 6(\sum y_{i}^{2})(\sum w_{\alpha}^{2}) \} \\
&= 4 \sum \langle p_{\alpha}, p_{\alpha} \rangle - 12(m_{i} + 1)(\sum y_{i}^{2})
\end{align*}
\]
and
\[
\begin{align*}
\Delta r C_{0} &= \Delta r \{(\sum y_{i}^{2})^{4} - 2G \} \\
&= (8 + 4n)(\sum y_{i}^{2}) - 2 \sum \Delta r p_{\alpha}^{2} \\
&= (8 + 4n)(\sum y_{i}^{2}) - 2 \sum (2p_{\alpha} \Delta p_{\alpha} + 2\langle p_{\alpha}, p_{\alpha} \rangle)
\end{align*}
\]
Since \(\Delta p_{\alpha} = 0 \) by (3-1), we have
\[
\Delta w C_{2} + \Delta r C_{0} = ((8 + 4n) - 12(m_{i} + 1))(\sum y_{i}^{2})
\]
Now
\[
8 + 4n - 12(m_{4} + 1) = 4(2m_{2} + m_{1}) - 12m_{4} - 4 \\
= 8(m_{2} - m_{1}) - 4
\]
and hence we have (2-13). q.e.d.

Lemma 11. (2-5) and (2-12) can be written as:

(2-5)'
\[
\sum_{\alpha, \beta, T, \delta} \langle \langle p_{\alpha}, p_{\beta} \rangle, \langle p_{T}, p_{\delta} \rangle \rangle w_{\alpha} w_{\beta} w_{T} w_{\delta} = 16 \sum_{\alpha, \beta, T} \langle p_{\alpha}, p_{\beta} \rangle w_{\alpha} w_{\beta} w_{T}^{2} ;
\]

(2-12)'
\[
\Delta q_{\alpha} = 0 \quad \text{for each } \alpha
\]
respectively.

Proof. Recall (2-5): \(\langle C_{2}, C_{2} \rangle_{Y} + 16C_{4}(\sum w_{\alpha}^{2}) = 48(\sum w_{\alpha}^{2})(\sum y_{i}^{2}) \), and \(C_{2} = 2 \sum \langle p_{\alpha}, p_{\beta} \rangle w_{\alpha} w_{\beta} - 6(\sum y_{i}^{2})(\sum w_{\alpha}^{2}) \).

We have
\[\langle C, C \rangle_Y = 4 \sum_{a, \beta, r, \delta} \langle p_a, p_\beta \rangle w_a w_\beta \sum_{i} w_i^2 - 96 \sum_{a, \beta} \langle p_a, p_\beta \rangle w_a w_\beta (\sum w_i^2) + 4 \cdot 36 (\sum w_i^2)^4 (\sum y_j^2), \]

and

\[16 C_d (\sum w_i^2) = 32 \sum_{a, \beta} \langle p_a, p_\beta \rangle w_a w_\beta w_i^2 - 96 (\sum y_j^2) (\sum w_i^2)^4. \]

They show that (2-5) is equivalent to (2-5)'.

Recall (2-12): \(\Delta C_i = 0 \). Since \(C_i = \sum q_a w_a \), clearly (2-12) is equivalent to (2-12)'.

Note that (2-6) and (2-11) have been reformulated in the proof of Lemma 9.

5. The third decomposition of \(R^\gamma \). In this section, first the family \(\{ p_a \} \) of quadratic forms on \(Y \) will be characterized in matricial forms. Then we shall give a further decomposition of the space \(Y \). The proof of Theorem 1 will be completed.

For each quadratic form \(p_a \) on \(Y \), we define the symmetric linear mapping \(P_a \) of \(Y \) as in §2 by

\[P_a = \eta(p_a). \]

We have

Lemma 12. The conditions (3-1), (3-2) and (3-3) on \(\{ p_a \} \) are equivalent to the following conditions (i), (ii) and (iii) respectively:

(i) For each \(\alpha \), we have

\[(4-1)_a \]

\[P_a^3 = P_a, \quad \text{Tr } P_a = 0, \quad \text{rank } P_a = 2m; \]

(ii) For each distinct \(\alpha, \beta \), we have

\[(4-2)_{a, \beta} \]

\[P_a = P_\beta P_a + P_\alpha P_\beta + P_\beta P_\alpha P_\beta; \]

(iii) For each mutually distinct \(\alpha, \beta, \gamma \) we have

\[(4-2)_{a, \beta, \gamma} \]

\[\Theta(P_a P_\beta P_\gamma) = 0, \]

where \(\Theta \) denotes the sum of terms obtained by interchanging the indices over all permutations.

Note \(\dim Y = n = m + 2m \). Lemma 12 follows by direct verifications, using (2.14), (2.15) and (2.16).

Lemma 13. (2-5) follows from (3-1), (3-2) and (3-3).

Proof. Recall, by Lemma 11, (2-5) \(\iff \) (2-5)'.

534 H. OZEKI AND M. TAKEUCHI
\[
\sum_{a,\beta,\gamma,\delta} \langle \langle p_a, p_\beta \rangle, \langle p_\gamma, p_\delta \rangle \rangle w_a w_\beta w_\gamma w_\delta = 16 \sum_{a,\beta} \langle p_a, p_\beta \rangle w_a w_\beta w_\gamma^2.
\]

The monomials of \(w_a\)'s appearing in (2-5)' are classified in the following types:

\[w_\alpha^\alpha, w_\beta^\beta w_\beta, w_\alpha^\alpha w_\beta^\beta, w_\alpha^\alpha w_\gamma w_\delta, w_\alpha w_\beta w_\gamma w_\delta\]

where \(\alpha, \beta, \gamma\) and \(\delta\) are all distinct. Now (2-5)' decomposes into the following five equations:

(2-5-1) \[\langle \langle p_\alpha, p_\alpha \rangle, \langle p_\alpha, p_\alpha \rangle \rangle = 16 \langle p_\alpha, p_\alpha \rangle ,\]
(2-5-2) \[\langle \langle p_\beta, p_\alpha \rangle, \langle p_\beta, p_\alpha \rangle \rangle = 8 \langle p_\beta, p_\alpha \rangle ,\]
(2-5-3) \[\langle \langle p_\gamma, p_\beta \rangle, \langle p_\gamma, p_\beta \rangle \rangle + 2 \langle \langle p_\alpha, p_\beta \rangle, \langle p_\gamma, p_\beta \rangle \rangle = 8 \langle p_\gamma, p_\beta \rangle ,\]
(2-5-4) \[\langle \langle p_\beta, p_\gamma \rangle, \langle p_\beta, p_\gamma \rangle \rangle + 2 \langle \langle p_\alpha, p_\gamma \rangle, \langle p_\beta, p_\gamma \rangle \rangle = 8 \langle p_\beta, p_\gamma \rangle ,\]
(2-5-5) \[\langle \langle p_\alpha, p_\gamma \rangle, \langle p_\beta, p_\gamma \rangle \rangle = 0 ,\]

where \(\alpha, \beta, \gamma, \delta\) are all distinct.

We give here a proof of (2-5-4). In the following verification, \(P_\alpha, P_\beta, \ldots\) are denoted simply by \(\alpha, \beta, \ldots\), and the notation \(\langle , \rangle\) is also used for mappings, i.e., \(\langle \alpha, \beta \rangle = 2(\alpha \beta + \beta \alpha)\).

To prove (2-5-4), it suffices to show

\[\langle \langle \alpha, \alpha \rangle, \langle \beta, \gamma \rangle \rangle + 2 \langle \langle \alpha, \beta \rangle, \langle \alpha, \gamma \rangle \rangle = 8 \langle \beta, \gamma \rangle .\]

The left hand side

\[= 8(\langle \alpha^4, (\beta \gamma + \gamma \beta) \rangle + \langle (\alpha \beta + \beta \alpha), (\alpha \gamma + \gamma \alpha) \rangle)\]

\[= 16(\alpha^2 \beta \gamma + \alpha^2 \gamma \beta + \beta \gamma \alpha^2 + \gamma \beta \alpha^2 + \alpha \beta \alpha \gamma + \alpha \beta \gamma \alpha + \beta \alpha \gamma + \beta \alpha \gamma + \alpha \gamma \alpha \beta + \gamma \alpha \beta + \gamma \alpha \beta) .\]

The right hand side

\[= 16(\beta \gamma + \gamma \beta) .\]

From (4-2)\(_{\gamma, a}\): \(\gamma = \alpha^2 \gamma + \gamma \alpha^2 + \alpha \gamma \alpha\), we have
\[\gamma \beta = \alpha^2 \gamma \beta + \gamma \alpha^2 \beta + \alpha \gamma \alpha \beta .\]

From (4-2)\(_{\beta, a}\): \(\beta = \alpha^2 \beta + \beta \alpha^2 + \alpha \beta \alpha\), we have
\[\beta \gamma = \alpha^2 \beta \gamma + \beta \alpha^2 \gamma + \alpha \beta \alpha \gamma .\]
Substituting them, we see that it suffices to show
\[\beta_1 \alpha^2 + \gamma_1 \beta_\gamma + \alpha_\beta \gamma \alpha + \beta_\alpha \gamma \alpha + \alpha_\gamma \beta \alpha + \gamma_1 \alpha \beta \alpha = 0. \]

Now the left hand side of this equation coincides with \(\Theta(\alpha \beta \gamma) \alpha \), which is 0 by (4-3)\(_{a,b,\gamma} \).

The rest of equations can be proved in a similar way. q.e.d.

From now on in this section we assume (3-1) and (3-2). We choose an arbitrary index \(\alpha \), say \(\alpha = 0 \).

