COMMUTANTS AND DERIVATION RANGES

Yang Ho

(Received August 2, 1974)

Introduction. The inner derivation δ_{A} induced by an element A of the algebra $\mathscr{B}(\mathscr{H})$ of bounded linear transformations on a separable Hilbert space \mathscr{H} is the $\operatorname{map} X \rightarrow A X-X A$ for $X \in \mathscr{B}(\mathscr{H})$. Kleinecke [8] and Shirokov [10] showed that if T belongs to the intersection of the range $\mathscr{R}\left(\delta_{A}\right)$ of δ_{A} and the kernel $\{A\}^{\prime}$ of δ_{A} then T is quasinilpotent. The same is true of each compact operator T in the intersection of $\{A\}^{\prime}$ and the norm closure of $\mathscr{R}\left(\delta_{A}\right)$ [7, 5]. However, Anderson [2] shows that there are operators A for which the algebra $\mathscr{R}\left(\delta_{A}\right)^{-} \cap\{A\}^{\prime}$ contains the identity operator.

In this paper we obtain some sufficient conditions for $I \notin \mathscr{R}\left(\delta_{A}\right)^{-}$and show that the set of such operators is norm dense in $\mathscr{B}(\mathscr{H})$.

When H is finite dimensional one has $\mathscr{R}\left(\delta_{A}\right) \cap\left\{A^{*}\right\}^{\prime}=\{0\}$. We show here that this also holds for certain classes of operators when \mathscr{H} is infinite dimensional.

In the finite case $\mathscr{R}\left(\delta_{B}\right) \subset \mathscr{R}\left(\delta_{A}\right)$ is equivalent to the commutativity condition $B \in\{A\}^{\prime \prime}$, but this condition is not sufficient in the infinite case [12]. It is necessary if A is normal [6] or isometric [13] but in Section 3 we prove that it is not necessary in general.

1. Derivation ranges and the identity operator. The following lemma is a consequence of Cauchy's theorem and the functional calculus.

Lemma 1. Let A be an element of $\mathscr{B}(\mathscr{H})$ and f be an analytic function on an open set containing $\sigma(A)$. Then

$$
f^{\prime}(A)=\frac{1}{2 \pi i} \int_{\Gamma}(\lambda I-A)^{-2} f(\lambda) d \lambda
$$

where Γ is any Jordan system that lies entirely in the domain of regularity of f and encloses $\sigma(A)$.

Theorem 1. Let $A \in \mathscr{B}(\mathscr{H})$ and suppose that there exists an analytic function f on an open set containing $\sigma(A)$ such that
(1) $f^{\prime} \not \equiv 0$
(2) $\mathscr{R}\left(\delta_{f(A)}\right)-\cap\{f(A)\}^{\prime}=\{0\}$.

Then $I \notin \mathscr{R}\left(\delta_{A}\right)^{-}$.
Proof. Suppose $A X_{n}-X_{n} A \rightarrow I$ for some sequence of operators $\left\{X_{n}\right\}$. If Γ is a Jordan system that lies entirely in the domain of regularity of f and encloses $\sigma(A)$, then $\left\|(\lambda-A)^{-1} X_{n}-X_{n}(\lambda-A)^{-1}-(\lambda-A)^{-2}\right\|=$ $\left\|(\lambda-A)^{-1}\left[(A-\lambda) X_{n}-X_{n}(A-\lambda)-I\right](\lambda-A)^{-1}\right\| \leqq\left\|(\lambda-A)^{-1}\right\|^{2} \| A X_{n}-$ $X_{n} A-I \| \rightarrow 0$ uniformly for $\lambda \in \Gamma$ as $n \rightarrow \infty$. Hence by Lemma 1

$$
\begin{aligned}
& f(A) X_{n}-X_{n} f(A)-f^{\prime}(A) \\
& \quad=\frac{1}{2 \pi i} \int_{\Gamma} f(\lambda)\left[(\lambda-A)^{-1} X_{n}-X_{n}(\lambda-A)^{-1}-(\lambda-A)^{-2}\right] d \lambda \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$. Therefore $f^{\prime}(A) \in \mathscr{R}\left(\delta_{f(A)}\right)^{-}$and so (2) implies $f^{\prime}(A)=0$. Condition (1) and the spectral mapping theorem guarantee that $\sigma(A)$ is finite. Hence A is similar to an operator of the form $\sum_{\imath=1}^{n} \bigoplus A_{i}$ with $\sigma\left(A_{i}\right)=\left\{\lambda_{i}\right\}$ and $A_{i}-\lambda_{i}$ is nilpotent for $1 \leqq i \leqq n$.

