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1. Introduction. The Nevanlinna theory for meromorphic functions
in |2| < + «~ was extended by Hallstrom [2] and Tsuji [3] to meromor-
phic functions defined in C — E, where E is a bounded closed set of
capacity zero in the complex plane C and C denotes the extended complex
plane. This was done by using the level curves of the so called Evans’
function.

In this paper, we treat special cases that E is a finite set or a
countable set, and prove relations between the order and the deficiencies
of a meromorphic function in C — E. These relations are closely related
with a theorem due to Edrei-Fuchs [1]. However, our result (Theorem
1) can not be obtained from properties of the function in a neighbour-
hood of an isolated singularity.

Let E be a bounded closed set of capacity zero on C, u(z) be an
Evans’ function with respect to E, and let v(z) be its conjugate harmonic
function. The level curve C,: u(z) = log r consists of a finite number of
analytic Jordan curves clustering to E as r— + «. Let 4, be the
unbounded domain surrounded by C,. It is well known that S dv = 2r.

AJC,
For a single-valued meromorphic function w = f(z) in C — E with
an essential singularity at every point of E, we put

1 1
m(r, w) = E;C—Sc, log mdv(z) =0,

where [w,, w,] denotes the spherical distance between w, and w,. For a
fixed 7, > 0, we write

N(r, w) = S:On(t, w)_‘i_t — (7o, w) + k(w) log <_:_) ,

o
where n(t, w) denotes the number of zero points of f(2) — w in 4,\4,,
and Io(w) = (12m)|  darg (£(2) — w) -
We now write TO
T(r, f) = m(r, w) + N(r, w)
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which is independent of w, and we call T(r, f) the characteristic func-
tion of f(z). We note that T(», f) depends on the choice of an Evans’

function u(z).
The order A, and the lower order p, of f(2) with respect to u(z)

are defined as

N, = lim sup M and M, = lim inf log T(r, f) .
7o log r rosoo log r

Again the order N and the lower order g of f(z) are defined as
A =inf X\, and g =infpy, .

We put

1 I dv(z)
w

m*(r, w) = —l—g log* f—(z)—_—

2r Jo

and

N*(r, w) = Sr n(t, w)% .

Then we see m(r, w) — m*(r, w) = O(1) and N(r, w) — N*(r, w) =O(log r).
Denoting by %’(») the number of components of C,, we write

F(r) = S:OnO(t)% , &= H‘ﬁiup Tg‘(’r})

and

v s em{r, w)[ ERT N(r, w)
o(w, f) = lim inf W( =1 = lim sup 'T—(r—fT) '

Hallstrom [2] proved a defect relation:

DEFECT RELATION. Suppose that f(z) is a meromorphic function
in C — E with an essential singularity at every point of E. Then, for
any ¢ distinet complex numbers w,, ---, w,,

300w, £)S 246
REMARK. If E is a finite set, then & is always zero. However, if

E consists of an infinite number of points, £ need not be finite.

2. Edrei and Fuchs [1] showed that every meromorphic function
defined in C having more than one deficient value is of positive lower
order. Here we shall prove that this property still holds for holomor-
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phic functions defined in C — E, when E is a finite set, and that this
property need not be true for meromorphic functions in C— FE, when F
consists of more than one point. Further, we can prove that if E con-
sists of an infinite number of points, then the above property need not
be true for holomorphic function in C - E.

3. First we prove the following lemma.

LEMMA. Let f(z) be a single valued holomorphic function in

C - {2, <+, 2,}. If f(z) has mo zero point, then f(z) can be expressed
as follows:

f@ = eIl e = z)iexo( 3 4:) .

where i (z) is holomorphic in C - {z;} =1, ---,m), ¢ ©s a constant
and y; is some integer.