By virtue of (4-1)\(_{\alpha} \), each \(P_\alpha \) has the eigenvalues 1, -1 and 0. We decompose the space \(Y \) into the eigenspaces of \(P_\alpha \);

\[Y = U \bigoplus V \bigoplus Z \]

where \(U, V \) and \(Z \) are the eigenspaces of \(P_\alpha \) for the eigenvalues 1, -1 and 0 respectively. Note that the decomposition (5.2) is orthogonal since \(P_\alpha \) is symmetric and that, by (4-1)\(_{\alpha} \), we have

\[
\begin{align*}
\dim U &= \dim V = m_2, \\
\dim Z &= m_1.
\end{align*}
\]

Now, with respect to orthonormal bases of \(U, V \) and \(W \), \(P_\alpha \) is represented by the matrix;

\[
P_\alpha \sim \begin{pmatrix}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{pmatrix}
\]

where 1 denotes the identity matrix of degree \(m_2 \). Similarly, we have

Lemma 14. For each \(\alpha > 0 \), \(P_\alpha \) is represented by the following matrix;

\[
P_\alpha \sim \begin{pmatrix}
0 & a_\alpha & b_\alpha \\
a_\alpha' & 0 & c_\alpha \\
b_\alpha' & c_\alpha & 0
\end{pmatrix}
\]

where \(a_\alpha \) is \(m_2 \times m_3 \), \(b_\alpha \) and \(c_\alpha \) are \(m_2 \times m_2 \) and ' indicates the transpose. Further they satisfy

\[
\begin{align*}
(a_\alpha a_\alpha' + 2b_\alpha b_\alpha' = 1, \\
b_\alpha b_\alpha = c_\alpha c_\alpha);
\end{align*}
\]

\[
\begin{align*}
(b_\alpha c_\alpha a_\alpha' + a_\alpha c_\alpha b_\alpha' = 0, \\
c_\alpha b_\alpha a_\alpha + a_\alpha' b_\alpha c_\alpha = 0, \\
c_\alpha' a_\alpha b_\alpha + b_\alpha' a_\alpha c_\alpha = 0.
\end{align*}
\]

Conversely, assume that a matrix of the above form is given and satisfies (5.4), (5.5). Then it satisfies (4-1)\(_{\alpha} \), (4-2)\(_{\alpha} \), and (4-2)\(_{\beta,\alpha} \).
PROOF. Consider \((4-2)_{\alpha,0}\): \[P_{\alpha} = P_{\alpha}^0P_{\alpha} + P_{\alpha}P_{\alpha}^0 + P_{\alpha}P_0P_0. \]
This gives the required form for \(P_{\alpha}\). Similarly, \((4-2)_{0,\alpha}\):
\[P_0 = P_0^0P_0 + P_0^0P_0 + P_0P_\alphaP_\alpha \]
gives (5.4). If we assume \((4-2)_{\alpha,0}, (4-2)_{0,\alpha}\), then \((4-1)_{\alpha}\) is equivalent to (5.5). Note that the condition: \(\text{rank } P_{\alpha} = 2m_\alpha\) follows from (5.4) and (5.5). q.e.d.

COROLLARY 1. \((2-11-2)\) holds, i.e., we have \(\Delta\langle p_{\alpha}, p_\beta\rangle = 0\) for each distinct \(\alpha, \beta\).

PROOF. Without loss of generality, we may assume \(\beta = 0\). We have \(\Delta\langle p_{\alpha}, p_\alpha\rangle = 4 \text{Tr} (P_{\alpha}P_{\alpha} + P_{\alpha}P_0)\).
It can be easily verified that \(\text{Tr} (P_{\alpha}P_{\alpha}) = 0\) and \(\text{Tr} (P_{\alpha}P_0) = 0\) for \(\alpha > 0\) using Lemma 14. q.e.d.

Let \(\{u_i\}, \{v_i\}\) and \(\{z_k\}\) be orthonormal coordinate systems for \(U, V\) and \(Z\) respectively. We consider the homogeneous degree with respect to the variables \(z_i, \ldots, z_{m_1}\) for polynomial functions on \(Y\). Let
\[p_{\alpha} = \sum_{h} p_{\alpha,h}, \quad q_{\alpha} = \sum_{h} q_{\alpha,h} \]
be the decompositions into homogeneous parts with respect to \(z_i, \ldots, z_{m_1}\), where \(h\) indicates the total degree on \(\{z_i\}\).

COROLLARY 2. For each \(\alpha > 0\), we have
(i) \(p_{\alpha,2} = 0\),
(ii) \(\langle p_{\alpha}, p_{\alpha,0}\rangle = 0\).

One can verify them using matricial forms given in Lemma 14.

LEMMA 15. We have, from (3-8) and (3-4),
(i) \(q_{\alpha,3} = 0\) for each \(\alpha\),
(ii) \(q_0\) is homogeneous of degree 1 on \(U, V\) and \(W\).

PROOF. (i) Recall (3-8):
\[16\left(\sum_{\alpha} q_{\alpha}^2\right) = 16(\sum y_i^2)G - \langle G, G\rangle \]
where \(G = \sum_{\alpha} p_{\alpha}^2\) and \(\sum y_i^2 = \sum u_i^2 + \sum v_i^2 + \sum z_i^2\). In the equation (3-8),
consider the homogeneous parts of degree 6 with respect to z_1, \ldots, z_m.

Since $p_{\alpha,\beta} = 0$, the total degree of G with respect to z_k's is less than 4.

Similarly, the total degree of $\langle G, G \rangle$ with respect to z_k's is less than 6, since $\langle G, G \rangle = 4 \sum \langle p_\alpha, p_\beta \rangle p_\alpha p_\beta$. Thus, we have $\sum q_{\alpha,\beta}^2 = 0$, and hence $q_{\alpha,\beta} = 0$ for each α.

(ii) For $\alpha = 0$, (3-4) gives

$$\langle p_0, q_0 \rangle = 0.$$

Now we have $p_0 = \sum u_i^2 - \sum v_i^2$, and hence

$$\langle p_0, q_0 \rangle = 2 \sum u_i \frac{\partial q_0}{\partial u_i} - 2 \sum v_i \frac{\partial q_0}{\partial v_i}.$$

If S is homogeneous of degree k and l with respect to $\{u_i\}$ and $\{v_i\}$ respectively, then we have

$$\langle p_0, S \rangle = 2(k - l)S.$$

Thus, $\langle p_0, q_0 \rangle = 0$ implies that each non zero term of q_0 consists of monomials with the same degree on $\{u_i\}$ and $\{v_i\}$. Since q_0 is cubic and $q_{0,3} = 0$ by (i), we have (ii).

Corollary. (2-12) and (2-6-1) follow from (3-1)~(3-10).

Proof. Recall (2-12) \iff (2-12)': $\Delta q_\alpha = 0$ for each α. Without loss of generality, we may assume $\alpha = 0$. Then $\Delta q_0 = 0$ follows from (ii) of Lemma 15.

Next, recall (2-6-1): $\langle \langle p_\alpha, p_\beta \rangle, q_\alpha \rangle = 16q_\beta$ for each α. Again we may assume $\alpha = 0$ without loss of generality. Since $p_0 = \sum u_i^2 - \sum v_i^2$, we have

$$\langle p_0, p_0 \rangle = 4(\sum u_i^2 + \sum v_i^2).$$

By (ii) of Lemma 15, $q_0 = q_{0,1}$. Now we have

$$\langle \langle p_0, p_0 \rangle, q_0 \rangle = \langle \langle p_0, p_0 \rangle, q_{0,1} \rangle = 16q_{0,1} = 16q_0.$$

This proves our corollary.

Lemma 16. (2-6-2) follows from (3-1)~(3-10).

Proof. Recall (2-6-2): $2\langle \langle p_\alpha, p_\beta \rangle, q_\alpha \rangle + \langle \langle p_\alpha, p_\alpha \rangle, q_\beta \rangle = 16q_\beta$ for each distinct α, β. Interchanging the indices, it suffices to show

$$2\langle \langle p_0, p_0 \rangle, q_0 \rangle + \langle \langle p_0, p_0 \rangle, q_\alpha \rangle = 16q_\alpha$$

for $\alpha > 0$. From $\langle p_0, p_0 \rangle = 4(\sum u_i^2 + \sum v_i^2)$, we have

$$\langle \langle p_0, p_0 \rangle, q_{0,1} \rangle = 8(3 - h)q_{0,1}.$$
for any \(h \). Since \(q_{a,3} = 0 \) by (i) of Lemma 15, it suffices now to show
\[
\langle\langle p_0, p_a\rangle, q_0\rangle = 4q_{a,2} - 4q_{a,0}.
\]
By Corollary 2 of Lemma 14, it suffices to show
\[
(\ast)\quad \langle\langle p_0, p_{a,1}\rangle, q_0\rangle = 4q_{a,2} - 4q_{a,0}.
\]
Now we consider the total degree on the variables \(u_1, \ldots, u_{m_2} \). Let
\[
p_{a,1} = s_1 + s_0,
q_{a,0} = f_3 + f_2 + f_1 + f_0,
q_{a,1} = g_2 + g_1 + g_0,
q_{a,2} = h_1 + h_0
\]
be the decompositions into homogeneous parts, where each suffix indicates the total degree on \(u_1, \ldots, u_{m_2} \). Let
\[
p_{a,1} = s_{11} + s_{10},
q_{a,0} = f_{11} + f_{10} + f_{01} + f_{00},
q_{a,1} = g_{11} + g_{10} + g_{01} + g_{00},
q_{a,2} = h_{11} + h_{10} + h_{01} + h_{00}
\]
be the decompositions into homogeneous parts, where each suffix indicates the total degree on \(u_1, \ldots, u_{m_2} \). Recall (3-5). We have
\[
\langle p_0, q_{a}\rangle + \langle p_a, q_0\rangle = 0,
\]
and hence
\[
\langle p_0, q_{a,0}\rangle + \langle p_0, q_{a,1}\rangle + \langle p_0, q_{a,2}\rangle
+ \langle p_{a,0}, q_{0,1}\rangle + \langle p_{a,1}, q_{0,1}\rangle = 0.
\]
Equivalently, we have
\[
\{\langle p_0, q_{a,2}\rangle + \langle p_{a,1}, q_0\rangle_{|u_i, v_j}\}
+ \{\langle p_0, q_{a,1}\rangle + \langle p_{a,0}, q_{0,1}\rangle\}
+ \{\langle p_0, q_{a,0}\rangle + \langle p_{a,1}, q_0\rangle_{|z}\} = 0.
\]
Observing the degree with respect to \(z_1, \ldots, z_{m_1} \) of each term in the above equation, we obtain:
\[
(1)\quad \langle p_0, q_{a,2}\rangle + \langle p_{a,1}, q_0\rangle_{|u_i, v_j} = 0,
(2)\quad \langle p_0, q_{a,1}\rangle + \langle p_{a,0}, q_0\rangle = 0,
(3)\quad \langle p_0, q_{a,0}\rangle + \langle p_{a,1}, q_0\rangle_{|z} = 0.
\]
From \(p_0 = \sum u_i^2 - \sum v_i^2 \), we obtain:
\[
(4)\quad \langle p_0, q_{a,2}\rangle = 2h_1 - 2h_0,
(5)\quad \langle p_0, q_{a,1}\rangle = 4g_1 - 4g_0,
(6)\quad \langle p_0, q_{a,0}\rangle = 2(3f_3 + f_2 - f_1 - 3f_0).
\]
On the other hand, we have
\[
\langle p_{a,1}, q_0\rangle_{|u_i, v_j} = \langle s_0, q_0\rangle_{|u_i, v_j} + \langle s_1, q_0\rangle_{|u_i, v_j}
= \langle s_0, q_0\rangle_{V} + \langle s_1, q_0\rangle_{V}.
\]
Substituting this and (4) into (1), we get

\[
\begin{align*}
2h_i + \langle s_i, q_0 \rangle_v &= 0, \\
2h_0 - \langle s_i, q_0 \rangle_v &= 0.
\end{align*}
\] (7)

Similarly, substituting \(\langle p_{a1}, q_0 \rangle_z = \langle s_i, q_0 \rangle_z + \langle s_0, q_0 \rangle_z \) and (6) into (3), we get

\[
\begin{align*}
\langle f_i = f_0 = 0, \\
2f_z + \langle s_i, q_0 \rangle_z &= 0, \\
2f_1 - \langle s_0, q_0 \rangle_z &= 0.
\end{align*}
\] (8)

Since \(\langle p_0, p_{a1} \rangle = \langle p_0, s_i \rangle + \langle p_0, s_i \rangle = -2s_0 + 2s_i \), (7) and (8) give the required equation (*). q.e.d.