To complete the proof we may therefore assume that A is nilpotent of index k. Then with $f(z)=z^{k}$ the above argument gives $0=A^{k} X_{n}-$ $X_{n} A^{k} \rightarrow k A^{k-1} \neq 0$.

Corollary (Stampfli [11]). Let A and f be as in the theorem and $f(A)=N$ where N is a normal operator. Then $1 \notin \mathscr{R}\left(\delta_{A}\right)^{-}$.

Proof. In [1] Anderson shows that $\mathscr{R}\left(\delta_{N}\right)^{-} \cap\{N\}^{\prime}=\{0\}$.
Lemma 2. Let $A \in \mathscr{B}(\mathscr{H})$. If $\sigma(A)$ has an isolated point λ for which $A-\lambda$ is Fredholm, then $I \notin \mathscr{R}\left(\delta_{A}\right)^{-}$.

Proof. Let Γ be the boundary of a disk with center at λ that contains no other points of $\sigma(A)$. If $E=(1 / 2 \pi i) \int_{\Gamma}(z-A)^{-1} d z$ is the corresponding Riesz projection then $E^{2}=E \neq 0$ and $E A=A E$. Suppose $I \in$ $\mathscr{R}\left(\delta_{A}\right)^{-}$. Then $E \in \mathscr{R}\left(\delta_{A}\right)^{-} \cap\{A\}^{\prime}$ and E has finite rank since $A-\lambda$ is Fredholm. But then $\sigma(E)=\{0\}$ by [7] and this is a contradiction.

Theorem 2. Let $A \in \mathscr{B}(\mathscr{H})$. For each $\varepsilon>0$ there exists an operator B such that
(1) $\operatorname{rank}(B)=1$
(2) $\|B\|<\varepsilon$
(3) $I \notin \mathscr{R}\left(\delta_{A+B}\right)^{-}$.

Proof. A slight modification of the argument in [4] shows that there exist an operator B having the properties (1) and (2) and a complex number λ which is an isolated point of $\sigma(A+B)$ such that $A+B-\lambda$ is Fredholm. Therefore $I \notin \mathscr{R}\left(\delta_{A+B}\right)^{-}$by Lemma 2.

Corollary. The set $\left\{A \in \mathscr{B}(\mathscr{H}): I \notin \mathscr{R}\left(\delta_{A}\right)^{-}\right\}$is dense in $\mathscr{B}(\mathscr{H})$ in
the norm topology.
REMARK. (1) Let \mathscr{K} be the ideal of compact operators on \mathscr{H} and let $T \rightarrow \hat{T}$ be the natural homomorphism from $\mathscr{P}(\mathscr{H})$ onto the Calkin algebra $\mathscr{B}(\mathscr{C}) / \mathscr{K}$. The above theorem assures the existence of an operator $C \in \mathscr{B}(\mathscr{H})$ such that $\hat{I} \in \mathscr{R}\left(\delta_{\hat{c}}\right)^{-}$but $I \notin \mathscr{R}\left(\delta_{c}\right)^{-}$.
(2) Each compact operator in the algebra $\mathscr{R}\left(\delta_{A}\right)^{-} \cap\{A\}^{\prime}$ must be quasinilpotent [7]. For more information about this algebra see [5].
2. The set $\mathscr{R}\left(\delta_{A}\right) \cap\left\{A^{*}\right\}^{\prime}$. If \mathscr{H} is a finite dimensional Hilbert space $\langle X, Y\rangle=\operatorname{trace}\left(X Y^{*}\right)$ is an inner product on $\mathscr{B}(\mathscr{H})$ and we have the orthogonal direct sum decomposition $\mathscr{B}(\mathscr{H})=\mathscr{R}\left(\delta_{A}\right) \oplus\left\{A^{*}\right\}^{\prime}$. However when \mathscr{H} is infinite dimensional we do not know whether $\mathscr{R}\left(\delta_{A}\right) \cap\left\{A^{*}\right\}^{\prime}=$ $\{0\}$ in general. In this section we obtain some sufficient conditions for this intersection to be trivial.