Proor. Clearly we see f'(z)/f(z) = >.7-, ¢/(z), where ¢;(z) is holomor-
phic in C—1{z)} (=1, ---,m), since f(2)/f(z) is holomorphic in
C— {2,, +++, 2,}. We expand ¢;(z) in the Laurent series of power of
z — z;, that is

= 3 __%__ — a];,, 0'7;1
$i(z) = g; (z — 2;) %(Z 2y + G—2)
where
p= 1 (9
w 271 Slc-— ‘J"ZT(C — zj),,ﬂd‘:-
Put

_ (" f®
h(z) = Szof(—z)dz

for a fixed 2, #2; (=1, ---, n). Then

o= B0 (St )

{vi(z) + a’, (log (z — 2;) + 2m,;mi)},

1

s

J

where +r;(z) is holomorphic in C— {z;}. We note that a?, is an integer.
In fact, we have for a sufficiently small »,
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27 2m f(C) 22
1 S f(C) dac
—2mg Jieesi= £(Q)

and therefore a?, is equal to an integer vy, Thus we have
hz) = X v #(z) + v;log (z — 2z;) + 2m;mi, (v;, m;e Z) .
i=1

It is easy to see that f(z) = c-exp h(z) for some constant ¢. Therefore
we obtain f(z) = ¢- [, (z — 2;)"7 exp {37, v;(2)}, where +;(z) is holomor-
phic in C — {2;} (f =1, --+, n), and p; is an integer.

Now we can prove the following.

THEOREM 1. Let E be o finite set, E = {z, ---,2,}, w(z) be an
Evans’ function with respect to E and let w = f(z) be a meromorphic
Sfunction in C — E with an essential singularity at every point of E.
Suppose that there exist two values a and B (a == B) such that o(«, f)+
o(B, ) > 1 for some u(z). Then the lower order  of f(2) is positive.

Proor. We may assume that @ = - and 8 = 0. Let {a/};>, be the
zeros and {bi} 1the poles of f(z) in the component Di of D, contamlng
z2=2; (=1, ---,n), where D, = {z;logr, < u(z) < + o for a fixed
7, > 0 such that D,, consists of n components}, and let {c,}}., be the
zeros and {d,}}., the poles of f(2) in {z; u(2) < log 7,}.

Let 7%(z) and 77(z) be the canonical products formed by the zeros

{ai}>_, and the poles {bi}:_,, respectively.
Let R(z) =TI, (2 — ¢.)/IIZ. (2 — d,) be a rational function formed

by zeros {c,}i_, and poles {d.})_.. Then g(2) = f(2)-I1}7-: 757(2)/R(z)- I17-.7j(2)
is holomorphic and not zero in C — {z, ---, 2,}. By Lemma, we can
express g(z) as follows:

o) = e I (z = 2 exp {3 v5()}

where +r;(z) is holomorphic in C— {2;} and ¢ is a constant, so we can
write

(1) f@) = n £z,

where f;(z) is meromorphic in C— z} (=1, ---, n).
We next show that for any o > 1, the inequality
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T(r, /)=

L_T('r, ) + N@'r, 0, ) + N@'r, =, ) + Olog 7)

holds for all sufficiently large values of r, where ¢’ = Lo for some
constant L.
From (1), we have

T(r, f) = Lﬁg log* | £(2)| dv(z) + S Mdt + O(log 7)

= 5o o 1 s@l v + 5 | 2= D ar + oog )
=1 n = t
= ZZ‘, LS log* | fi(2)| dv(z) + 5;3 S Mdt + O(log 7) .

Here C! is a component of C, surrounding z = z; and n'(¢, -, f) denotes
the number of poles of f(z) in Di N 4, = 4.
We write

Ti(r, f)=—2-1—§ log* | £ ()| dv(z) +S nit, zo’f)dt

and

Tir, £) = | log

( + ng)
r

Note that for a finite set K = {2, +--, z,}, its Evans’ function can be
written in the form

S:O Nf;(t,tooy f) dt .

u(z) = Sp;log — L,
J=1 lz — Zjl

where 0 < p;, <1 and >",p;=1. We see CiC{z;1/Ar < |z — z;|" <
B/r}, (4 =1, ---, ) for all sufficiently large values of 7, where A and
B are constants depending only on |2; — 2|, (j # k) and p; ( =1, - -+, n).
Hence we have

i (' ) — <1 N < i Ui .

T°<(B) I ) O(log ) = e (r, i) = Ti(Ar)'?5, f))
+ O(log 7) .

