T6hoku Math. Journ.
28 (1976), 563-581.

ON THE ABSOLUTE NORLUND SUMMABILITY FACTORS
OF THE CONJUGATE SERIES OF A FOURIER SERIES

Yasuo OKUYAMA

(Received June 7, 1975)
1. Let {s,} denote the n-th partial sum of a given infinite series
>.a,. Let {p,} be a sequence of constants, real or complex, and let
Pn:po+p1+"'+pn; P_k:p_k:O, fO]’.' kgl.

The sequence {t,}, given by

(LD to= =5 s = 2 S P, (P2 0),

defines the Norlund means of the sequence {s,} generated by the sequence

{p.}.
Then, the series 3 a, is said to be summable | N, p,|, if the sequence

{t.} is of bounded variation, that is, the series
(1.2) D1t — tal
is convergent.

In the special cases in which p, = I'(n + a)/'(@)['(n + 1), &« > 0, and
p. = 1/(n + 1), summability |N, p,| are the same as the summability
|C, «| and the absolute harmonic summability, respectively.

Let f(t) be a periodic function with period 27 and integrable (L) over
(—n,w). We assume without any loss of generality that the Fourier

series of f(¢t) is given by
(1.3) g‘,l (a, cosnt + b, sin nt) = ,,E::; A,(t)
and |* fydt = o.
The series “conjugate” to (1.3) is
,2; (b, cos nt — a, sin nt) =§; B,(t) .

We write



564 Y. OKUYAMA
P.(t) = olt) = %{f(w +8) + flo — )}

Pelt) = #0) = Sl + 1) — flw — 0)

{pn} € %: pn+1/pn é pn+2/pn+1 g 1 ('n/ = 0, 1, 2, b ') H
Apn = Pn — pn+1 ’
t = [xn/t],

i.e., the greatest integer in x/t.

2. Dealing with the absolute Norlund summability of Fourier series,
M. Izumi and S. Izumi [6] proved the following theorem.

THEOREM A. Let {p,} be non-negative and non-increasing and £\t),
t >0, be a positive mon-decreasing function such that {Mn)/(n + 1)} s
NON-TNCreasing,

o Mk) o Mn) _
@.1) 2&k+nm‘0(m>’”'“L&
and
(2.2) gx«wnwﬂwy<m for some constant C > 0.

Then the series
SMm)ALE)

is summable |N, p,| at t = x.

This theorem is an extension of theorems due to L. S. Bosanquet [1]
and M. Mohanty [11, 12].

Generalizing the theorems of O. P. Varshney [17] and T. Singh [16],
K. Kanno [8] proved the following theorem.

THEOREM B. Let {p,} be non-negative and non-increasing. Let \t),
t >0, be a positive, non-decreasing function satisfying the condition
{\Mn)/P,} is mon-increasing.
If the conditions
o PiMk) (M”b))
2.3 PiME) _ (M) p=0,1,2, -
(2.3) PR o

and

@2) | MCr)ldg®)] < o=
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for some constant C > 0 hold, then the series

)y %x(nmnﬂm

n=0 n

18 summable |N, p,| at t = .

Very recently the author [13] generalized these theorems in the
following form.

THEOREM C. Let {p,} be non-negative and non-increasing. Suppose
that Mt), t > 0, is a positive mon-decreasing function and {¢(n)} is a
positive bounded sequence such that {Mn)p(n)/(n + 1)} is non-increasing,

& ME)k) _ o Mn) _
2.4) R _O(Pn>, n=1,2
and
(2.2) S: MC/t) | dp(t)| < oo for a constant C > 0.

Then the series
S MM A, ()

18 summable |N, p,| at t = .

On the other hand, concerning the absolute Norlund summability
factor of the conjugate series of a Fourier series, A. Kumar [9] proved
the following two theorems.

THEOREM D. Let {p,} and {4p,} are both mon-negative and non-
increasing sequences. Let N\t), t > 0, be a positive non-decreasing func-
tion such that {\(t)/t} is mom-increasing for t > 0.

If the conditions

& ME) A Mn) -
(2.1) kg‘"n kPk - O(Tn) ’ n = 1’ 2: ’
(2.5) | MCmiav@) <
and
9) JRICLIECI
0 t

hold for some constant C > 7, then the series

SMmBL(E)
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is summable | N, p,| at t = =x.
This theorem is the conjugate analogue of Theorem A.

