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Preliminaries. Let G be a non-elementary finitely generated Kleinian
group with the region of discontinuity 2 and let B,(2, G) be the space
of bounded holomorphic automorphic forms of weight —2q for G operating
on 2, where ¢(=2) is an integer. We denote by I7,,_, the vector space
of complex polynomials in one variable of degree at most 29 — 2. Clearly
II,, , is a G-module with (v- 7)) = v(7(2))Y'(z)""? for vell,,_, and 7 eG.

A mapping p: G—II,,_, is a cocycle if

p(’71°'72) = p(71) * 7y + p(72)
for any 7, 7,€G. This mapping is a coboundary if
p(V)=v-Y—w

for some polynomial v e I,,_,.

We denote by HYG, II,,_,) the first cohomology space of G with coef-
ficients in II,,_,, that is, HYG, II,_,) is the cocycles factored by the
coboundaries. An element of HYG, I1,,_,) with a representative p will
be denoted by {p}.

Let 4 be any G-invariant union of components of 2. We denote by
B,(4, G) the space of all elements in B,(2, G) which vanish in 2 — 4.
Clearly we see that B,(4, G) is the space of bounded holomorphic auto-
morphic forms of weight —2¢q for G operating on 4.

The 4-parabolic cohomology space PH(G, II,,_,) is the subspace of
H\G, II,,_,) such that each element {p}e PHIG, II,,_,) satisfies the con-
dition that at every parabolic cusp in 4, there exists a polynomial v e I7,,_,
with the property

p(V)=v-Y — v

for some (and hence for every) cocycle pe{p} and for any 7 in the
parabolic cyclic subgroup G, of G corresponding to the cusp. In particular,
if the above condition is satisfied for every parabolic cyclic subgroup G,
of G, then we say that {p} belongs to PHYG, II,,_,), the space of parabolic
cohomology.

As is well known, Bers [1] introduced the anti-linear map B*: B2, G)
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— HYG, II,,_,) and proved that this mapping is injective. The map B*
is called the Bers map and the image B*(¥) of ¥ € B2, G) under B* is
called a Bers cohomology class of 4. In [2], Kra proved the inclusion
relation B*(B«(R2, G)) Cc PH\G, II,,_,).

A holomorphic function F on 4 is called an Eichler integral (of order
1—9¢q) on 4, if

F.v—-Fell,,

for any 7 € G, where F -7 = F(7(z))7'(2)"". We denote by E,_ .4, G) the
space of Eichler integrals (of order 1 — ¢) on 4 modulo 17,,_,.

For a holomorphic function F on 4, we define an operator D* ' by
the equality

qu—l
dz !

Bol’s identity shows that, for an Eichler integral F on 4, D*'F is a
holomorphic automorphic form of weight —2¢ for G operating on 4.

We denote by E! (4, G) the subspace of E,_,(4, G) whose element f
satisfies D 'f € B,(4, G). We note that if G has no parabolic elements,
then PHY(G, Il,,_,) = PH(G, II,,_,) = H(G, II,,_,) and E16~q(A, G) = E,_(4,
G@). An Eichler integral F on 4 is called trivial if D*'F = 0. The space
of all images of trivial Eichler integrals on 4 in E,_,(4, G) is denoted
by E?—q(A, G)

In his paper [2], Kra proved that the mapping

a: E (4, G)— PHG, I,,_,)

(D*'F)(z) = F(z) .

defined by a(f) = {p}, where p(7) = F-v — F for a representative p of
{p} and a representative F of f, is injective. The image a(f) of
feE: (4, G) is called an Eichler cohomology class of f. Kra also proved
the following

THEOREM (Kra [2]). Let G be a mon-elementary finitely generated
Kleinitan group with an itnvaritant component 4, such that 2 — 4, % &.
Then every cohomology class {p} e PH; ,(G, II,,_;) can be written as a
sum of a Bers cohomology class of some + € B(R, G) and an Eichler
cohomology class of some f € E}_(2 — 4, G).