Lemma 3. Let $A \in \mathscr{B}(\mathscr{H})$. If $p(A)$ is normal for some polynomial $p(z)$ then $\mathscr{R}\left(\delta_{A}\right)^{-} \cap\{A\}^{\prime}$ contains no nonzero normal operator.

Proof. Suppose $A X_{n}-X_{n} A \rightarrow C$ and that C is a normal operator in $\{A\}^{\prime}$. If $p^{(k)}(z)$ denotes the k-th derivative of $p(z)$ then

$$
p^{(k)}(A) X_{n}-X_{n} p^{(k)}(A) \rightarrow p^{(k+1)}(A) C \quad \text { as } \quad n \rightarrow \infty
$$

In particular, $p^{\prime}(A) C \in \mathscr{R}\left(\delta_{p(A)}\right)^{-} \cap\{p(A)\}^{\prime}$ so that $p^{\prime}(A) C=0$ since $p(A)$ is normal [1]. Also $C p^{\prime}(A) X_{n}-C X_{n} p^{\prime}(A) \rightarrow p^{\prime \prime}(A) C^{2}$ and $p^{\prime}(A) X_{n} C-$ $X_{n} p^{\prime}(A) C \rightarrow p^{\prime \prime}(A) C^{2}$ so that $\left(p^{\prime}(A) X_{n}-X_{n} p^{\prime}(A)\right) C+\delta_{c}\left(X_{n} p^{\prime}(A)\right) \rightarrow 0$. Therefore $p^{\prime \prime}(A) C^{2} \in \mathscr{R}\left(\delta_{c}\right)^{-} \cap\{C\}^{\prime}$. Hence $p^{\prime \prime}(A) C^{2}=0$. By repeating the same argument it follows that $p^{(m)}(A) C^{m}=0$ where m is the degree of $p(z)$. Thus $C^{m}=0$ and so $C=0$ since it is normal.

Theorem 3. If A satisfies one of the following conditions then $\mathscr{R}\left(\delta_{A}\right)^{-} \cap\left\{A^{*}\right\}^{\prime}=0:$

1) $p(A)$ is normal for some quadratic polynomial $p(z)$.
2) A is subnormal and has a cyclic vector.

Proof. (1) Suppose that $A^{2}-2 \alpha A-\beta=N$ is a normal operator. Let $A X_{n}-X_{n} A \rightarrow B^{*} \in \mathscr{R}\left(\delta_{A}\right)^{-} \cap\left\{A^{*}\right\}^{\prime}$. Then $(N+2 \alpha A) X_{n}-X_{n}(N+$ $2 \alpha A)=A^{2} X_{n}-X_{n} A^{2} \rightarrow A B^{*}+B^{*} A$. This implies that $A B^{*}+B^{*} A-$ $2 \alpha B^{*} \in \mathscr{R}\left(\delta_{N}\right) \cap\{N\}^{\prime}$ so that $A B^{*}+B^{*} A-2 \alpha B^{*}=0$ by [1]. Hence $\left(B+B^{*}\right)(A-\alpha)=(A-\alpha)\left(B-B^{*}\right)$ and $(A-\alpha) B^{*}=-B^{*}(A-\alpha)$. The Putnam-Fuglede theorem then gives $\left(B^{*}+B\right)(A-\alpha)=(A-\alpha) \times\left(B^{*}-B\right)$ and $(A-\alpha) B=-B(A-\alpha)$. Combining these equations we get $(A-\alpha)\left(B^{*}+B\right)=0$ and $\left(B^{*}+B\right)(A-\alpha)=0$. Hence $B^{*} A=A B^{*}$. Therefore $B^{*} B \in \mathscr{R}\left(\delta_{A}\right)^{-} \cap\{A\}^{\prime}$ so that $B=0$ by Lemma 3.
(2) \hat{A} is a normal element of $\mathscr{B}(\mathscr{\mathscr { C }}) / \mathscr{K}$ by [3]. Hence if $B^{*} \in$ $\mathscr{R}\left(\delta_{A}\right)^{-} \cap\left\{A^{*}\right\}^{\prime}$ then B^{*} is compact by [1]. Since A has a cyclic vector B is also subnormal, and therefore normal. Then $B^{*} \in \mathscr{R}\left(\delta_{A}\right)^{-} \cap\{A\}^{\prime}$ by the Fuglede theorem. This implies that B^{*} is quasinilpotent [7] and therefore $B=0$.