Note that we have completed the proof of Theorem 1.

6. A further characterization. In this section we give a further characterization of \(\{p_a\} \) and \(\{q_a\} \) under an additional condition (A) for a later use. Let \(\{p_a\} \) be \(m_i + 1 \) quadratic forms on \(Y \) satisfying (3-1) and (3-2). With the notations in § 5, we state

Lemma 17. The following three conditions are mutually equivalent:

(i) \(\langle p_{\alpha}, p_{\beta} \rangle = 0 \) for distinct \(\alpha, \beta \);

(ii) \(\langle p_{\alpha}, p_{\alpha} \rangle = \langle p_{\beta}, p_{\beta} \rangle \) for distinct \(\alpha, \beta \);

(iii) \(p_{a1} = 0 \) for each \(a \).

Proof. As one can see easily, to prove Lemma 17, it suffices to show that, for each \(\alpha > 0 \), the following three conditions are mutually equivalent:

(i)' \(\langle p_0, p_{\alpha} \rangle = 0 \);

(ii)' \(\langle p_{\alpha}, p_{\alpha} \rangle = \langle p_{\alpha}, p_{\alpha} \rangle \);

(iii)' \(p_{a1} = 0 \).

Using Lemma 14, we give matricial representations for \(\langle p_0, p_{\alpha} \rangle, \langle p_{\alpha}, p_{\alpha} \rangle \) and \(p_{a1} \). In the following, the indices for submatrices are omitted. We have

\[
\begin{align*}
\langle p_0, p_{\alpha} \rangle &\sim 2 \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & -c \\ b' & -c' & 0 \end{pmatrix}, \\
\langle p_{\alpha}, p_{\alpha} \rangle &\sim 4 \begin{pmatrix} aa' + bb' & bc' & ac \\ cb' & a' + cc' & a'b' \\ c'a' & b'a & b'b + c'c' \end{pmatrix}.
\end{align*}
\]
Thus, (i)′ ⇒ (iii)′ and (iii)′ ⇒ (ii)′ are clear. Suppose (ii)′. Then \(aa' + bb' = 1 \). Since \(aa' + 2bb' = 1 \) by Lemma 14, we see \(bb' = 0 \), and hence \(b = 0 \). Similarly we have \(c = 0 \). This proves (ii)′ ⇒ (iii)′. q.e.d.

From now on we denote by (A) one of the three conditions in Lemma 17. Now assume that \(\{p_a\} \) satisfy the condition (A) together with (3-1) and (3-2). We remark here that the image and the kernel of \(P_a \) are independent on \(a \) and that the condition (3-3) follows automatically. We put, for each \(a \),

\[
R_a = P_a \mid_{U \oplus V}.
\]

We see that \(R_a \) is a symmetric mapping of \(U \oplus V \) into itself and for \(\alpha = 0 \), \(R_0 \mid_U = 1_U \), \(R_0 \mid_V = -1_V \). Furthermore it is easily seen that the family \(\{R_a\} \) satisfies the following two conditions:

\[
\begin{align*}
(5-1) & \quad R_a^2 = 1_{U \oplus V}, \quad \text{Tr } R_a = 0 \quad \text{for each } \alpha; \\
(5-2) & \quad R_\alpha R_\beta + R_\beta R_\alpha = 0 \quad \text{for distinct } \alpha, \beta.
\end{align*}
\]

Conversely, we have

Lemma 18. Let \(\{R_a\} \) be \(m_1 + 1 \) symmetric mappings of \(U \oplus V \) into itself satisfying (5-1) and (5-2). Then we can associate \(m_1 + 1 \) quadratic forms \(\{p_a\} \) on \(Y \) satisfying (3-1), (3-2) and the condition (A) with the relation (6.1) for each \(\alpha \).

Proof. For each \(R_a \), we define \(P_a \) by

\[
P_a = \begin{cases}
R_a & \text{on } U \oplus V \\
0 & \text{on } Z.
\end{cases}
\]

Then \(P_a \) is a symmetric mapping of \(Y = U \oplus V \oplus Z \). Now (5-1) implies (4-1) for each \(\alpha \). From the construction of \(P_a \), it follows that (4-2) is a consequence of (5-2). Let \(p_a \) be the quadratic form on \(Y \) corresponding to \(P_a \). \(\{p_a\} \) satisfy the required conditions. q.e.d.

Lemma 19. Assume that \(\{p_a\} \) satisfy (3-1), (3-2) and the condition (A). Let \(\{q_a\} \) be \(m_1 + 1 \) cubic forms on \(Y \). Then (3-3) and (3-6) follow immediately. The conditions (3-8), (3-9) and (3-10) can be written equivalently as

\[
(5-8) \quad \sum q_i^2 = G(\sum z_i^2),
\]
542 H. OZEKI AND M. TAKEUCHI

\[(5-9) \quad \langle q_\alpha, q_\alpha \rangle = G - p_\alpha^2 + 4(\sum u_i^2 + \sum v_i^2)(\sum z_i^2) \quad \text{for each } \alpha ,\]

\[(5-10) \quad \langle q_\alpha, q_\beta \rangle = -p_\alpha p_\beta \quad \text{for distinct } \alpha, \beta\]

respectively.

Proof. By Lemma 17, we see that (3-3) and (3-6) follow immediately from (A). For \(G = \sum p_\alpha^2 \), consider \(\langle G, G \rangle \). We have

\[
\langle G, G \rangle = \sum_{\alpha, \beta} \langle p_\alpha, p_\beta \rangle = 4 \sum_{\alpha, \beta} p_\alpha p_\beta \langle p_\alpha, p_\beta \rangle
\]

\[= 4 \sum \alpha p_\alpha^2 \langle p_\alpha, p_\alpha \rangle = 4 \left(\sum p_\alpha^2 \right) \langle p_\alpha, p_\beta \rangle
\]

\[= 16G(\sum u_i^2 + \sum v_i^2) .
\]

This gives (3-8) \(\Rightarrow \) (5-8). Since each \(p_\beta \) is a quadratic form on \(U \oplus V \), we have

\[
\langle \langle p_\alpha, p_\alpha \rangle, p_\beta \rangle = \langle \langle p_\alpha, p_\alpha \rangle, p_\beta \rangle
\]

\[= \langle \langle p_\alpha, p_\alpha \rangle, p_\beta \rangle_{U \oplus V} = 16p_\beta .
\]

Thus, we have

\[
\langle \langle p_\alpha, p_\alpha \rangle, G \rangle = \sum_{\beta} \langle \langle p_\alpha, p_\alpha \rangle, p_\beta \rangle
\]

\[= \sum_{\beta} 2p_\beta \langle \langle p_\alpha, p_\alpha \rangle, p_\beta \rangle = 32G .
\]

This and Lemma 17 give (3-9) \(\Rightarrow \) (5-9). Lemma 17 gives also (3-10) \(\Rightarrow \) (5-10).

By Lemmas 18 and 19, it follows that for a given \(\{R_\alpha\} \) satisfying (5-1) and (5-2), the required conditions for \(\{q_\alpha\} \) in Theorem 1 are now (3-4), (3-5), (3-7), (5-8), (5-9) and (5-10).

For a later use, we give the following lemma.

Lemma 20. Let \(\{p_\alpha\} \) be \(m_1 + 1 \) quadratic forms on \(Y \) satisfying (3-1), (3-2) and (A). Then \(p_\alpha, \ldots, p_{m_1} \), are algebraically independent over \(R \).

Proof. First we prove that \(p_\alpha, \ldots, p_{m_1} \) are linearly independent over \(R \). Suppose \(\sum a_\alpha p_\alpha = 0, a_\alpha \in R \). We have for any \(\beta \),

\[
\langle p_\beta, \sum a_\alpha p_\alpha \rangle = a_\beta \langle p_\beta, p_\beta \rangle ,
\]

and hence \(a_\beta = 0 \). Next suppose

\[
\sum a_{i_0\ldots i_m} p_{i_0}^{i_0} \ldots p_{i_m}^{i_m} = 0 .
\]

Since each \(p_\alpha \) is a quadratic form, we have
for each \(l \). We shall show \(a_{i_0 \ldots i_{m_1}} = 0 \) for all \(i_0, \ldots, i_{m_1} \). This will be shown by the induction on \(l = i_0 + \cdots + i_{m_1} \). The case \(l = 1 \) has been proved. For each \(\beta \), we have
\[
\langle p_{\beta}, \sum a_{i_0 \ldots i_{m_1}} p_{i_0}^0 \cdots p_{i_{m_1}}^1 \rangle = \sum i_{\beta} a_{i_0 \ldots i_{m_1}} p_{i_0}^0 \cdots p_{i_{m_1}}^1 = 0.
\]
Using this, one can complete easily the proof. q.e.d.

7. Representations of a Clifford algebra. In this section we prove certain lemmas concerning representations of a Clifford algebra for a later use.

Let \(F \) be an associative division algebra over \(\mathbb{R} \), i.e., \(F = \mathbb{R}, \mathbb{C} \) or the real quaternion algebra \(\mathbb{H} \). We denote by \(M_m(F) \) the algebra of all \(m \times m \) matrices with coefficients in \(F \), and by \(1_m \) the unit matrix in \(M_m(F) \). \(M_m(F) \) is called the total matrix algebra over \(F \) of degree \(m \).