From this Theorem, we can easily obtain the following Proposition.

PROPOSITION. If Q2 — 4,+ @ and if E_(2 — 4,,G) =0, then
B*(B(2, @) = PH!.;—AO(G’ My ), so B*:B(Q, G)— PH\G, II,,_,) is sur-
Jective.
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This can be considered as a proposition which gives a sufficient
condition for surjectivity of the Bers map. In this article we shall give
another sufficient condition. We shall also treat a converse problem
“Does surjectivity of the Bers map imply E? (2 — 4,, G) = 0?” and
give a negative answer.

1. First we shall prove two lemmas.

LEMMA 1. Let G be a non-elementary Kleinian group with N gener-
ators v, +++, Yy. If ome of generators, 7, is elliptic of order v,, then

dim HYG, ) < (2q — 1)(N — 1) — {2[2—;—1] + 1} ,

where [x] is the integral part of .

Proor. We denote by ZYG, II,_,) the space of cocycles. Since a
cocycle is uniquely determined by its values on generators of G, we have
dim ZYG, I,,_;) = (29 — 1)N (see Bers [1]).

From the fact that the dimension of Z'(G, I1,,_,) is invariant under
conjugation by a linear transformation, we may assume that 7,(z) = \z,
Ai=1, A% 1. For simplicity we set 7,(z) = 7(z) and vy, = v.

Let p be a cocycle and set p(v) = Si%:2a,2*. Since 7* = id, we have

2g—2
0=p() = flz: (1 + N e ATk
=0

If AM¥t795£ 1, then 1 + NeP79 4 o0 - )\070%+H=0 = (), Hence, for k satis-
fying M*'7? =1, we have a, = 0. Therefore, it is clear that

dim Zl(G; qu—z) = (2(] - 1)N —t,

where ¢ is the number of integers k& for which \f+i77 =1,

Since »* =1, we see that, ¢ equals the number of integers j such
that k +1—q=vj for k, 0 <k <29 — 2. Such an integer j satisfies
0=yj+q—1=2¢—2, so

q—1_ . _q—1

J
v Y

IA
IA

’

from which we have ¢t = 2[(¢ — 1)/v] + 1.
On the other hand, it is well known that the dimension of the space
of coboundaries is 2¢ — 1. Therefore we have our lemma.

REMARK. Under the assumption of Lemma 1, if generators 7, (¢ =1,
«+«,m =< N) are elliptic of order v,, then
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dim HG, M) < (24 — DN —1) — {23} [q;—l] +m}.

LeMMA 2. Under the same assumption as in Lemma 1, if one of
generators, 7;, s parabolic, then

dim PHY(G, I, }) < (2¢ — 1N — 1) — 1.

ProoF. Let p be an element of PZYG, II,,_,), the space of parabolic
cocycles for G. By conjugation by a linear transformation, we may
assume that 7,(z) =z + 1. For simplicity we set 7,(2) = 7(z). By defi-
nition, p(7) = v-7 — v for some polynomial v € IT,,_,. If p(7) = 323 a,2%,
then D% a* =v-Y —v =9z + 1) — v(z). Since v(z + 1) — v(z) € IT,,_s,
we have a,,_, = 0, that is

dim PZYG, Iy_,) < (29 — 1)N — 1.

By the same reasoning as in the proof of Lemma 1, we have our
lemma.
REMARK. Under the assumption of Lemma 2, if generators v, (1 =1,
., » < N) are parabolic, then
dim PHY G, II,,_,) £ (29 — 1)(N — 1) — n .

Now we can prove following for a quasi-Fuchsian group which is a
quasi-conformal deformation of a Fuchsian group.

THEOREM 1. For any mnon-elementary finitely generated quasi-
Fuchsian group G, the Bers map B*: B(2, G)— PH\G, II,,_;) 1s sur-
jective.