THEOREM E. Let {p,}e.#Z If the conditions

> 1 1
. ::0_, :1,2’.-.,
2.7) & %P, log (k + 1) (P,,> "
(2.8) ¥ (t) € BV(0, )
and
Ol g o o

(2.9) , t10g (C) " <
for some constant C > 7w hold, then the series

o Bu(t)

,;1 log (n + 1)

18 summable | N, p,| at t = x.

Theorem E includes as special case the theorem of R. D. Ram and
N. Lal [15], which is the conjugate analogue of the result due to O. P.

Varschney [17].

Thus, comparing Theorem C with these theorems, we may expect a
result for the | N, p,| summability of the series >.7_, M(n)x(n)B,(x).

Our theorems are as follows:

THEOREM 1. Let {p,} and {4p,} are both mon-negative and non-
wnecreasing. Assume that \(t), t > 0, 1s a positive non-decreasing func-
tion and pt), ¢ >0, is a positive bounded function such that {np(n)}
and {¢(n)/p,} are non-decreasing and {\(t)u(t)/t} is mon-increasing.

If the conditions

= Me)k) _ of Mn) -
2.4) > 2 _O(P”), n=12 -,
2.10) [ MCCIN 40 g, < ..
0 t
and
(2.11) RCOIETOIRES

for some constant C > w hold, then the series

S M) BL(E)
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18 summable |N, p,| at t = .

If p(t) = 1, our theorem reduces to Theorem D. If we put \(t) =1
and p(t) = 1/log (¢t + 1), then we see that our theorem partially includes
Theorem E, because the condition {p,}€.# implies that {4p,} is non-
negative and non-increasing (see K. Kanno [8]).

THEOREM 2. Let {p,} be non-negative and non-increasing. Assume
that N(t), t >0, is a positive mon-decreasing function and p(n) is a
positive bounded sequence such that {M(n)p(n)/n} is mom-increasing.

If the conditions (2.4), (2.11) and

(2.12) Y(+0) =0
hold, then the series

S MmE)BL(?)

1s summable | N, p,| at t = .

Theorem 2 is a generalization of the theorem of H. P. Dikshit [5],
which was given as the conjugate analogue of Theorem B.

3. We need some lemmas for the proofs of our theorems.

LEMMA 1 [4]. Let {p,} be a given sequence, then for any x, we have
n n—1
(1 — @) 3 p* = pua™ — P2"" — 3 Apat™
where m and n are integers such that n = m = 0.

LEMMA 2 [10]. If {p.} is mom-negative and mon-increasing, then for
0=Za=b< o, 0t <7, and for any n, we have

b
| 3, peexp (i(n — k)t)| < APy ,

where A 1s a positive constant, not mecessarily the same at each oc-
curences.

LEmMMA 3 [16]. If {p.} is mom-negative and monm-increasing, then
{(P, — P,_,)k} is a mon-decreasing sequence in k for 1 < k < n.

LEmMMA 4 [16]. If {p,} and {4p,} are both mon-negative and mnon-
increasing, then for 1=k=n and n =2, {(P._r— D)k} s mon-
decreasing.

LEMMA 5 [7]. If {p.} ts mom-negative and mnon-increasing, then
{P,_«/P,} ts nmonm-decreasing and {P,_./P,}—1 as n— o for each fixed
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k=0.

LEMMA 6 (cf. [9], [18]). Let p(t), t > 0, be a positive bounded func-
tion and M\t), t >0, be a positive nonm-decreasing function such that
ME)u(t)/t} is mon-increasing and {np(n)} is non-decreasing.

If (t)e BV(0, @) and

(2.10) S: MCTE)e (f/ D1¥(t) Idt < oo for some comstant C > m hold,

then the series

$ Mmpe(n) |(0,)|

n=2 n
converges where w/(n +1) <0, <zw/n, n=2,3, ---.