Stampfli [11] has exhibited a unilateral weighted shift A for which $A^{*} \in \mathscr{R}\left(\delta_{A}\right)^{-}$. We will show however, that $\mathscr{R}\left(\delta_{A}\right) \cap\left\{A^{*}\right\}^{\prime}=\{0\}$ for any weighted shift with nonzero weights. First we prove two lemmas.

Lemma 4. Let W be a unilateral weighted shift with nonzero weights $\left\{\alpha_{n}\right\}$. If $A \geqq 0$ and $A=W X-X W$ for some $X \in \mathscr{B}(\mathscr{H})$ then A is a trace class operator with trace $(A) \leqq \underline{\lim }\left|\alpha_{n}\right|\|X\|$.

Proof. Let $\left\{e_{n}\right\}_{n=0}^{\infty}$ be an orthonormal basis for which $W e_{n}=\alpha_{n} e_{n+1}(n \geqq$ $0)$. Then $\sum_{k=0}^{n}\left(A e_{k}, e_{k}\right)=\sum_{k=0}^{n}\left((W X-X W) e_{k}, e_{k}\right)=-\alpha_{n}\left(X e_{n+1}, e_{n}\right)$. Hence $\sum_{k=0}^{\infty}\left\|A^{1 / 2} e_{k}\right\|^{2}<\infty$ so that $A^{1 / 2}$ is a Hilbert-Schmidt operator and $A=$ $A^{1 / 2} A^{1 / 2}$ is a trace class operator.

Lemma 5. Let W be a unilateral shift as above. If $\underline{\lim }\left|\alpha_{n}\right| \neq 0$ then there is no nonzero Hilbert-Schmidt operator that commutes with W.

Proof. Assume B commutes with W and let $B e_{j}=\sum_{k=0}^{\infty} b_{k, j} e_{k}$ for $j \geqq 0$. If $B \neq 0$ then $b_{k, 0} \neq 0$ for some k since e_{0} is cyclic for W. Therefore there exists a smallest positive integer m for which $b_{m, 0} \neq 0$. Assume $b_{m, 0}=1$. Then

$$
b_{m+j, j+1}=\frac{\alpha_{m} \alpha_{m+1} \cdots \alpha_{m+j-1}}{\alpha_{0} \alpha_{1} \cdots \alpha_{j}}=\frac{\alpha_{j+1} \cdots \alpha_{m+j-1}}{\alpha_{0} \alpha_{1} \cdots \alpha_{m-1}}
$$

for j large enough. Hence

$$
\sum_{j=0}^{\infty}\left\|B e_{j}\right\|^{2} \geqq \sum_{j=m}^{\infty}\left|b_{m+j, j+1}\right|^{2}=\left|\alpha_{0} \alpha_{1} \cdots \alpha_{m-1}\right|^{-2} \sum_{j=m}^{\infty}\left|\alpha_{j+1} \cdots \alpha_{m+j-1}\right|^{2} .
$$

Now $\varliminf_{j}\left|\alpha_{j+1} \ldots \alpha_{m+j-1}\right|^{2} \geqq \underline{\lim }\left|\alpha_{n}\right|^{2 m} \neq 0$ so that B is not a HilbertSchmidt operator.