For each non-negative integer \(\kappa \), we denote by \(C_\kappa \) the Clifford algebra over \(\mathbb{R} \) associated to the negative definite quadratic form \(-<,> \) on \(\mathbb{R}^\kappa \), where \(<,> \) is the usual inner product on \(\mathbb{R}^\kappa \). Let \(\{e_1, \ldots, e_\kappa\} \) be an orthonormal base for \(\mathbb{R}^\kappa \) with respect to \(<,> \). Then \(C_\kappa \) is the associative algebra over \(\mathbb{R} \) with the unit 1 generated by \(e_1, \ldots, e_\kappa \) with the relations:
\[
\begin{align*}
e_k^2 &= -1 & \text{ for each } k, \\
e_k e_l + e_l e_k &= 0 & \text{ for each distinct } k, l,
\end{align*}
\]
and \(\{1, e_1 \cdots e_\kappa; k_1 < \cdots < k_r, 1 \leq r \leq \kappa\} \) forms a basis of the underlying vector space of \(C_\kappa \), and hence \(\dim C_\kappa = 2^\kappa \). We denote by \(x \rightarrow x^* \) the canonical involution of \(C_\kappa \), that is, the anti-automorphism of \(C_\kappa \) satisfying \(e_k = -e_k \) for each \(k \). A homomorphism
\[
\rho: C_\kappa \rightarrow M_m(\mathbb{R}) \text{ with } \rho(1) = 1_m
\]
is called a representation of \(C_\kappa \) of degree \(m \). Two representations \(\rho, \tilde{\rho} \) of \(C_\kappa \) of degree \(m \) are said to be equivalent if there exists \(A \in GL(m, \mathbb{R}) \) such that \(\tilde{\rho}(x) = A \rho(x) A^{-1} \) for each \(x \in C_\kappa \). The set of equivalence classes of representations of \(C_\kappa \) of degree \(m \) will be denoted by \(\mathcal{R}_m(C_\kappa) \).

We consider a representation \(\rho \) of \(C_\kappa \) of degree \(m \) satisfying
\[
(7.1) \quad \rho(x^*) = \rho(x)', \quad \text{ for each } x \in C_\kappa,
\]
where ' indicates the transpose of a matrix. Two representations \(\rho, \tilde{\rho} \) of \(C_\kappa \) satisfying (7.1) are said to be orthogonally equivalent if there exists
\[\sigma \in O(m) \text{ such that } \tilde{\sigma}(x) = \sigma \rho(x) \sigma^{-1} \text{ for each } x \in C_\kappa. \]

The set of orthogonal equivalence classes of representations of \(C_\kappa \) of degree \(m \) satisfying (7.1) will be denoted by \(\mathcal{R}_m(\kappa, \ast) \).

Lemma 21. The natural map:
\[\mathcal{R}_m(\kappa, \ast) \rightarrow \mathcal{R}_m(\kappa) \]
is a bijection.

Proof. The bracket operation \([x, y] = xy - yx\) on \(C_\kappa \) defines a Lie algebra over \(\mathbb{R} \), which is denoted by \(g \). Since \(C_\kappa \) is a semi-simple algebra over \(\mathbb{R} \), it is the direct sum of a finite number of total matrix algebras. It follows that \(g \) has a natural structure of reductive algebraic Lie algebra over \(\mathbb{R} \).

Now the canonical involution \(x \rightarrow x^* \) of \(C_\kappa \) is a positive involution in the sense that the symmetric bilinear form \(Tr(L_{xy}) \) on \(C_\kappa \) is positive definite, \(L_x \) being the left regular representation of \(C_\kappa \): \(L_x y = xy \).

In fact, for \(x_0 = e_{i_1} \cdots e_{i_r} \), \(y_0 = e_{j_1} \cdots e_{j_s} \), we have
\[x_0 y_0^* = \begin{cases} 1 & r = s, \{i_1, \ldots, i_r\} = \{j_1, \ldots, j_s\} \\ \pm e_{k_1} \cdots e_{k_t}, t > 0 & \text{otherwise} \end{cases} \]
where
\[\{k_1, \ldots, k_t\} = \{i_1, \ldots, i_r\} \cup \{j_1, \ldots, j_s\} - \{i_1, \ldots, i_r\} \cap \{j_1, \ldots, j_s\} \]
Thus we have
\[Tr(L_{x_0 y_0^*}) = \begin{cases} \dim C_\kappa = 2^r > 0 & r = s, \{i_1, \ldots, i_r\} = \{j_1, \ldots, j_s\} \\ 0 & \text{otherwise} \end{cases} \]
and hence \(Tr(L_{xy^*}) \) is positive definite on \(C_\kappa \). Thus, by a theorem of Weil [8], the map \(\theta \) of \(g \) defined by \(x \rightarrow x^* \) is a Cartan involution of \(g \).

We shall show first the surjectivity. Let \(\rho \) be a representation of \(C_\kappa \) of degree \(m \). Then the representation
\[\rho: g \rightarrow gl(m, \mathbb{R}) \]
is completely reducible. Hence there exists a Cartan involution \(\theta_0 \) of \(gl(m, \mathbb{R}) \) such that
\[\theta_0(\rho(x)) = \rho(\theta(x)) \quad \text{for each } x \in g. \]
\(\theta_0 \) can be expressed as
\[\theta_0(X) = -P^{-1}X'P \quad \text{for } X \in gl(m, \mathbb{R}) \]

* The proof of surjectivity is due to I. Satake.
by a positive definite symmetric matrix $P \in M_m(R)$. Thus we have

$$\rho(x^*) = P^{-1}\rho(x)'P$$

for $x \in C_\varepsilon$.

Put $A = P^{1/2}$ and

$$\tilde{\rho}(x) = A\rho(x)A^{-1}$$

for $x \in C_\varepsilon$.

Then we have for each $x \in C_\varepsilon$

$$\tilde{\rho}(x^*) = A\rho(x^*)A^{-1} = AP^{-1}\rho(x)'PA^{-1}$$

$$= A'^{-1}\rho(x)'A' = \tilde{\rho}(x)' ,$$

and hence $\tilde{\rho}$ satisfies (7.1). This proves the surjectivity of the map.

To prove the injectivity, let ρ and $\tilde{\rho}$ be mutually equivalent representations of C_ε satisfying (7.1). Let $A \in GL(m, R)$ such that

(7.2) $$\tilde{\rho}(x) = A\rho(x)A^{-1}$$

for $x \in C_\varepsilon$.

Then we have $\tilde{\rho}(x^*) = A\rho(x^*)A^{-1}$ for each $x \in C_\varepsilon$. From the condition (7.1) we have $\tilde{\rho}(x)' = A\rho(x)'A^{-1}$ and hence

(7.3) $$\tilde{\rho}(x) = A'^{-1}\rho(x)A'$$

for $x \in C_\varepsilon$.

(7.2) and (7.3) imply that the symmetric matrix $A'A$ commutes with each $\rho(x)$. Now write A as the product: $A = \sigma P$ of $\sigma \in O(m)$ and a positive definite symmetric matrix P. Then $A'A = P^2$ commutes with each $\rho(e_i)$. From the condition (7.1), $\tau_i = \exp t\rho(e_i)$ is in $O(m)$ for each $t \in R$, and hence $\tau, P\tau^{-1}$ is also a positive definite symmetric matrix. It follows from $\tau_iP^{\tau_i^{-1}} = (\tau_iP\tau_i^{-1})^t = P^2$ that each τ_i commutes with P and hence each $\rho(e_i)$ commutes with P. Since C_ε is generated by $e_1, \cdots, e_\varepsilon$, we have

$$\tilde{\rho}(x) = \sigma\rho(x)\sigma^{-1}$$

for $x \in C_\varepsilon$.

Thus ρ and $\tilde{\rho}$ are orthogonally equivalent.

q.e.d.

The subspace of C_ε spanned by $e_1, \cdots, e_\varepsilon$ is identified with R^ε in a natural way, and any orthogonal transformation σ of $R^\varepsilon(\sigma \in O(\varepsilon))$ is extended uniquely to an automorphism σ of C_ε. For a representation ρ of C_ε of degree m, we define another representation $\sigma\rho$ by

$$(\sigma\rho)(x) = \rho(\sigma^{-1}x)$$

for $x \in C_\varepsilon$.

If ρ satisfies (7.1), then $\sigma\rho$ also satisfies (7.1), since the automorphism σ of C_ε commutes with the canonical involution $x \rightarrow x^*$. The correspondence $(\sigma, \rho) \rightarrow \sigma\rho$ gives an action of $O(\varepsilon)$ on $R_m(C_\varepsilon)$ and on $R_m(C_\varepsilon, *)$. Let $O(\varepsilon)\backslash R_m(C_\varepsilon)$ and $O(\varepsilon)\backslash R_m(C_\varepsilon, *)$ denote the spaces of $O(\varepsilon)$-orbits respectively. Since the natural map $R_m(C_\varepsilon, *) \rightarrow R_m(C_\varepsilon)$ is $O(\varepsilon)$-equivariant, Lemma 21 gives us the natural bijection
We cite Atiyah-Bott-Shapiro [1]: We have an isomorphism

\[C_{\kappa+8} \cong C_{\kappa} \otimes M_{\alpha}(R), \]

and the Clifford algebras \(C_{\kappa}'s \) for \(\kappa \leq 8 \) are given by the following table:

<table>
<thead>
<tr>
<th>(\kappa)</th>
<th>(C_{\kappa})</th>
<th>(d(\kappa))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(C)</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>(H)</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>(H \oplus H)</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>(M_{4}(H))</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>(M_{4}(C))</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>(M_{8}(R))</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>(M_{8}(R) \oplus M_{8}(R))</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>(M_{16}(R))</td>
<td>16</td>
</tr>
</tbody>
</table>

where \(d(\kappa) \) denotes the degree of irreducible representations of \(C_{\kappa} \). We have

\[d(\kappa + 8) = 16d(\kappa) \]
in virtue of the isomorphism (7.4).

Lemma 22. For \(\kappa \geq 1 \), \(O(\kappa) \backslash R_{\kappa+1}(C_{\kappa}, *) \) is not empty if and only if \(\kappa = 1, 3 \) or 7. For \(\kappa = 1, 3 \) or 7, \(O(\kappa) \backslash R_{\kappa+1}(C_{\kappa}, *) \) consists of exactly one element, represented by an irreducible representation of \(C_{\kappa} \).

Proof. By Lemma 21, it suffices to show the above for the set \(O(\kappa) \backslash R_{\kappa+1}(C_{\kappa}) \). From (7.5) we have

\[
d(\kappa + 8) - (\kappa + 8) = 16d(\kappa) - \kappa - 8
= (15d(\kappa) - 8) + (d(\kappa) - \kappa) > d(\kappa) - \kappa.
\]

It follows that if \(R_{\kappa+1}(C_{\kappa}) \) is not empty, then \(\kappa \leq 8 \) and \(R_{\kappa+1}(C_{\kappa}) \) consists of equivalent classes of irreducible representations. From the table cited above we get the first assertion of Lemma 22.