PrROOF. Since the hypothesis +(tf) € BV(0, ), implies that |[+(t)|e
BV(0, ), we can write
|9 (€)| = ¥ru(E) — u(t)

where +r,(t) and +,(t) are positive, bounded and non-decreasing functions.
Using the condition that {M(t)x(t)/t} is positive and non-increasing, we
have

n/(n—1) ",h(t) )\,(C/t)#(C/t)
(3.1) S”/ﬂ 12 { 1/t }dt

—n
T

by virture of the fact that +(¢) is positive and non-decreasing.
Similarly, we have

Sm—n Wult) { MCIH(CIE) }dt

(EHE)

By >
t? n

/n

(3.2)

x/n t? 1/t
é C)\.(%(’n — 1))/“‘(%(” — 1)) Sz/m—nwzgt)dt
;Cr’—('"' —1 /n t
- N(%(n - D)” (%(n - 1)> . ( )
o (n — 1) \n—-1/"

If we put @ = C/zn, then we obtain by (3.1) and (3.2)
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Mamyan)  (m\  Ma(n — D)pan —1) [ =x
(3.3  romian) «;r(-;) it b —Z 1)

) S/ g&_;_w_(m MCI)CI)dt -

n/n
Since 7/(n + 1) < 0, < w/n, we have

(3.4) l“(‘““jﬂwwm

- M_“@_#(_“n_)wl(an) — (0.}

= M (3) - (5 o))

= Mamlam) , () Maln = Dyetn — 1), (7 )
n

n (n—-1) n—1
+ Ma(n — Dyme(n — 1)), ( T )_x(a(n —D)p(a(n —1)) (g)
(n—1) ik n—1 (n—1) "\n
+ Maln = D)atn 1), (7 _ Mampam) (% )
(n —1) Vi " n \n 1

Thus, since {ng(n)} is non-decreasing, we have by (3.3) and (3.4)
S M) | 9(0,)|

n=2 n
< A S Man)pan)|y(0,)|
n=2 n
<A {N(an)ﬂ(an) «h( ) Ma(n —( 1))#({!)(% —1), ( T 1)}
n=2 n n — n —
gte e )
fv: {x(a(n :K (B)i(cign — 1)) h( _Z_ )}

< AZSM e ‘”“’(t)}x(G/t)p(C/t)dt

AN@)(e) 3, A{%(n - 1>}
+ AL‘%@V 2(1;')

< A[MODHOD Ol 4 4 <
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by virture of the hypotheses (2.10) and that {\M(n)x(n)/n} is non-increasing
and +(t) is non-decreasing and bounded.

LEMMA 7. Let {p,} be a sequence of positive numbers. Then the
condition

3.5 5, k) _ oL
(3-5) k§=:5» kP, (Pn>
18 equivalent to the condition

(3.6) > L8P oep,)

where {¢(n)} 18 a positive sequence.
ProoF. First, we assume that the condition (3.5) holds.
Using the formula

n o o

S abi= 3 (@G- )Rb +aw, 3 b —a, 3 b,

k=m+1 k=m+2 =m+1 r=n+1

we have

say. Clearly, we have
W,=01) and W,= 0(1).

Also, we have

LS > £4(r)
W, = Pﬂépk(Pk-'_Pk—l),gk;Fr
§AP”l§zpk
=0Q1).

Collecting the above estimations, we have the condition (3.6).
The inverse statement is proved similarly.
Thus, we have by Lemma 7

LEMMA 8. The condition (2.4) implies the condition (3.6).
4. Proof of Theorem 1. By (1.1) we have

- 3% o MO() B(x)

7, =
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where

Bu(x) = % S w(t) sin ktdt .

Hence

~

(CB VR A A
= 2 {voles

3 (Papacs = Poyp Mk)p(k) sin it dt -

P,P,_ i
Therefore, to prove the theorem, we have to show that
I=31% — T,
= 5 || v Ol 2 (Pepecs = Prap M)l sim ke

= 0(1) .

Now taking 6, as points of continuity of +(¢) with #/(n + 1) <
0, <xmmn for n=1,2, -.-, we obtain

00 0”

I _ .

= g So q/f(t){P P-n K Z (P'npn k Pn—kpn»"(k),u(k) sin kt}dti
+E |1, O pp E Papes = Prap M0 sin et

= Il + Iz ’

say. We define H,(t) in the following way;
Wt) = {P P, z_: (PuPo-s — Posp)ME)i(k) sin bt for 0=t <0,
0 for 0, =t=rm.