ProOOF. For a quasi-Fuchsian group G with two invariant components
Kra [2] proved surjectivity of the Bers map B*. (See also Remark of
Theorem 2 stated later.) So it is sufficient to prove Theorem for a
quasi-Fuchsian group G with the connected region of discontinuity, that
is, for a quasi-Fuchsian group G of the second kind.

There exist a Fuchsmn group I of the second kind and a quasi-
conformal mapping w: ¢ — € such that G = wolow™. Let Ay, By + vy
Qg By Yy ** %y Ymy Oy =2, 00y My, +++, 7, be standard generators of I” with
the defining relations

[aly ﬁllo---o[a_’g, Bg]o’ylo---o’)’moalo-.-oano Noreeon = d
and
yi=id (=1, m)),

where «;, B;, 7, are hyperbolic, 7, are elliptic of order v,, d; are parabolic
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and [a,, B;] means a commutator a,oB;ca;'o B;.

Since I' is generated by (29 + m + n + k — 1) elements «,, ---, 7,_,
with relations 7% = 4d, the quasi-Fuchsian group G is generated by
(29 +m +n + k —1) elements woa,cw™, woBow ™ (1 £ 1= g), woV,ow™
A=i=m), wed,ow™ (1=Z1=n), woNew (L=1=k—1) with re-
lations (wo7v;ow™')" = ¢d, where wod,ow™ are parabolic. Hence, from
Remarks of Lemma 1 and Lemma 2, we have

dim PHYG, II,,_,) < (2¢ —1)29 + m +n +k —1—1)
— {2i[q—-— 1:\ +m} - n.
=1 ])i
We denote by 2(G) and 2(I') the regions of discontinuity of G and
I', respectively. Since G = wol ocw™, we have
dim B,(2(G), G) = dim B((I"), I') ,
whence
dim B(2(G), G) =29 — 1)(29 + k—1 —1)

+2i§z‘i[q—§]+2n(q—1).

i

Consequently
dim B(2G), G) — dim PH'(G, I,,_,)
m l— .
o3 o 2] [0 0]
i=1 AL Y, Y;
It is easily seen that [¢ — q/v;] + [(¢ —1)/v;] =q — 1. Therefore we
obtain

(1) dim B(2AG), G) = dim PHYG, I,,_,) .

Since B*(B(AG), G)) < PH(G, II,,_,) and since B* is injective, we have
the converse inequality for (1). Hence

dim B,(2(G), G) = dim PH'G, II,,_,) ,
which shows
B*(BAG), G)) = PH\G, II,,_,) .
This completes the proof of Theorem 1.

COROLLARY. For any mnon-elementary finitely generated quasi-
Fuchsian group G, it holds that E}_ (2, G) = 0.

ProoF. This is an immediate consequence of Kra’s unique decom-
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position (Corollary 1 to Theorem 4 in [2]) and Theorem 1.

2. Now we consider the problem whether surjectivity of the Bers
map imply E{_(Q — 4, G) = 0 or not.

For the purpose we shall first treat a non-elementary finitely generated
Kleinian group G with an invariant component 4, such that 2 — 4, %= @
and such that E} (R — 4, G) = 0.

We can prove the following lemma.

LEMMA 3. Let G be a non-elementary finitely generated Kleinian
group with an invariant component 4, such that Q — 4, # @ and let
q(=2) be an integer. If E!_(2 — 4, G) = 0, then

dim B,(4,, G) = dim B2 — 4,, G) .

PrROOF. Since E{_,(2 — 4,, G) = 0, Kra’s theorem stated in the above
preliminaries and the injectivity of the Bers map 8*: B2, G)— H G, II,,_,)
imply
(2) dim PHj_,(G, I1,,_,) = dim B,(®, G) .