In case \(\kappa = 1 \), \(C_{1} = C \) and \(R_{4}(C_{1}) \) consists of just one class. In case \(\kappa = 3 \), \(C_{3} = H \oplus H \) and \(R_{8}(C_{3}) \) consists of two classes. Putting \(z = e_{1}e_{2}e_{3} \) in \(C_{8} \), we define \(f_{+}, f_{-} \in C_{8} \) by

\[
f_{+} = \frac{1}{2}(1 + z), \quad f_{-} = \frac{1}{2}(1 - z).
\]
Then they are primitive idempotents of C_{γ} defining the decomposition $C_{\gamma} = H \oplus H$. Since $-1_{\gamma} \in O(3)$ transforms f_{γ} into $f_{-\gamma}$, $O(3) \setminus \mathcal{K}(C_{\gamma})$ consists exactly one element. In case $\gamma = 7$, we see similarly that $O(7) \setminus \mathcal{K}(C_{\gamma})$ consists exactly one element, making use of the element $z = e_{\gamma}e_{2} \cdots e_{7} \in C_{\gamma}$.

For $\gamma = 1, 3, 7$, we have $C_{\gamma-1} \cong R, H, M_{9}(R)$ respectively. Hence we have

Lemma 23. For $\gamma = 1, 3, 7$, the set $\mathcal{K}(C_{\gamma-1}, \ast)$ is not empty if and only if m is a multiple of $1, 4, 8$ respectively. In these cases, $\mathcal{K}(C_{\gamma-1}, \ast)$ consists exactly one class.

Now, let κ, m be positive integers. Consider a family $\{a_{k}\}_{1 \leq k \leq \kappa}$ of κ matrices in $M_{m}(R)$ satisfying the following condition:

\begin{align}
& \left\{ \begin{array}{l}
 a'_{k}a_{k} = 1_{m} \\
 a'_{k}a_{l} + a'_{l}a_{k} = 0
\end{array} \right. \quad \text{for each } k, l \; \text{distinct,}
\end{align}

Two such families $\{a_{k}\}, \{\bar{a}_{k}\}$ are said to be equivalent and denoted by $\{a_{k}\} \sim \{\bar{a}_{k}\}$ if there exist $\sigma, \tau \in O(m)$ such that

$$
\bar{a}_{k} = \sigma a_{k} \tau^{-1}
$$

for each k. They are classified in terms of representations of Clifford algebras as follows.

Lemma 24. The set of equivalence classes of families $\{a_{k}\}$ of κ matrices in $M_{m}(R)$ satisfying the condition (7.6) is in a bijective correspondence with the set $\mathcal{K}(C_{\gamma-1}, \ast)$.

Proof. Let ρ be a representation of $C_{\gamma-1}$ of degree m satisfying (7.1). We define κ matrices $a_{1}, \ldots, a_{\kappa}$ by

$$
\left\{ \begin{array}{l}
 a_{k} = \rho(e_{k}) \quad 1 \leq k \leq \kappa - 1, \\
 a_{\kappa} = 1_{m}.
\end{array} \right.
$$

Since we have

$$
\left\{ \begin{array}{l}
 a'_{k} = -a_{k}, a'_{\kappa} = -1_{m} \quad \text{for each } k, 1 \leq k \leq \kappa - 1, \\
 a_{k}a_{l} + a_{l}a_{k} = 0 \quad \text{for distinct } k, l, 1 \leq k, l \leq \kappa - 1,
\end{array} \right.
$$

the family $\{a_{k}\}$ satisfies the condition (7.6). The correspondence $\rho \mapsto \{a_{k}\}$ induces a map of $\mathcal{K}(C_{\gamma-1}, \ast)$ into the set of equivalence classes of families $\{a_{k}\}$ satisfying (7.6). One can see easily that it is bijective. \text{q.e.d.}

Next, consider a family $\{A_{k}\}_{1 \leq k \leq \kappa}$ of κ matrices in $M_{m}(R)$ satisfying the following condition:
\[\begin{align*}
A_k^2 &= -A_k, \quad A_k^2 = -1_m \quad \text{for each } k, \\
A_k A_l + A_l A_k &= 0 \quad \text{for distinct } k, l.
\end{align*} \]

Note that the condition (7.7) implies the condition (7.6). Two such families \{A_k\}, \{\tilde{A}_k\} are said to be equivalent and denoted by \{A_k\} \approx \{\tilde{A}_k\} if there exist \(\sigma \in O(m)\) and \(\tau = (\tau_k) \in O(k)\) such that

\[\tilde{A}_k = \sum_{i=1}^k \tau_{ki}(\sigma A_i \sigma^{-1}) \quad \text{for each } k. \]

They are also classified in terms of representations of Clifford algebras as follows.

Lemma 25. The set of equivalence classes of families \{A_k\} of \(\kappa\) matrices in \(M_\kappa(R)\) satisfying the condition (7.7) is in a bijective correspondence with the set \(O(\kappa) \backslash R_m(C_\kappa, *)\).

Proof. For each representation \(\rho\) of \(C_\kappa\) of degree \(m\) satisfying (7.1), we define \(\kappa\) matrices \(A_1, \ldots, A_k\) by

\[A_k = \rho(e_k) \quad \text{for each } k. \]

Then the family \{A_k\} satisfies the condition (7.7). The correspondence \(\rho \rightarrow \{A_k\}\) induces a bijection required in our lemma. q.e.d.

From Lemmas 22 ~ 25, we have

Lemma 26. There exists a family \{A_k\} of \(\kappa\) matrices in \(M_{\kappa_1}(R)\) satisfying the condition (7.7) if and only if \(\kappa = 1, 3, 7\). For \(\kappa = 1, 3, 7\), there exists a family \{a_k\} of \(\kappa\) matrices in \(M_\kappa(R)\) satisfying the condition (7.6) if and only if \(m\) is a multiple of 1, 4, 8 respectively. In these cases, both of equivalence classes of \{A_k\} and \{a_k\} are unique.

8. Examples of non-homogeneous isoparametric hypersurfaces. Now we come back to families of quadratic forms \{p_\alpha\} and cubic forms \{q_\alpha\} on \(Y = R^*\). In this section we shall classify polynomials \{p_\alpha\}, \{q_\alpha\} under certain conditions and construct two series of non-homogeneous isoparametric hypersurfaces.

As in §5, let

\[Y = U \oplus V \oplus Z \]

be the eigenspace decomposition of the symmetric mapping \(P_\alpha\) corresponding to \(p_\alpha\), where \(U, V\) and \(Z\) are the eigenspaces for the eigenvalues 1, \(-1\) and 0 respectively. Recall \(\dim U = \dim V = m_2\) and \(\dim Z = m_1\). We choose orthonormal coordinate systems \{u_i\}, \{v_i\} and \{z_k\} for \(U, V\) and \(Z\) respectively. Each symmetric mapping \(P_k\) corresponding to \(p_k\) for \(k \geq 1\) will be represented by a matrix with respect to these coordinates.
LEMMA 27. Assume that P_0 is represented in the above way. Then the family $\{p_a\}$ satisfies (3-1), (3-2) and the condition (A) if and only if (1) each $P_k (1 \leq k \leq m_1)$ is represented by a matrix of the form

\[
\begin{pmatrix}
0 & a_k & 0 \\
\end{pmatrix}
\]

with $a_k \in M_{m_2}(R)$ and (2) the family $\{a_k\}$ satisfies the condition (7.6) for $\kappa = m_1$ and $m = m_2$.

PROOF. First suppose $\{p_a\}$ satisfies (3-1), (3-2) and (A). Then the family $\{R_a\}$ of symmetric mappings of $U \oplus V$ associated to $\{p_a\}$ in §6 satisfies (5-1) and (5-2). The condition (5-2) for $a = 0$ and $\beta = k$ implies that R_k is represented by a matrix of the form

\[
\begin{pmatrix}
0 & a_k \\
a_k' & 0 \\
0 & 0
\end{pmatrix}
\]

with $a_k \in M_{m_2}(R)$. Now (5-1) gives

(i) $a_k a'_k = a'_k a_k = 1_{m_2}$ for each k,

and also (5-2) gives

(ii) \[
\begin{cases}
\begin{array}{c}
a_k a'_i + a'_i a_k = 0 \\
a_k' a_l + a'_l a_k = 0
\end{array}
\end{cases}
\]

for distinct k, l where $1 \leq k, l \leq m_1$. (i) and (ii) together are equivalent to the condition (7.6), thereby obtaining (1) and (2) of Lemma 27.

The converse follows from the above argument and Lemma 18.

q.e.d.

Now let $\{p_a\}$ be a family of quadratic forms on Y satisfying (3-1), (3-2) and (A), and let $\{q_a\}$ be a family of cubic forms on Y. We assume the following additional condition:

(B) For each α, q_α is expressed as

\[
q_\alpha = \sum_\beta \lambda_{\alpha \beta} p_\beta
\]

where $\lambda_{\alpha \beta}$'s are linear forms on Z.

First note that the above expression of q_α is unique by virtue of Lemma 20. We put

\[
\lambda_{\alpha \beta} = \sum_{k=1}^{m_1} a_{\alpha \beta k} z_k
\]
for each \(\alpha, \beta \), and define \(m \) matrices \(A_1, \ldots, A_m \) in \(M_{m+1}(R) \) by

\[
A_k = (a_{\alpha \beta k})_{0 \leq \alpha, \beta \leq m}
\]

for each \(k, 1 \leq k \leq m \).

Lemma 28. As in the above, suppose that \(\{p_a\} \) and \(\{q_a\} \) satisfy (3-1) and (3-2) together with (A) and (B). Then, \(\{p_a\} \) and \(\{q_a\} \) satisfy the conditions (3-4), (3-5), (3-7), (5-8), (5-9) and (5-10) if and only if the family \(\{A_k\} \) of \(m \) matrices in \(M_{m+1}(R) \) satisfies the condition (7.7) and the following condition:

\[
\frac{1}{2} \sum_k \left(a_{\alpha \beta k}a_{\beta \gamma k} + a_{\alpha \gamma k}a_{\beta \delta k} \right) = \delta_{\alpha \delta} \delta_{\gamma \delta}
\]

for each \(\alpha, \beta, \gamma, \delta \) with \(\{\alpha, \beta\} \cap \{\gamma, \delta\} = \emptyset \).