Theorem 4. Let W be a unilateral shift with nonzero weights $\left\{\alpha_{n}\right\}$. Then $\mathscr{R}\left(\delta_{w}\right) \cap\left\{W^{*}\right\}^{\prime}=\{0\}$.

Proof. If $B^{*} \in \mathscr{R}\left(\delta_{w}\right) \cap\left\{W^{*}\right\}^{\prime}$ then $B^{*} B=W X-X W$ for some $X \in$ $\mathscr{B}(\mathscr{H})$. Lemma 4 shows that $B^{*} B$ is a trace class operator with trace $\left(B^{*} B\right) \leqq \lim \left|\alpha_{n}\right|\|X\|$. This inequality and Lemma 5 imply that $B=0$.
3. Double commutant and derivation range inclusion. When \mathscr{H} is finite dimensional we have $\mathscr{B}(\mathscr{H})=\mathscr{R}\left(\delta_{A}\right) \oplus\left\{A^{*}\right\}^{\prime}$. This decomposition shows that $\mathscr{R}\left(\delta_{B}\right) \subset \mathscr{P}\left(\delta_{A}\right)$ if and only if $B \in\{A\}^{\prime \prime}$. The condition $B \in\{A\}^{\prime \prime}$
is not sufficient for $\mathscr{R}\left(\delta_{B}\right) \subset \mathscr{R}\left(\delta_{A}\right)$ when \mathscr{H} is infinite dimensional [12]. It is necessary if A is a normal operator [6] or if A is an isometry [13]. The main result of this section is that it is not necessary in general, however.

Theorem 5. Let U be a nonunitary isometry, let $P=I-U U^{*}$, and let $A=\left(\begin{array}{ll}U & 0 \\ 0 & U^{*}+3\end{array}\right)$ and $B=\left(\begin{array}{ll}0 & 0 \\ P & 0\end{array}\right)$ acting in the usual fashion on $\mathscr{H} \oplus \mathscr{H}$. Then $\mathscr{R}\left(\delta_{B}\right) \subset \mathscr{R}\left(\delta_{A}\right)$ and $B A \neq A B$.

Proof. Let $X=\left(\begin{array}{ll}X_{1} & X_{2} \\ X_{3} & X_{4}\end{array}\right)$ be an element of $\mathscr{B}(\mathscr{H} \oplus \mathscr{H})$. Then $B X-X B=\left(\begin{array}{ll}-X_{2} P & 0 \\ P X_{1}-X_{4} P & P X_{2}\end{array}\right) . \quad$ Since $\sigma(U) \cap \sigma\left(U^{*}+3\right)=\varnothing$, therefore there exists $Z \in \mathscr{B}(\mathscr{\mathscr { H }})$ such that $\left(U^{*}+3\right) Z-Z U=P X_{1}-X_{4} P$ [9]. Because $P \mathscr{B}(\mathscr{H}) \subset \mathscr{R}\left(\delta_{U^{*}}\right)$ and $\mathscr{B}(\mathscr{H}) P \subset \mathscr{R}\left(\delta_{U}\right)$ [12], there exist Y and W such that $U Y-Y U=-X_{2} P$ and $U^{*} W-W U^{*}=P X_{2}$. Then

$$
\left(\begin{array}{cc}
U & 0 \\
0 & U^{*}+3
\end{array}\right)\left(\begin{array}{cc}
Y & 0 \\
Z & W
\end{array}\right)-\left(\begin{array}{cc}
Y & 0 \\
Z & W
\end{array}\right)\left(\begin{array}{cc}
U & 0 \\
0 & U^{*}+3
\end{array}\right)=B X-X B
$$

which shows that $\mathscr{R}\left(\delta_{B}\right) \subset \mathscr{R}\left(\delta_{A}\right)$. If $B A=A B$ then $\left(U^{*}+3\right) P=P U$. But since $\left(U^{*}+3\right)$ and U have disjoint spectra, therefore $P=0$ [9]. This contradicts the choice of U.

The operator A defined above has derivation range $\mathscr{R}\left(\delta_{A}\right)$ that contains a nonzero right ideal and a nonzero left ideal of $\mathscr{B}(\mathscr{H})$. The following result explains why this is the case.