On the other hand, Kra’s unique decomposition (Corollary 1 to Theorem
4 in [2]) implies
PHj 4G, 1y_,) = B*(B(R — 4, G)) D a(E!_ (2 — 4, G)),

where « and B* are injective and the notation @ means the direct sum.
Therefore

(3) dim PH; 4(G, II,,,) = dim B(2 — 4,, G) + dim E* (2 — 4,, G) .
Since E?{_,(2 — 4,, @) is the kernel of the operator D**!, we have
D* Y B (2 — 4, G)— B(2 — 4,, G)
is injective and hence we see
(4) dim E?_ (2 — 4, G) £ dim B,(2 — 4,, G) .
From (2), (3) and (4) we have
dim B2, G) < 2dim B(R — 4, G),
which yields
dim By(4,, G) < dim B«(2 — 4,, G) .
Further, from the assumption we have dim B,(4, G) = dim B/(2 — 4,, G)
(see [1]). Therefore
dim By(4,, G) = dim B2 — 4,, G),

which proves our lemma.
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As an application of Lemma 3, we have the following characteri-
zation of a quasi-Fuchsian group.

THEOREM 2. Let G be a non-elementary finitely generated Kleinian
group with an invariant component A, such that Q — 4, # @. Then
E_(2 — 4, G) =0 for an even integer q if and only if G is a quasi-
Fuchsian group.

ProOF. The proof of the if part of our Theorem is easily obtained
by noting that 2 — 4, is connected. On the other hand, under the same
assumption on G in our Theorem, Maskit [3] proved that dim B4, G) =
dim B2 — 4,, G) for some even integer ¢ if and only if G is a quasi-
Fuchsian. Thus Lemma 3 gives a proof of the only if part of our
Theorem.

REMARK. Proposition stated in preliminaries and Theorem 2 imply
surjectivity of the Bers map for a quasi-Fuchsian group G under the
assumption 2 — 4, # O.

Next we prove the following lemma.

LEMMA 4. Let G, and G, be non-elementary finitely generated Kleinian
groups and let G = (G, G,> be the Kleinian group generated by G, and
G,. Then

dim PHXG, I1,,_,) < dim PHYG,, I1,,_,)
+ dim PHI(GZ’ qu~2) + (2(] - 1) ’
where equality holds whenever (G, G,> is the free product of G, and G,.

ProoF. We denote by PZ\YI, II,,_,) the space of parabolic cocycles
for a Kleinian group I and by B[, Il,,_,) the space of coboundaries
for I.

Consider the linear map @

0: PZNG, Il,,_,) — PZ\ G, I1,,_,) X PZ G, II,,._,)
defined by @(p) = (p, p.), where p, is the restriction of » to G, for
1=1,2.

Since G is generated by G, and G,, we see that the map @ is in-
jective. Therefore we have
(5) dim PZ\G, II,,_;) < dim PZYG,, I1,,_,) + dim PZG,, II,,_,) .

From the assumption that G, and G, are non-elementary, we see
that G is non-elementary. Hence, by Bers [1],

(6) dim BYG, ,,_,) = dim BNG,, ,e_,) = dim BY(Gy, yy,) = 2¢ — 1.
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Combining (5) and (6) we have
dim PHY(G, II,,_;) < dim PHYG,, IT,,_,;)
+ dim PHYG,, IT,,_;) + 29 — 1.

In particular, if (G, G,> is the free product of G, and G, then @ is
surjective. Therefore, in this case, we have the equality in (5) and
hence the equality holds in our lemma. This completes the proof of
Lemma 4.

We shall prove the following

THEOREM 3. There exists a mnon-elementary finitely generated
Kleinian group G with an invariant component 4, such that 2@ — 4,# @
and E}_(Q — 4, G) # 0 and such that B*(B2, G)) = PH,_4(G, II,,_,) for
any integer q.