Since 64, < w/n and H,(t) = 0 for t = 6,, then we have

H(t)=0 for n=7+1.
Therefore, since {\Mk)} is non-decreasing, {kx(k)} is non-decreasing and
|sin kt| < kt, we have

(4.2) SUH®| = 3 H)|
< 3 31 (Bt — L= (i) sim ke

n n—1

3 . 5 (P, _ &L
= 1x(k);u(k)lsm ktl,g,,(_p” P, >
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=t3 k)\,(k)/z(k)%

T

= ATMC)(Clt)

by virture of Lemma 5.
By (4.2) and (2.10), we have

L=3|[voB.08 < | 1vo1 5 H.0)ldt
A S:Wf(t)!)v(f/t)#(C/t) it < oo .

Now, observing that q/f(?f) = 0 and integrating by parts, we have
Z (PoPu_i — PP k})"(k)ﬂ(k) cos (k6,)
n n— 7b n-— k

L= 3 (0] PP

e S

+3

n=1

= sz + Izz;

say. Let us write m = [%/2]. Then we obtain

o 3 S E ‘kP ==t p,_\M(k)u(k) cos (kf)
|9(0.) | —Dup
+ 5, L[S, Pk = Do P\l cos (k8,)
+ Z |4(6,)] 2+1 npnI;; —1; P, p. 7V(k))“(k) cos (0, )i + A

= Izu + Izlz + Iz13 + A ’

say. Since {¢(n)/p,} is non-decreasing and {n\(n)w(n)} is non-decreasing,
we have by Lemma 3

L. = i:: )| 3 Po = P () 4B,

P,P,_ i= k - Ds
S P eyt
_ § Mm)(m) |50.)|

n=2 m

< A 0]

by virture of Lemma 6.
Similarly, by Lemma 4, we have
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H/\

< [P (00) | <& Do — P #(k)
gPPME - P, (k)=

5 190 Pan = Py (yy M) p 3
n=t P, Pn 1 m DPm k=t

5’2 Mam)p(m) | 4(6,) |

m

& M) (0] _
2 n

II/\

Il/\

ll/\

n

Il

by virture of Lemma 6.
Since {M(n)¢(n)/n} is non-increasing and {n\(n)w(n)} is non-decreasing,
we have

5 < i:“ |4(6,)| E+ P,p, ;;Pn—kpn )"(k};u(k)

< 2 [4(6.,)] 7V('”"/)F‘(""’lf) Z P,p,_ — PP
= Z

kSmt1 P.P,_,
40 ) 3 .

mP,_, v P
< §, Monpom) 10

IA

AF MO0 .

by virture of Lemma 6. Thus, by I,,, I, and I,;, we prove the finite-
ness of I,,.
Next, we define K,(t) in the following way;

0 for 0=t<6,

n—k __ Pn—k—l\k’(k)#(k) Ccos kt < <
21< 2 P) - for 6, <t=<m.

k=

Thus, we have
o = 3\ K1y (0)]

gn K.(8)[1dy(®)] .

I
E’}

Considering the condition (2.11) and the definition of K,(¢), it suffices
for I, < o« to prove that uniformly in 0 < ¢t < 7,
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(4.3) J = 2 ,,Z (% _ I;z_k l)k(k)#(k) cos kit {

= O(MC/)) .

Now, we have

& (Pai _ P I\X(k)#(k)
< Eo__ k—
752 | B (G - e
- S Pn k __ n—k 1\)"(10)#(’6)
-l—n:m Z;,( 2 P & coslctl
e Pn . 'n k— l\x(k)ﬁ(k)
n=2r+1 k%—l( P P,n 1 / COSIth
=dJ,+J,+ J,

say. Thus we have

& & (Pusi _ Paiy \ME)U(E)
Ji= 2:‘ 2;( P, P,/ kK
ME) (k) R
<3 A E( P, P, )
M) (k) _ P
+ Z A Z( 7. P )
= Ju + J12 ’

say. Since 1 - P._, ,/P._, < P,/P,_,, we have by Lemmas 5 and 8

J,, <Z N(k)ﬂ(k)/l 1; i 1)

_ M2 5 ()P
= P, L F Z k

= O(MC/t))

by virture of the hypothesis that {\(n)} is non-decreasing.
Also, since {\M(n)¢(n)/n} is non-increasing and {x4(n)} is bounded, we have

I < Z x(k?lcp(k) 1},_

gAl“(_T)Tf“‘—mkil

= O(\MC/t)) .
Hence we have by J,, and J,,
J, = O(MC/?)) .
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By the same method as J,;,, we have

J, < Z Mk)(k) Z ( b P,,_k_1>

k P, P,_,

M)k (1 _ Pus
=52 0-5)
M0 5 (B,
o PZT k=1 k

M7)
=4A —ﬁz—T-PT
= O(MC/t)) .