Since, by Edrei and Fuchs [1, p. 310-311],

Ti((Ary/»s, f;) < —2
0 —

7 To(Ar)™s, f;) + N Wa(Ar)/?4, 0, f;)
+ Nﬁ(a(A’r)l/pj’ 9, f.?) ’
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for any fixed ¢ > 1, we have

Tj(,r’ fﬂ) éo__4_iTj(o-.;'7" fJ) + Nj(o'yl'ry 0’ f]) + Nj(O-J"! 9, t:) + O(IOg 1") ’
where Ni(r, 0, f;) = ST (ni(t, 0, f;)/t)dt, ni(t, 0, f;) denotes the number of
zeros of f; in 1/r < ]z°~ z;| < 1/r,, and o; = 0" AB. Therefore we have

I(r, f) = 3, Tr, £) + Ollog 7)

< — 4 —1(0', f) + N@'r, 0, f) + N@'r, =, f) + O(log 1),
where ¢’ = max,g;<, 0;. Since (0, f) + 6(o, f) > 1, by a similar argu-
ment to that of Edrei and Fuchs [1, p. 316-317] we have g, (f) > 0.

We note that if #(z) is another Evans’ function with respect to E
and if C, is the level curve with respect to #(z), then T.(r, f) <
max; (p;/P;)Tz(Kr’, f), for all sufficiently large values of 7, where K is
a constant independent of 7 and s = max; (P;/p;). In fact, 7%(z) has the
form

1

L . 0<F =1 and 35, =1.
|z — 2] =t

Wz) = E{ p; log

Further we see that there exist four constants A, A, B and B such that

CTC{z;Zl?-;é Iz—zj!’”é%} and QC{z;%é |z — 2P < %}

Thus, for any j, we have Ti(r, f) < (p;/B;)T5(B(Ary’i', f) and so
T.(r, ) = max; (p;/D;)Tz(B(Ar)’, f) for all sufficiently large values of 7.
Therefore we obtain

t, < lim inf log (K, f) _ Stta
rsco log r

so that
1 ) N .
Yo = 4 = min (pi/D)tt. = min (ptt. > 0.

4. REMARK. Let F({) be a meromorphic function defined on € — {0, 1}
and having an essential singularity at each point of {0,1}. We can
establish the (local) Nevanlinna theory in D,: 0 < [{| < 1/2 or D;:0 <
| — 1| < 1/2. Denote by é'(a, F') the deficiency appearing in the (local)
Nevanlinna theory in Dj(j = 0,1). By giving an example, we can see
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that there exists an F({) with the following property: F({) has only
one (local) deficient value 0 in D, and only one (local) deficient value oo
in D, such that 6°(0, F) =1 and 6'(ce, F) =1 and F({) has two deficient
values such that 0(0, F') = 0(e, F') = 1 with respect to an Evans’ func-
tion u({). Hence the fact that i(a, F') + 6(8, F') > 1 implies z, >,0, does
not follow from a local argument.

ExamMpPLE. We determine the sequences of positive numbers {s,},
{t.}, {=.}, {¥.} and positive integers {7,}, {v.}, {\.}, {¢.} such that

y'ﬂ’ < e(logyn)3/2 < t'n < 4tn < xn < e(log xn)3/2 < sn—!—l < 4Sn+1 < y'rH-l
and such that
st < Ty(r, fo) S €7 (2, + 1= 7 < g5,

To(’r9 fO) é r (8n+1 é r é x'rﬂ—l) ’
e(logrﬂ < To(,,., f1) < ettogm3 (yn +1sr=< e(logymm) ,
T(r,f)=r =7 = Yurd) »

T, (r, go) = e's"° (43, < r < 4¢,),

To(r, go) < €5 (z, 7 < 8,1.)

T(r, g,) = e (4¢, < r < 4s,,,)
and

To(r, 9.) < €' Yoy S 7 = tyry)
for functions fy(z), fi(?), 9.2) and g,(z) defined as follows:

N An s Ha
fo(z)zg(l—(: ) ) fl(z):gl<1—(; ) )

n n

94(2) = exp”f:[1 (1 + ( : )W) and  g.(z) = expjjl <1 + ( ti >) :

These functions have an essential singularity at infinity and T,(r, %)
denotes the usual Nevanlinna characteristic function.
We write G°(z) = (fy(2):942))" and G'(z) = f.(2)-9.(z). For any K > 0,
there exists an n, such that the inequality
1
94(2)

holds for ze{z; 2x, < |2| < (1/2)e™e*»** 5 =n,). Hence we have
| fo()-9(2)| > e, for ze{z; 2z, < |2]| < (1/2)e"5"%2 5 = m,}. Similarly,
there exists an %, such that |[f(z):-9.?)| > e, for ze{z;2y, = |2| <
(1/2)e= ™, m = m.}.

log [fi(z)| = K log max

lz|=r
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We now consider
O )

Obviously F'({) is meromorphic in C - {0, 1} and has essential singularities
at two points { =0 and { = 1.