Proof. Note that the above condition (8.3) is equivalent to the following two conditions:

\[
\begin{align*}
A &+ A' = 0 \quad \text{for each } k; \\
A_k' A_k + A_k A_k' &+ 0 \quad \text{for distinct } k, l.
\end{align*}
\]

First we show the following implications: (3-7) \(\iff \) (7.7.1); (7.7.1) \(\iff \) (3-4) and (3-5); and then (5-8) \(\iff \) (7.7.2).

Recall (3-7): \(\sum p_a q_a = 0 \). We have

\[
\sum_a p_a q_a = \sum_{\alpha, \beta} \lambda_{\alpha \beta} p_a p_{\beta} = \frac{1}{2} \sum_k \left\{ \sum_{\alpha, \beta} (a_{\alpha \beta k} + a_{\alpha \beta k}) p_a p_{\beta} \right\} z_k.
\]

By Lemma 20, we see (3-7) \(\iff \) (7.7.1). Since each \(\lambda_{\beta \gamma} \) is a linear form on \(Z \), we have \(\langle p_a, \lambda_{\beta \gamma} \rangle = 0 \). Thus, we have

\[
\langle p_a, q_\beta \rangle = \sum_\gamma \lambda_{\beta \gamma} \langle p_a, p_\gamma \rangle = \lambda_{\beta \gamma} \langle p_a, p_\gamma \rangle.
\]

using Lemma 17. Therefore we can write

\[
\langle p_a, q_\beta \rangle + \langle p_\beta, q_a \rangle = (\lambda_{\alpha \beta} + \lambda_{\alpha \beta}) \langle p_a, p_\gamma \rangle.
\]

This shows (7.7.1) \(\iff \) (3-4) and (3-5). Recall (5-8): \(\sum q^*_a = G(\sum x^*_i) \). We have
\[\sum_{\alpha} q_{\alpha}^2 = \sum_{\alpha} \left(\sum_{\beta} \lambda_{\alpha \beta} p_{\beta} \right)^2 = \sum_{\alpha, \beta, \gamma} \lambda_{\alpha \beta} \lambda_{\alpha \gamma} p_{\beta} p_{\gamma} \]

\[= \frac{1}{2} \sum_{\alpha, \beta, \gamma, k} (a_{\alpha \beta} a_{\alpha \gamma} + a_{\alpha \beta} (a_{\alpha \gamma}) p_{\beta} p_{\gamma} x_k z_i , \]

and

\[G(\sum_{k} z_k^2) = \left(\sum_{k} z_k^2 \right) \left(\sum_{\alpha} p_{\alpha}^2 \right) . \]

Now (5-8) is equivalent to

\[\begin{align*}
\sum_{\alpha, \beta, \gamma, k} a_{\alpha \beta} a_{\alpha \gamma} p_{\beta} p_{\gamma} &= \sum_{\beta} p_{\beta}^2 \quad \text{for each } k , \\
\sum_{\alpha, \beta, \gamma, k} (a_{\alpha \beta} a_{\alpha \gamma} + a_{\alpha \beta} (a_{\alpha \gamma}) p_{\beta} p_{\gamma} &= 0 \quad \text{for distinct } k, l ,
\end{align*} \]

which is, by Lemma 20, equivalent to

\[\begin{align*}
\sum_{\alpha} a_{\alpha \beta} a_{\alpha \gamma} &= \delta_{\beta \gamma} \quad \text{for each } \beta, \gamma, k , \\
\sum_{\alpha} (a_{\alpha \beta} a_{\alpha \gamma} + a_{\alpha \beta} (a_{\alpha \gamma}) &= 0 \quad \text{for each } \beta, \gamma \text{ and distinct } k, l .
\end{align*} \]

This is nothing but (7.7.2), thereby obtaining the implications described first.

Henceforth we assume the condition (7.7). Consider the condition (5-9). We have

\[\langle q_{\alpha}, q_{\alpha} \rangle = \left(\sum_{\beta} \lambda_{\alpha \beta} p_{\beta} \right) \left(\sum_{\gamma} \lambda_{\alpha \gamma} p_{\gamma} \right) \]

\[= \sum_{\beta, \gamma} \lambda_{\alpha \beta} \lambda_{\alpha \gamma} p_{\beta} p_{\gamma} + \sum_{\beta, \gamma} \lambda_{\alpha \beta} \lambda_{\alpha \gamma} \langle p_{\beta}, p_{\gamma} \rangle \]

\[= \sum_{\beta, \gamma, k} a_{\alpha \beta} a_{\alpha \gamma} p_{\beta} p_{\gamma} + 4(\sum u_i^2 + \sum v_i^2) \sum_{\beta, \gamma, k} a_{\alpha \beta} a_{\alpha \gamma} x_k z_i , \]

and

\[G - p_{\alpha}^2 + 4(\sum u_i^2 + \sum v_i^2)(\sum z_i^2) \]

\[= \sum_{\alpha, \beta, \gamma} p_{\beta}^2 + 4(\sum u_i^2 + \sum v_i^2)(\sum z_i^2) . \]

Again by Lemma 20, we see that (5.9) is equivalent to the following three conditions:

(i) \[\sum_{k} a_{\alpha \beta} a_{\gamma k} = \delta_{\beta \gamma} \quad \text{for each } \alpha, \beta, \gamma \text{ with } \beta \neq \alpha, \gamma \neq \alpha ; \]

(ii) \[\sum_{k} a_{\alpha \beta} a_{\alpha k} = 0 \quad \text{for each } \alpha ; \]

(iii) \[\sum_{\beta} a_{\alpha \beta} a_{\beta \alpha} = \delta_{\alpha \alpha} \quad \text{for each } \alpha, \beta, \gamma . \]

Since (ii) and (iii) follow from (7.7), we have (5-9) \(\Rightarrow \) (i) = (8.3.1). By a similar computation, we can see (5-10) \(\Rightarrow \) (8.3.2) and (8.3) \(\Rightarrow \) (5-10).

q.e.d.
Now we recall some properties of inner products on division algebras over \mathbb{R}. Let F be a (not necessarily associative) division algebra over \mathbb{R}, i.e., $F = \mathbb{R}, \mathbb{C}, \mathbb{H}$ or the real Cayley algebra \mathbb{K}. Let $c_0 = 1, c_1, \ldots, c_{d-1}$ be the standard units of F with $d = \dim F$. $u \rightarrow \bar{u}$ denotes the canonical involution of F. We put $\mathfrak{F} = \{u \in F | \bar{u} = -u \}$. Then \mathfrak{F} is a $(d-1)$-dimensional subspace of F spanned by c_1, \ldots, c_{d-1}. The subspace $\mathfrak{K} = \{u \in F | \bar{u} = u \}$ will be identified with \mathbb{R} in a natural way. On F,

$$(u, v) = \frac{1}{2}(uv + vu)$$

defines an inner product with the following properties:

$$(\bar{u}, \bar{v}) = (u, v),$$

$$(uv, w) = (v, \bar{u}w) = (u, \bar{w}v),$$

$$\bar{u}(vw) + v(\bar{u}w) = (wv)\bar{v} + (w\bar{v})u = 2(u, v)w.$$

$\{c_0, c_1, \ldots, c_{d-1}\}$ forms an orthonormal basis of F with respect to the above inner product. The dual base $\{u_0, u_1, \ldots, u_{d-1}\}$ of $\{c_0, c_1, \ldots, c_{d-1}\}$ forms an orthonormal coordinate system for F, which we call standard. $(,)$ is extended to the m-column vector space F^m by

$$(u, v) = \frac{1}{2}(u'\bar{v} + v'\bar{u})$$

for $u, v \in F^m$, where $'$ denotes the transpose. The standard orthonormal coordinate system for F^m consists of $\{u^{(i)} | 0 \leq i \leq d - 1, 1 \leq \lambda \leq m \}$ where $\{u^{(i)} | 0 \leq i \leq d - 1 \}$ denotes the standard orthonormal coordinates for the λ-th component $u^{(i)}$ of $u \in F^m$. We write also $\|u\|$ for the norm $(u, u)^{1/2}$ of a vector u.

Theorem 2. Let m_1 and m_2 be positive integers such that $N = 2(m_1 + m_2 + 1)$, and set $n = m_1 + 2m_2$.

(i) There exist $m_1 + 1$ quadratic forms $\{p_a\}$ and $m_1 + 1$ cubic forms $\{q_a\}$ on $Y = \mathbb{R}^n$ satisfying the equations (3-1) \sim (3-10) together with the conditions (A) and (B) if and only if the pair (m_1, m_2) is one of the following three types: $(1, r), (3, 4r), (7, 8r)$ for some positive integer r. In these cases, the polynomial F associated to such $\{p_a, q_a\}$ is unique up to (ON)-equivalence.

(ii) The polynomial F on \mathbb{R}^n associated to such $\{p_a, q_a\}$ is given explicitly as follows:

(a) $(m_1, m_2) = (1, r)$; We define a polynomial F_0 on $\mathbb{R}^{(r+2)} = C^{r+2}$ by
and set $F = r^4 - 2F_0$.

(b) $(m_1, m_2) = (3, 4r)$ or $(7, 8r)$; F denotes H or K according to $m_1 = 3$ or 7. We define a polynomial F_0 on $R^N = F^{2(r+1)} = F^{r+1} \times F^{r+1}$ by

$$F_0(u \times v) = 4(||u'v||^2 - (u, v)^2) + (||v||^2 - ||v||^2 + 2(u_0, v_0))^2$$

for

$$u = (u_0, u_1), \quad v = (v_0, v_1), \quad u_0, v_0 \in F, \quad u_1, v_1 \in F^r,$$

and set $F = r^4 - 2F_0$.

In each case, F satisfies the differential equations (M) of Münzner.

Remark. Takagi-Takahashi [7] gave the multiplicities of principal curvatures for homogeneous isoparametric hypersurfaces in spheres. Our pairs (m_1, m_2) of multiplicities in the case (b) do not appear in their table except $(m_1, m_2) = (3, 4)$. Hence our isoparametric hypersurfaces given in the above case (b) are not homogeneous, possibly except the case where $(m_1, m_2) = (3, 4)$. However, in Part II it will be shown that our isoparametric hypersurfaces for $(m_1, m_2) = (3, 4)$ are also non-homogeneous.