In order to show that J; = O(M(C/t)), we consider the sum
v | & (Pack _ Pass exp (ikt)
D DMty XR RO
Then it is enough to prove that

= O(MCJt)) as N— oo .

This is similarly proved by the same method as that used by Y.
Okuyama [13].
Collecting the estimations J,, J, and J,, we have
J = O(\(C/?)) .

Thus, by the hypothesis (2.11), we see that I,, is finite.
Therefore, by the above estimations, our theorem is completely
proved.

5. Proof of Theorem 2. We shall only sketch the proof. By (4.1),
we have

Jy =

n=2t+1

=7§1|tn— n——l‘—%IPP

where

Co = 2 [ 40 (Pupa-s = P Ml)a(h) sin ktd

Since () = (0) = ¥(+0), we have Sﬁdqll‘(t) =0, and therefore by
0
integration by parts, we have (cf. T. Pati [14])

CAETANLIONENCT
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for each n, where

cither |, (Pups — p,Pu M)l
[d.(2)] = . cos kit
or kz=1 (Pnp'n—k - pnPn—k))"(k)#(k) k *
Thus we have
o 2 (& 1 < _ 1 — cos kt
r=2 s | e pnPn_m(k)u(k)——k—( | dy(t)]
2 (" & | &(Pok  Pois cos kt
* ?So pY g‘( P, P, )Mk)”(k) % "d“/’(t” :

Since by the hypothesis SKN(C/t)ldq/r(t)l < oo, in order to prove the
~ 0
finiteness of I, it is enough to show that uniformly in 0 <t =7«

I = 5ot —[ 3, (Papes — D P M-SR = O(M(CPt)
and
¥ & s (P Pai cos kt | _
L= 53 (5 — St b 2L | = ooucny) .

Since 1 — cos kt < k*?, we have

Iz a5 2L Sp, Mook

< A S nn(n)

= O(MC?))

by the hypotheses that {\M(n)} is non-decreasing and {¢(n)} is bounded.

I, follows directly from the estimation J of the proof of Theorem 1.
Hence we complete the proof of Theorem 2.

6. In this section, we shall establish the theorem which will clarify
the relation between Theorem 1 and Theorem 2.

THEOREM 3. Let \(t), t > 0, be a non-decreasing function tending to
an infinity as t— oo and i), t >0, be a positive function. If the

condition
a MCJt) = 77\'(0/ )e(Clt)
dt t

holds for a suitable constant 7, then the set of the conditions (2.10) and
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(2.11) is equivalent to the set of the conditions (2.11) and (2.12).

To prove this theorem, we require the following two lemmas.

LEMMA 9. Let N\t) be a mon-decreasing function and p(t) be a
positive function. If the condition

4 — yMC)UClt)
SMCl) = 7

holds for a suitable constant v, then the condition
(6.1) MC/t)(t) e BV(0, 7)
18 equivalent to the condition (2.11) wherever the condition (2.10) holds.

Proor. This lemma easily follows from the fact that

©2  |memiavl s |ancmwon + | 1veiavern)

I

[ 1atCrey ey + | [ MEACD 14Dy o .

0

and

©3)  |lancmwon = | vemiavol + | 1velavcr

< S:MC/t)ld«/»(t)l + 17 S N(C/t)#(i/t) e < o

0

LEMMA 10. Under the same assumptions as those of Theorem 3, the
set of the conditions (2.10) and (6.1) is equivalent to the set of the con-
ditions (2.11) and (2.12).