From the above, we can easily see that 6°(0, F) =1, &%z, F)=
0 (z#0), 0(ce, F) =1 and oz, F) = 0 (¢ # ). On the other hand, if
we use the level curve of an Evans’ function u({) = (1/2) log (1/|2(¢ — 1)),
then we can easily see that

max (N(r, 0, F), N(r, o, F)) = o(T(r, F)),

as r— . Hence we have 6(0, F') = i(c, F) = 1, where N(r), T(r) and
0 denote the counting function, the characteristic function and the
deficiency with respect to the Evans’ function u({), respectively. There-
fore we obtain a desired example.

5. By giving an example, we next show that the assertion of
Theorem 1 is not true for meromorphic function having no deficient
values @ and B8 with &(e, f) + 6(8, f) > 1 and being defined on C — E,
where E consists of two points.

Let E be the set {z, 2,}, 2, =0, 2z, = 1/2. Put

1 1 1 1
w(z) = =log — + —log —————,
@=gle 3l
and denote by C, the level curve u(z) = log ». Then we see easily C, C
A/ < 2] 23U/ = |z —1/2| £ 38/r*)} for all sufficiently large
values of 7.
Consider the function

fo =1 (1 - ;12—2>/ I <1 T 1/2)22”) N j”:g; '

say. Then we have
T(r, 1) = o= | ,log" | F@Ddv(a) + o= . log" | 7(2)| do(a)
ey 2w Jox

| Moo Nt oog ),
ro

where C? and C}* denote components of C, surrounding z = 0 and 2=1/2,

respectively. We write n(¢, 0) for the number of zeros of f(z) in 4..

Then (1/log 2)log log (t/V/'3) + 1 < n(t, 0) < (1/log 2)log log ¢t + 2. Hence
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we have
S' _”'(Lt’o)_dt — (1/log 2) log 7-log log  + O(log 7) .

Next, we estimate | f(z)| on C°. Now, we see

el B £) [0 o

< ( /log 2) log r-log log r + O(log 7) .

On the other hand, we have

¢ tog VIEFE AT 5§ 1 :
> > 5 =
= 3, log 2551081+ (375))

2/log 2) log r-log log » + O(log r)

for zeC2 N (Rez < 0).
We note again that |log [I:=.]1 — 1/(z — 1/2)-2¥|| = O(1) for zeCY,
(r > 5). Thus we have

log™ | f(2)] < (2/log 2) log r-log log r + O(log 7) ,
on C! and

log* | f(2)| = (2/log 2) log r-log log r _ O(log 1) ,
on C)N(Rez < 0). Hence we have

(1/21og 2) log r-log log » — O(log r) < %g log* | f(2)| dv
< (1/1og 2) log r-log log » + O(log 7)

for all sufficiently large values of . We note that S o log?t | f(2)| dv is
Cr
not so large. Therefore we obtain

a(0, f) =

L jog r-loglogr + O(log 7)
log 2

r—00 1
{ Tog 2 log r-log log 4+ O(log r)}-i— {2 o

5 log r-log log 7+ O(log fr)}

Similarly we obtain d(ec, f) = 1/3. Moreover, we can easily see that the
order of f(z) with respect to u(z) is zero.



452 S. MORI

6. Here we show an example for which the assertion of Theorem

1 does not hold for an infinite set K, even if f(z) is holomorphic in C - E.
Let E be the set {z,}7,, wherez, =0, z, =1/2* (k =1,2, ---) and put

-3 1 i 1 1
u(z) = 3, p log P where p= and P = i
(k=1,2,---).

Clearly u(z) is an Evans’ function with respect to E. Let C, be
the level curve w(z) = logr. Then C, = U)Xy Ci, where C) is a compo-
nent of C, surrounding z = 0 and C¢ is a component of C, not surround-
ing z2=0, (=1, --+, N(r)). Consider the function

@) =T £z ,

where

)” and fi(z) = T (1 ___1_)

2P (7 — z,)

£ =11 (1-

for k=1,2, ---.