Proof of (i). The “only if” part follows immediately from Lemmas 26, 27, 28. Conversely, assume that (m_1, m_2) is $(1, r), (3, 4r)$ or $(7, 8r)$. Let $F = C, H$ or K respectively, so that $\dim F = m_1 + 1$. In the following, indices k, l, \cdots and α, β, \cdots run through $1, 2, \cdots, m_1$ and $0, 1, \cdots, m_1$ respectively. For $u, v \in F$ we have

$$(c_k u, v) = (u, \bar{c}_k v) = -(c_k v, u) \quad \text{for each } k$$

$$c_k(c_k u) = -\bar{c}_k(c_k u) = -(c_k, c_k)u = -u \quad \text{for each } k$$

$$c_k(c_k u) + c_l(c_k u) = -\bar{c}_k(c_k u) - \bar{c}_l(c_k u) = -2(c_k, c_l)u = 0$$

for distinct k, l.

We define $A_1, \cdots, A_{m_1} \in M_{m_1+1}(R)$ by

$$A_k = (a_{\alpha\beta})_{0 \leq \alpha, \beta \leq m_1} \quad \text{with} \quad a_{\alpha\beta} = (c_k c_{\alpha}, c_\beta)$$

for each k. Then $\{A_k\}$ satisfy (7.7) as is easily seen from the above properties. Consider (8.3). For each $\alpha, \beta, \gamma, \delta$ with $\{\alpha, \beta\} \cap \{\gamma, \delta\} = \emptyset$, we have
\[
\sum_k (a_{\alpha\gamma}a_{\beta\delta} + a_{\alpha\delta}a_{\beta\gamma}) \\
= \sum_i (c_{\alpha}c_{\beta}, c_{\gamma}c_{\delta}) + \sum_i (c_{\alpha}c_{\gamma}, c_{\beta}c_{\delta}) \\
= \sum_i (c_{\alpha}c_{\beta}, c_{\gamma}c_{\delta}) + \sum_i (c_{\alpha}c_{\gamma}, c_{\beta}c_{\delta}) \\
= \sum_i (c_{\alpha}c_{\beta}, c_{\gamma}c_{\delta}) + \sum_i (c_{\alpha}c_{\gamma}, c_{\beta}c_{\delta}) \\
= (c_{\alpha}c_{\beta}, c_{\gamma}c_{\delta}) + (c_{\alpha}c_{\gamma}, c_{\beta}c_{\delta}) \\
= 2(c_{\alpha}, c_{\beta})(c_{\gamma}, c_{\delta}),
\]
and hence we have (8.3) for \(\{A_k\} \).

Next, we define \(m_1 \) matrices \(\{a_k\} \) in \(M_{m_1}(R) \) as follows: for \(m_1 = 1 \)
\[
a_k = 1_r,
\]
and for \(m_1 = 3 \) or 7
\[
a_k = \begin{pmatrix} A_k & 0 \\ \vdots & \vdots & \vdots \\ 0 & A_k \end{pmatrix}
\]
where \(A_k \) appears \(r \)-times in the diagonal. One sees easily that \(\{a_k\} \) satisfy (7.6).

Now by Lemma 27 we can associate to the matrices \(\{a_k\} \) \(m_1 + 1 \) quadratic forms \(\{p_a\} \) on \(Y \), satisfying (3-1), (3-2) and (A). From the matrices \(\{A_k\} \), using (8.1) we can define \(m_1 + 1 \) cubic forms on \(Y \), satisfying (B). Our polynomials \(\{p_a\} \), \(\{q_a\} \) satisfy, in virtue of Lemma 28, (3-4), (3-5), (3-7), (5-8), (5-9), (5-10), and hence the equations (3-1) \(\sim \) (3-10) by Lemma 19, which proves the "if" part of (i).

It remains to prove the uniqueness. Let \(\{p_a, q_a\} \) and \(\{\tilde{p}_a, \tilde{q}_a\} \) be two families of polynomials on \(Y \) satisfying the conditions in (i), and let \(F \) and \(\tilde{F} \) be the associated polynomials on \(R^v \) respectively. Let
\[
(1) \quad Y = U \oplus V \oplus Z, \\
(2) \quad Y = \tilde{U} \oplus \tilde{V} \oplus \tilde{Z}
\]
be the eigenspace decompositions of symmetric mappings \(P_0, \tilde{P}_0 \) corresponding to \(p_0, \tilde{p}_0 \) respectively. We take orthonormal coordinate systems \(\{u_i\}, \{v_i\}, \{z_i\} \) for \(U, V, W \) respectively. Linear mappings of \(Y \) will be represented by matrices with respect to these coordinates.

Choosing \(\sigma_1 \in O(n) \) such that \(\sigma_1 U = \tilde{U}, \sigma_1 V = \tilde{V} \) and \(\sigma_1 Z = \tilde{Z} \), we put
Then the polynomials \(\{p_\alpha^{(1)}, q_\alpha^{(1)}\} \) also satisfy the conditions in (i) and the eigenspace decomposition of \(P_0^{(1)} \) corresponding to \(p_\alpha^{(1)} \) is the same as (1). The condition (B) for \(\{p_\alpha, q_\alpha\} \) and \(\{p_\alpha^{(1)}, q_\alpha^{(1)}\} \) gives \(\{A_k\} \) and \(\{A_k^{(1)}\} \) in \(M_{m_3+1}(\mathbb{R}) \) respectively, which satisfy (7.7) by Lemma 28. It follows from Lemma 26 that \(\{A_k\} \cong \{A_k^{(1)}\} \), that is, there exist \(\varphi = (\varphi_{kl}) \in O(m_3) \) and \(\tau = (\tau_{\alpha \beta}) \in O(m_3 + 1) \) such that

\[
A_k^{(1)} = \sum_i \varphi_{kl} (\tau A_l \tau^{-1})
\]

for each \(k \).

We put

\[
p_\alpha^{(2)} = \sum_\beta \tau_{\alpha \beta} p_\beta.
\]

Then the quadratic forms \(\{p_\alpha^{(2)}\} \) also satisfy (3-1), (3-2), (A). Let

\[
Y = U^{(2)} \oplus V^{(2)} \oplus Z
\]

be the eigenspace decomposition of \(P_0^{(2)} \) corresponding to \(p_\alpha^{(2)} \). Choosing \(\sigma_3 \in O(n) \) such that \(\sigma_3 U^{(2)} = U, \sigma_3 V^{(2)} = V, \sigma_3 Z = \text{identity} \), we put

\[
p_\alpha^{(3)} = \sigma_3 p_\alpha^{(2)}.
\]

Then \(\{p_\alpha^{(3)}\} \) also satisfy (3-1), (3-2), (A), and the eigenspace decomposition of \(P_0^{(3)} \) corresponding to \(p_\alpha^{(3)} \) is the same as (1). It follows from Lemma 27 that \(\{p_\alpha^{(1)}\} \) and \(\{p_\alpha^{(3)}\} \) define \(\{a_k^{(1)}\} \) and \(\{a_k^{(3)}\} \) in \(M_{m_3}(\mathbb{R}) \) respectively, satisfying (7.6). By Lemma 26, we have \(\{a_k^{(1)}\} \sim \{a_k^{(3)}\} \), that is, we can find \(\sigma, \sigma_3 \in O(m_3) \) such that

\[
\sigma_3 a_k^{(3)} \sigma^{-1} = a_k^{(1)}
\]

for each \(k \).

Putting together \(\sigma, \sigma_3 \) and \(\varphi^{-1} \), we get an element \(\sigma_3 \times \sigma_3 \times \varphi^{-1} \in O(m_3) \times O(m_3) \times O(n) \). Put \(\sigma = \sigma_3 \times \sigma_4 \times \varphi^{-1} \sigma_3 \in O(n) \). Then we have

\[
\tilde{p}_\alpha = \sum_\beta \tau_{\alpha \beta} (\sigma p_\beta), \quad \tilde{q}_\alpha = \sum_\beta \tau_{\alpha \beta} (\sigma q_\beta)
\]

for each \(\alpha \),

which gives the required uniqueness. In fact,

\[
\sum_\beta \tau_{\alpha \beta} (\sigma p_\beta) = \sigma p_\alpha^{(3)} = \sigma_4 (\sigma_3 \times \sigma_4 \times \varphi^{-1}) p_\alpha^{(3)} = \sigma_4 p_\alpha^{(1)} = \tilde{p}_\alpha.
\]

Denoting by \(a_{\alpha \beta k}, a_{\alpha \beta k}^{(1)} \) the \((\alpha, \beta)\)-elements of \(A_k, A_k^{(1)} \) respectively, we have

\[
\sigma_2^{-1} \left(\sum_\beta \tau_{\alpha \beta} (\sigma p_\beta) \right) = (\sigma_3 \times \sigma_4 \times \varphi^{-1}) \sigma_2 \left(\sum_\beta \tau_{\alpha \beta} \sigma_{\beta \gamma} z_{\gamma} p_\gamma \right)
\]

\[
= \sum_\beta \tau_{\alpha \beta} \sigma_{\beta \gamma} (\varphi^{-1} z_{\gamma}) (\sigma_3 \times \sigma_4 \times \varphi^{-1}) \sigma_2 \left(\sum_\gamma \tau_{\gamma \delta} p_\delta^{(2)} \right)
\]

\[
= \sum_\beta \tau_{\alpha \beta} \sigma_{\beta \gamma} \varphi_{\beta \gamma} \sigma_3 \sigma_4 \sigma_2 \left(\sum_\gamma \tau_{\gamma \delta} p_\delta^{(2)} \right)
\]

\[
= \sum_\beta \tau_{\alpha \beta} \sigma_{\beta \gamma} \sigma_3 \sigma_4 \sigma_2 \left(\sum_\delta \tau_{\delta \gamma} p_\delta^{(1)} \right)
\]

\[
= \sum_\delta \tau_{\alpha \beta} \sigma_{\beta \gamma} \sigma_3 \sigma_4 \sigma_2 \left(\sum_\delta \tau_{\delta \gamma} p_\delta^{(1)} \right)
\]

\[
= \sum_\delta \sigma_{\alpha \beta k} \sigma_3 \sigma_4 \sigma_2 \left(\sum_\delta \tau_{\delta \gamma} p_\delta^{(1)} \right)
\]

\[
= \sum_\delta \sigma_{\alpha \beta k} \sigma_3 \sigma_4 \sigma_2 \left(\sum_\delta \tau_{\delta \gamma} p_\delta^{(1)} \right)
\]

\[
= \sum_\delta \sigma_{\alpha \beta k} \sigma_3 \sigma_4 \sigma_2 \left(\sum_\delta \tau_{\delta \gamma} p_\delta^{(1)} \right)
\]

\[
= \sum_\delta \sigma_{\alpha \beta k} \sigma_3 \sigma_4 \sigma_2 \left(\sum_\delta \tau_{\delta \gamma} p_\delta^{(1)} \right)
\]

\[
= \sum_\delta \sigma_{\alpha \beta k} \sigma_3 \sigma_4 \sigma_2 \left(\sum_\delta \tau_{\delta \gamma} p_\delta^{(1)} \right)
\]

\[
= \sum_\delta \sigma_{\alpha \beta k} \sigma_3 \sigma_4 \sigma_2 \left(\sum_\delta \tau_{\delta \gamma} p_\delta^{(1)} \right)
\]
and hence
\[\sum_{\alpha} \tau_{\alpha\beta} (\sigma q) = \tilde{q}_{\alpha}.\]

It follows that \(F\) and \(\hat{F}\) are \(O(N)\)-equivalent.