Proor. If the conditions (2.11) and (2.12) hold, then we have

Sm(C/t)u(C/t) [P g — S“Mﬁ/ﬂdt S‘ dw(u)|
¢ 0 t 0

- S: | dopr(w) | S: MC/t)tﬂ(C/t) dt

0

< 4 {"1avw) || ancrm)|
= 4 [ 1ay@) (e — Cm) <

from which (2.10) follows; and then (6.1) follows from (6.3).
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Conversely, suppose that the conditions (2.10) and (6.1) hold. Then
we obtain (2.11) from (6.2). Since \(t) is a non-decreasing function tend-
ing to an infinity as ¢{— <, (2.12) is obvious from (6.1).

ProoF OoF THEOREM 3. By Lemmas 9 and 10, we complete the proof
of our theorem.

7. In this section, we consider some applications of our theorems
and deduce the several corollaries from the theorems.
Our results are as follows:

COROLLARY 1. If

(i) | lw@ldt < = ©or @) ¥(+0)=0)
and
(ii) S:t"“\d«/r(m < oo,

then the series Do, n°B,(t) is summable |C, 8| at t = x, where
I=sa<pB<l.

This corollary coincides to L. S. Bosanquet and J. M. Hyslop [2] for
« =0. By Theorem 38, Corollary 1 coincides to R. Mohanty [11] for
0 <a<1. Also, see H. P. Dikshit [3].

COROLLARY 2. If

(i) |, ¢ log Cloy | w(t)ldt < = (or (1) ¥(+0) = 0)
and
(i) |, Gog Gty dw(®)] < ==,

then the series >.o-,(log n)’B,(t) is summable |C,a| at t = x, where
0<a<land 8=0.

COROLLARY 3. If

(i) | ¢ tog Gy 1wt dt < = (or (@) #(+0) = 0)
and
(i) |, tog Gy |y (t) < =,

then the series
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s B is summable |N,1/(n + D{log (n + 1)}*|
»=1 {log (n + 1)}*7#
at t = x, where 0 £ a <1, 8=0and a + B < 1.
For @ = 8 = 0, this corollary is due to R. D. Ram and N. Lal [15].

COROLLARY 4. If
(1) S:t*l (log C/t)™ (log log C/t)* ™| y(t)|dt < e (or (') ¥(+0) = 0)
and
(it) | tog log €ty dw(®)] < =,

then the series

= ‘B%(t) y
g; Iog (n T Dflog log(n + D7 18 summable |N, 1/(n + 1)log (n + 1)|

at t = x, where 0 £ B < 1.
COROLLARY 5. If

(i) [ v@lde < = (r @) #(+0)=0)
and
(ii) S:(log Clt)|dy(t)| < oo ,

then the series Do, B.(t) is summable | N, log (n + 1)/(n + 1)| at t = =.
COROLLARY 6. If

(i) ["e-og Gty 14(t) | dt < = or () 9(+0) = 0)
and
(ii) | tog10g Cit) | aw(®)] < == ,
then the series
gﬁ% is summable |N, loglog (n + 1)/(n + 1)log (n + 1)|
at t = .

As these corollaries are similarly proved, we shall prove here only
Corollary 6.
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PROOF OF COROLLARY 6. In our theorems, we put
p, = loglog (k + 1)/(k + 1) log (k + 1),
xt) = log log (¢t + 1) and f(t) = 1/log (¢ + 1){log log (¢ + 1)}. Then we have

P, = ,,Z log log (k + 1)/(k + 1)log (k + 1) ~ {log log (n + 1)} .
On the other hand,

& ME) k) loglog(n + 1) \ _ A/ Mn)
= kP, O( {log log (n + 1)}2> - O(T) )

Therefore, by our theorems, we see that Corollary 6 holds.

Now, by Theorem 3, we see that the set of the conditions (i) and (ii)
is equivalent to the set of the conditions (i’) and (ii) in the above corol-
laries except Corollary 2 where 8 # 0. However, we see from Lemmas
9 and 10 that the set of the conditions (i’) and (ii) is better than the set
of the conditions (i) and (ii) in Corollary 2 (B # 0).

For the Fourier analogue of these corollaries, the reader is referred
to K. Kanno [8] and Y. Okuyama [13].

Finally, the author wishes to express his hearty thanks to Prof. K.
Kanno for his valuable suggestions and encouragements in the preparation
of this paper.
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