We show that f(z) is of order zero with respect to w(z) and 6(0, f) =
(e, f) = 1.

(i) We note that

2% .2

ﬁo(lz — 2| > %)ﬂC, =@ and ;Q»('z — 2] < (%)1/”)00, =00,

so that C,.c(Jz|] < 1) for all sufficiently large values of . We note
again that (Rez < 0) N C, C{z; 1/r* < |z| < 2/r*}.

(ii) We next show that the order of f(z) with respect to u(z) is
zero. If zeC,, then |z — z,| = |z| > 1/7*, so

log |£(2)| = 3 log (L + (+*/2))
= 3 ovleg (F/2) + B 2/

+ X w(r2r)

r2<g?’

=I,+1I,+ I, say.

Now, we denote by 7.t) the number of zeros of f,(z) in |z| > 1/t.
Then the integer v such that 2 <t < 2" belongs to the interval

log log ¢ — loglog 2 loy=< log log t — log log 2
log 2 = log 2 ’




DEFICIENCIES OF MEROMORPHIC FUNCTIONS 453

so that n(t) < 1/2 (log log t/log 2 + 2).
Hence we have

72
I = S l%_t@dt — O(log r(log log ) .
2
Next, the integer v satisfying 2¥ < »* fulfils v < log log r/log 2 + 2, so
that
L= 3, v2¥/r) < O(log log 7) .

22V <r2
Further, if vy, = [log log r/log 2] + 2, then
L= 3 vr/2") = S v(r*/2") = O(log log 7) .
22Y > 72 v=vo
Therefore we have
log [ fi(2)| = O(log r(log log r)*) , (2€C,).

Next, we estimate [[;=,|fw(?)| on C,. Let k =k, be the largest
integer satisfying z,e€(jz| > 1/7®). Then k, < [loglog r/log2] + 2. If
k >k, + 1, then

(Iz . zk|_22“/1’k)—1 < 1 ,

and hence log |f(z)| < (222k_2)“, 50 log [Tesegr 1 fi()| < 1. If Bk, + 1,
then |z — 2z,| > (1/r)/?* for z€ C,. Thus we have

8

log [ fi(2)| = X, log {1 + (lz — 2, |-2¥ ")}

v

8

< > log {1 + (r'/7k)- (27 )7}

il

< 2P log r/?* log log r*/** + O(1)
log 2

= O(log r log log 7) ,

A

where n,(t) denotes the number of zeros of f,(z) in |2 — z,| > ¢, since
k <k, +1<loglogr/log2 + 3. Hence we have

ko+1
log kII | f(z)| < O(k,log r-log log ) = O(log r(log log 7)%) .
=1
Therefore we have
log | f()| = log I |£i(2)| = O(log r(log log 7))

for zeC,. Thus we obtain
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T(r, f) = %SC log* | f(z)| dv(z) + O(log r) = O(log r(log log 7)*) ,

where #(z) is a conjugate harmonic function of u(z), and we also see

p<x<x(f)—hmsupw 0.
log r

Therefore f(z) is of order zero with respect to wu(z).
(iii) If zeC, N (Rez < 0), then|z| < 2/r* and

> E) ()

9

Iz_

and hence we have

log | f()] = 3} log |1 — (2"2)|
Byt (o

g 7(log log 7)* .

4
“IN iMs §

>

We also see [z — z,] =1z + (1/r*) = max (|z;|, 1/r®) for z€C,N
(Rez < 0), so that |z — 2,|-2®" > 4. Thus we deduce that for fi(z)
(k: 1’ 2’ "')’

log I<( 22k 1 -1
fk( )
whence
1 1 = (o22k—1\
log————-Zlog ng_,(Z < 1.

zill Ifz)] | f(2) |
Therefore we obtain
T(r, £) = m(r, ) = =\ log* | £()| do(2) + O(1)

32
2T Jo,.n(Re 2<0)

2
27 Je,n(Rez<0)

v

log™ [ f(2)| dv(z) + O(1)

log™ [ fiy(2)| dv(z) + O(1)

= K log r(log log r)

for some constant K(> 0) independent from 7.