Theorem 6. Let $A \in \mathscr{B}(\mathscr{H})$. The following conditions are equivalent:
(1) $\mathscr{R}\left(\delta_{B}\right) \subset \mathscr{R}\left(\delta_{A}\right)$ implies $B \in\{A\}^{\prime \prime}$.
(2) $\mathscr{R}\left(\delta_{A}\right)$ does not contain both a nonzero left ideal and a nonzero right ideal of $\mathscr{B}(\mathscr{H})$.

Proof. That (2) implies (1) can be found in [12]. Assume (1) holds and suppose f, g are unit vectors such that $(f \otimes f) \mathscr{B}(\mathscr{H}) \subset \mathscr{P}\left(\delta_{A}\right)$ and $\mathscr{B}(\mathscr{H})(g \otimes g) \subset \mathscr{R}\left(\delta_{A}\right)$. Then $\mathscr{R}\left(\delta_{f \otimes g}\right) \subset \mathscr{R}\left(\delta_{A}\right)$ so that $A(f \otimes g)=(f \otimes$ $g) A$. Therefore, $(A g, g) f=A f$. Moreover, if $f \otimes f=\delta_{A}(X)$ then

$$
\delta_{A}(X) \mathscr{B}(\mathscr{H})=(f \otimes f) \mathscr{B}(\mathscr{H}) \subset \mathscr{R}\left(\delta_{A}\right) .
$$

An easy calculation shows that $X \mathscr{R}\left(\delta_{A}\right) \subset \mathscr{R}\left(\delta_{A}\right)$, hence $(X f \otimes g) \mathscr{B}(\mathscr{H}) \subset$ $\mathscr{R}\left(\delta_{A}\right)$ and $\mathscr{B}(\mathscr{H})(X f \otimes g) \subset \mathscr{R}\left(\delta_{A}\right)$ so that $\mathscr{R}\left(\delta_{X f \otimes_{g}}\right) \subset \mathscr{R}\left(\delta_{A}\right)$. Therefore $A(X f \otimes g) g=(X f \otimes g) A g$ so that $A X f=(A g, g) X f$. Therefore, $f=$ $(f \otimes f) f=A X f-X A f=(A g, g) X f-(A g, g) X f=0$.

References

[1] J. H. Anderson, On normal derivations, Proc. Amer. Math. Soc., 38 (1973), 135-140.
[2] J. H. Anderson, Derivation ranges and the identity, Bull. Amer. Math. Soc., 79 (1973), 705-708.
[3] C. A. Beger and B. I. Shaw, Self-commutators of multicyclic hyponormal operators are always trace class, Bull. Amer. Math. Soc., 79 (1973), 1193-1199.
[4] D. Herrero and N. Salinas, Operators with disconnected spectra are dense, Bull. Amer. Math. Soc., 78 (1972), 525-526.
[5] Yang Ho, Derivations on $\mathscr{P}(\mathscr{H})$, Thesis, Indiana University, 1973.
[6] B. E. Johnson and J. P. Williams, The range of a normal derivation, Pacific J. Math., to appear.
[7] H. W. Kim, On compact operators in the weak closure of the range of a derivation, Proc. Amer. Math. Soc., 40 (1974), 482-487.
[8] D. C. Kleinecke, On operator commutators, Proc. Amer. Math. Soc., 8 (1957), 535-536.
[9] M. Rosenblum, On the operator equation $B X-X A=Q$, Duke Math. J., 23 (1956), 263-270.
[10] F. V. Shirokov, Proof of a conjecture of Kaplansky, Uspekhi Mat. Nauk, 11 (1956), 167-168.
[11] J. G. Stampfli, Derivations on $\mathscr{B}(\mathscr{H})$: The range, Ill. J. Math., 17 (1973), 518-524.
[12] R. E. Weber, Analytic functions, ideals, and derivation ranges, Proc. Amer. Math. Soc., 40 (1973), 492-497.
[13] J. P. Williams, On the range of a derivation II, Proc. Royal Irish Acad., to appear.

Indiana University

Bloomington, Indiana
and
Taiwan National Normal University
Taipei, Taiwan, Republic of China. (current address)