Proor. Let S, be a Riemann surface of type (g,, m + n), where g,
is the genus of S, and m + » is the number of punctures of S,, We
assume that 3¢, — 3 + (m + n)>0. Now, associate with an integer
y(v; =2, =1, -+, m) m punctures and associate with c the remainder
n punctures. Let C be a simple loop on S, which bounds neither a disk
nor a punctured disk on S, and which separates S, into two pieces, which
we denote by S; and S;,. We attach a disk along C to S, for ¢ = 1, 2 and
we denote the resulting surfaces by S, and S,. We give a conformal
structure to S; so as to be a finite Riemann surface and we denote by
S} this Riemann surface for ¢ =1, 2. Let (g,, ¢;) be type of S; (=1, 2).
If g, is sufficiently large, we may choose C such that g, =2 and g, = 2.
Here we note that g, =9, + g, and m + n = ¢, + t,.

As Maskit [3] has stated, we can construct a Kleinian group G with
an invariant component 4, such that 4;/G = S, and (2 — 4,)/G = SF + S5,
where 2 is the region of discontinuity of G and 4; = 4, — {all elliptic
fixed points of G}, (2 — 4,) = (2 — 4,) — {all elliptic fixed points of G}.
For a component 4, of 2 — 4,, we have S} = 4}/G;,, where G, =
{veG;7(4) = 4}, 4; = 4, — {all elliptic fixed points of G} for =1, 2
and G is generated by G, and G,.

From Lemma 4 we have

dim PHY(G, II,,_,) < dim PHYG,, II,,_,) + dim PH G, ,,_,) + (2¢ — 1) .

Since G is a finitely generated Kleinian group with an invariant com-
ponent 4, we see that G, and G, are finitely generated quasi-Fuchsian
groups with an invariant component 4, and 4,, respectively. Therefore

dim PHY Gy, IT,,_,) = 2 dim B,(4,, G.)
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for 7 =1, 2. Since 4}/G; = S;", we have
dim B(4, G) = @ — Yo, - D+ 3 [a— L],
ze§z—-—-S§h l“(w)
where y(x) equals y; or «~ and [¢ — ¢/¥(x)] = ¢ — 1 when v(x) = . Hence
we see that
dim PHY(G, I1,,_,) < 2 {dim B,(4,, G,) + dim B,(4,, G,)} + (2¢ — 1)
—2{e - Vo +n-2+ 3 [¢--L]
) '+ 2 =55
+(2¢ — 1)

= (20— 12g, -9 +25[¢— L]+ 2m0 - D).

K3

On the other hand,
dim B,(2, G) = dim By(4,, G) + dim B,(4,, G,) + dim By(4,, G,)

:(2q——1)(2g0—3)+2;:[q—%]+2n(q—l).

Consequently, we have
dim PHYG, I1,,_,) =< dim B2, G) .

Since B*(B/(%2, G))c PHXG, I,,_,) and since B* is injective, we have the
converse inequality. Hence

dim PHY(G, II,,_,) = dim B(%, G), or, B*(B(2, G)) = PHXG, II,,_,) .

Since 2'/G =S, + S + S;, we see that G is not a quasi-Fuchsian
group, where 2 = 2 — {all elliptic fixed points of G}.

Let {p} be an element of PH; ,(G, II,,_,). Then, for any parabolic
element 7, belonging to G, or G, p(7,) = v-7, — v for some vell,,_,.
Take an arbitrary parabolic YeG. Then 7Y = aov,oa™ for some 7,
and some a €G. (See Maskit [38].) Hence we have p(7) = p(@oY,0a™) =
Vey—V for V=w-a'—pla?)ell,_,., Hence {p}ePHYG, II,,_,),
that is, PH;_,4(G, Il,,_;) C PHYG, II,,_;). On the other hand, obviously
PH\G, II,,_,) © PH;_,4(G, Il,, ;). Therefore we have PHYG, I, ;)=
PH;_,(G, II,,_;), which shows 8*(By(2, G)) = PH;_4(G, II,,_,).

Now we have only to show E! (2 — 4, G) # 0. For our group G,
we see that

dim B,(4,, G) > dim By(4,, G.) + dim B,(4,, G,) = dim B2 — 4, G) .

Hence, by Lemma 3 we have E! (2 — 4, G) # 0. Thus the proof of
our Theorem is complete.
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