DEFICIENCIES OF MEROMORPHIC FUNCTIONS 455

(iv) Finally we estimate the number of zeros of f(z) in 4. We
note that C, C (|z| > 1/) N (U= (|# — 2| > (1/7)¥/?¥)) and that the number
N, of z,e(]z] > 1/r*) satisfies N, < loglog r/log2 + 2. For each k, the
number of zeros of f.(z) in 4, is less than p,-loglogr + 1. Thus we
see that the number n(r, 0) of zeros of f(z) = Il fi(2) satisfies

Ny
n(r, 0) < kz_, (prloglogr + 1) < 2loglog r .
Hence we obtain
N(r, 0, f) < 4log r-log log

for all sufficiently large values of . Therefore we have
_ . N(r, 0, f)
1200,/ )=1—limsup—>22+/ =1,
7o T(r, f)
so 0(0, f) = 1. Clearly, we see (<, f) = 1.

7. Remark. For the set E and the Evans’ function w(z) in the
above example, we see that the number n*(r) of components of C, satis-
fies n*(r) < loglog r/log2 + 2, since C,N (|z| <1/r,) = @. Hence we
have

Foy=| __”*t(t) dt = O(log r-log log 7) .
o
Thus for the holomorphic function f(z) in the above example,
. F(r)
& = lim sup =0,
e T('r, f)

since T(r, f) > Klog r(loglog r)* for a constant K (>0). Hence
> 0(aj, f) <2 for any distinct complex numbers a@;. On the other
hand, since 6(0, f) = d(e, f) = 1 in this example, we see that di(a, f)=0
for all @ = 0, .

8. What can we say about the order (or the lower order) of f(2)
under more stronger condition than Theorem 1? We obtain the follow-
ing result about this problem.

THEOREM 2. Suppose that f(z) is a meromorphic function in C-E
with an essential singularity at each point of the set E = {z,, ++-, 2,}
and that f(z) satisfies

(2) max (W(N(r, 0, ), M(N(7, o, £))) <Mul(f) < o0

for every Evans’ function w(z) with respect to E. Then the order of
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f(z) i3 a positive integer and N\ = pt, where A and ¢ are the order and
lower order of f(z), respectively.

PROOF. Let two canonical products zj(z), #5(?) (j =1, --+, n) and a
rational function R(z) be as in the proof of Theorem 1. Then

0(2) = ) 11 77@)RG)- TT 7i(e)

is holomorphic and not zero in C — E. Thus, by Lemma,
0() = o 1 (& — z)s exp {3 vi(a)} ,

where ceC, y; is an integer and +;(z) is a holomorphic function in C -
{#;}. Since f(z) is finite order, we see +;(2) is a polynomial of 1/(z — 2;)
of degree k; (0 < k; < ). Hence there exist non-negative constants «;
and B; (=1, --+, n) such that

(8(5)"")= (%)™ 0) = -, ) + Ottog )
< Ti(Ar)'%s, g) + O(log 7) = (a,(Ar)*s'>3) + Olog 1)

for all sufficiently large values of ». Hence we have

Siai(g) "} 5 T ) < 3wty + Ofog )

so that

lim sup log T(r, 9) _ lim inf log T(r, 9) _ max (ﬁ) .

rco log r rorc0 log r 1sjsa \ P;
Again, by f(z) = 9(2)R(2)7,(2)/7~(2), Where w(2) = [[7-, 7%(z) and 7.(2) =
117 75(2), we see

T(r, 9) — T(r, ) — T(r, 7) — Olog 7) < T(r, f)

< T(r9) + T(r, ) + T(r, 7) + O(log 7) .
From (2), we see max (\(N(7, 0, f)), M(N(7r, «, f))) < l9) = £.9),
whence
1= o)T(r, 9) =< T(r, /) = (1 + o(L))T(r, g) .

Thus we obtain A\, (f) = ¢.(f) = max,g;<, (k;/p;).
Therefore we have

N == inf 1 (f) = infmax<’“f).

pj 1sjsn pj
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This infimum is attained by taking (k;/p;) = --- = (k;/p;), (K;, # 0).
By noting 0<p; =1, 3}, p; =1 and by taking 37, p;, —0, we see
that ¢ = >\7_, k; is an integer.

REMARK. In Theorem 2, if we replace the condition “for every
Evans’ function u(z) w.r.t. E” by “for some Evans’ function u(z) w.r.t.
E”, then the order A ( = the lower order z) of f(z) need not be an
integer.
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