Proof of (ii). (b) \(m_1 = 3\) or 7. Let \(F = H\) or \(K\) respectively. Let
\[U = F^r, \quad V = F^r, \quad \hat{Z} = F, \quad W = F, \quad Z = \mathfrak{Z} F \subset \hat{Z},\]
and let
\[R^N = U \oplus V \oplus \hat{Z} \oplus W,\]
\[Y = U \oplus V \oplus Z\]
be the orthogonal direct sums. Elements of \(U, V, Z, W\) will be denoted by \(u, v, z, w\) respectively. The standard orthonormal coordinate systems for \(U, V, \hat{Z}, W\) are denoted by \(\{u_{1}^{\alpha}\}, \{v_{1}^{\alpha}\}, \{z_{a}\}, \{w_{a}\}\) respectively, and they as a whole form an orthonormal coordinate system for \(R^N\). As a base point \(e\) in \(R^N\), we take the unit \(c_{0}\) in \(Z\) so that we have \(z = z_{0}\) in the notation of §3. We compute polynomials \(p_{\alpha}, q_{\alpha}\) on \(Y\) corresponding to matrices \(\{a_{\alpha}\}, \{A_{\alpha}\}\) given in the proof of (i), with respect to the above orthonormal coordinate system. We have
\[p_{0} = \sum_{0 \leq i \leq m_1} ((u_{0}^{(i)})^2 - (v_{0}^{(i)})^2) = ||u||^2 - ||v||^2,\]
\[p_{\alpha} = 2 \sum_{0 \leq i \leq m_1} (c_{\alpha} c_{i}, c_{\alpha}) u_{\alpha}^{(i)} v_{j}^{(i)} = 2 \sum_{0 \leq i \leq m_1} (c_{\alpha} v_{\alpha}^{(i)}, u_{\alpha}^{(i)}) = 2(c_{\alpha}, u' v),\]
\[q_{\alpha} = \sum_{F, \alpha} (c_{\alpha} c_{i}, c_{\alpha}) z_{k} p_{i}\]
\[= \sum_{k} \left\{ (c_{\alpha} c_{0}, c_{\alpha}) p_{0} + \sum_{i} (c_{\alpha} c_{i}, c_{\alpha}) p_{i} \right\} z_{k}\]
\[= \sum_{k} \left\{ (c_{\alpha} c_{0}, c_{\alpha})(||u||^2 - ||v||^2) + 2 \sum_{i} (c_{\alpha} c_{i}, c_{\alpha})(c_{i}, u' v) \right\} z_{k}\]
\[= (c_{\alpha}, \tilde{c}_{\alpha})(||u||^2 - ||v||^2) + 2 \sum_{i} (c_{i}, \tilde{c}_{\alpha})(c_{i}, u' v),\]
where we have
\[\begin{align*}
(c_{\alpha}, \tilde{c}_{\alpha}) = (z, c_{\alpha}),
\sum_{i} (c_{i}, \tilde{c}_{\alpha})(c_{i}, u' v) = (\tilde{c}_{\alpha}, u' v) - (c_{\alpha}, \tilde{c}_{\alpha})(c_{\alpha}, u' v)
&= (\tilde{c}_{\alpha}, u' v) - (z, c_{\alpha})(u, v).
\end{align*}\]

Hence we have
\[q_{\alpha} = (z, c_{\alpha})(||u||^2 - ||v||^2 - 2(u, v)) + 2(\tilde{c}_{\alpha}, u' v).\]
In particular, \(q_{0} = 2(\tilde{z}, u' v).\) Now we have
\[\sum_a p_a w_a = (|| u ||^2 - || v ||^2)w_0 + 2 \sum_k (c_k, u'\overline{v})w_k \]
\[= (|| u ||^2 - || v ||^2)w_0 + 2(w, u'\overline{v}) - 2(c_0, u'\overline{v})w_0 \]
\[= (|| u ||^2 - || v ||^2 - 2(u, v))w_0 + 2(w, u'\overline{v}) , \]
\[\sum_a q_aw_a = (z, w)(|| u ||^2 - || v ||^2 - 2(u, v)) + 2(\overline{z}w, u'\overline{v}) , \]
\[\sum_a p^2_a = (|| u ||^2 - || v ||^2)^2 + 4 \sum_k (c_k, u'\overline{v})^2 \]
\[= (|| u ||^2 - || v ||^2)^2 + 4 || u'\overline{v} ||^2 - 4(u, v)^2 . \]

Furthermore we have
\[\langle p_\alpha, p_\beta \rangle = 4(|| u ||^2 + || v ||^2)\delta_{\alpha, \beta} \] for each \(\alpha, \beta \).

Recall Lemmas 4, 5, 6, 7. The polynomial \(F \) on \(R^n \) associated to \(\{ p_\alpha \}, \{ q_a \} \)

is given by
\[F = z_0 + 8z_0(|| u ||^2 + || v ||^2 + || z ||^2) - 6 || w ||^2 \]
\[+ 8z_0(|| u ||^2 - || v ||^2 - 2(u, v))w_0 + 2w, u'\overline{v}) \]
\[+ (|| u ||^2 + || v ||^2)^2 - 2(|| u ||^2 - || v ||^2)^2 + 4 || u'\overline{v} ||^2 - 4(u, v)^2 \]
\[+ 8(z, w)(|| u ||^2 - || v ||^2 - 2(u, v)) + 2(\overline{z}w, u'\overline{v}) \]
\[+ 8(|| u ||^2 + || v ||^2) || w ||^2 - 6(|| u ||^2 + || v ||^2 + || z ||^2) || w ||^2 + || w ||^4 \]
\[= z_0^2 + 2z_0(|| u ||^2 + || v ||^2 + || z ||^2) + (|| u ||^2 + || v ||^2 + || z ||^2)^2 \]
\[- 6z_0^2 || w ||^2 - 6(|| u ||^2 + || v ||^2 + || z ||^2) || w ||^2 \]
\[+ 8z_0w_0(|| u ||^2 - || v ||^2 - 2(u, v)) + 8(z, w)(|| u ||^2 - || v ||^2 - 2(u, v)) \]
\[+ 16(z, w, u'\overline{v}) + 16(\overline{z}w, u'\overline{v}) \]
\[- 2(|| u ||^2 - || v ||^2)^2 - 8 || u'\overline{v} ||^2 + 8(u, v)^2 \]
\[+ 8(|| u ||^2 + || v ||^2) || w ||^2 + || w ||^4 . \]

Putting \(\zeta = z_0 \epsilon_0 + z \in \tilde{Z} \) (\(z \in Z \)), we have
\[F = (|| u ||^2 + || v ||^2 + || \zeta ||^2)^2 - 6(|| u ||^2 + || v ||^2 + || \zeta ||^2) || w ||^2 \]
\[+ 8(\zeta, w)(|| u ||^2 - || v ||^2 - 2(u, v)) + 16(\overline{z}w, u'\overline{v}) \]
\[- 2(|| u ||^2 - || v ||^2)^2 - 8 || u'\overline{v} ||^2 + 8(u, v)^2 \]
\[+ 8(|| u ||^2 + || v ||^2) || w ||^2 + || w ||^4 \]
\[= (|| u ||^2 + || v ||^2 + || \zeta ||^2 + || w ||^2)^2 - 8 || \zeta ||^2 || w ||^2 \]
\[+ 8(\zeta, w)(|| u ||^2 - || v ||^2 - 2(u, v)) + 16(\overline{z}w, u'\overline{v}) \]
\[- 2(|| u ||^2 - || v ||^2)^2 - 8 || u'\overline{v} ||^2 + 8(u, v)^2 . \]

Seieng
we get
\[F = r^4 - 2F'_0 \]
where
\[F'_0 = 4(||u'\bar{v} - \zeta w||^2 - ((u, v) - (\zeta, w))^2) + (||u||^2 - ||v||^2 - 2(\zeta, w))^2. \]
We put \(u_0 = \xi, \quad v_0 = -\bar{w}, \quad \text{and} \]
\[u_1 = \begin{pmatrix} u_0 \\ u \end{pmatrix}, \quad v_1 = \begin{pmatrix} v_0 \\ v \end{pmatrix} \in F^{r+1}. \]
Then we have
\[F_0 = 4(||u'\bar{v} - \zeta w||^2 - ((u, v) - (\zeta, w))^2) + (||u||^2 - ||v||^2 + 2(u_0, v_0))^2, \]
which shows the case (b) of (ii).
(a) \(m_1 = 1. \) Let
\[U = R^r, \quad V = R^r, \quad \hat{Z} = C, \quad W = C, \quad Z = \mathbb{C} \subseteq \hat{Z} \]
and let
\[R^{2(r+3)} = U \oplus V \oplus \hat{Z} \oplus W, \]
\[Y = U \oplus V \oplus Z \]
be the orthogonal direct sums. In the same way as (b), we get
\[F = r^4 - 2F'_0 \]
where
\[F'_0 = 4((u, v) - z_0w_1 + z_1w_0)^2 + (||u||^2 - ||v||^2 - 2(\zeta, w))^2. \]
We put
\[\xi_\lambda = u_0^{(2)} + \sqrt{-1} v_0^{(2)} \quad \text{for} \quad \lambda = 1, \ldots, r, \]
\[\xi_{r+1} = \frac{1}{\sqrt{2}}((z_1 - w_1) + \sqrt{-1}(z_0 + w_0)), \]
\[\xi_{r+2} = \frac{1}{\sqrt{2}}((-z_0 + w_0) + \sqrt{-1}(z_1 + w_1)). \]
Then we have
\[\sum_{i=1}^{r+2} \xi_i = (||u||^2 - ||v||^2 - 2(\zeta, w)) + 2\sqrt{-1}((u, v) - z_0w_1 + z_1w_0). \]
Thus we have
\[F_0 = \left\| \sum_{i=1}^{r+1} \xi_i \right\|^2, \]
which shows (a) of (ii).

q.e.d.

BIBLIOGRAPHY

DEPARTMENT OF MATHEMATICS

OSAKA UNIVERSITY

TOYONAKA, OSAKA, JAPAN