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PERTURBATION OF NONLINEAR HYPERCONTRACTIVE
SEMIGROUPS
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We present an extension to nonlinear operators of some results of
I. Segal. Let SA(ΐ) generated by —A be a semigroup of nonlinear con-
tractions in Lp, and take Lp to Lp+β(t). This strong condition allows us
to perturb —A by — F, with weak conditions on F, so that — A — F
has closure generating a semigroup in Lp. F is a nonlinear Nemytskii
operator.

Introduction. This work extends some ideas of I. Segal [10, 11],
following also B. Simon and R. Hoegh-Krohn [12, Section 2J. In their
work, —A is self adjoint and generates a hypercontractive semigroup,
while F is given by multiplication by the function V. They approximate
V by Vn e L°°, giving semigroups SA+Vn(t). In the linear case the con-
vergence of SA+Vn(ΐ) follows Du Hamel's formula; If A is m-accretive,
B and C bounded, then

SA+s(t) = SA+0(t) + [sA+B(t - u)(C - B)SA+G(u)du .
Jo

In the nonlinear case we do not have this formula, but we can show
convergence of SA+Fn(t). Also we do not have their results [12, Lemma
2.15] on self adjoint operators. As in the linear case we do have the
Trotter product formula for giving bounds on SA+Vn(t)

In this paper there are three sections: one on convergence of A + Fn,
one on almost accretive Nemytskii operators, and one on hypercontractive
semigroups.

The following comments raise a problem for further work. The
section on hypercontractive semigroups SA(t) gives

\SA(t)u - SA(t)v\(9-ι-a(t»-ι ^ G*\u -

with α(t) linear only when S(z) is contractive for Re (z) ^ 0, making it
affine. This clashes with the result on Nemytskii operators F, where
we have

\Sp(t)u - Sr(t)v\P £K'\u- H,-ι-β(l,,-ι
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with a(t) nonlinear only when F satisfies very strong conditions.

I am grateful to colleagues at the University of Auckland and the
referee for their help.

1. Convergence of A + Fn. Let (X, \ |) be a Banach space over C or
R with dual Jf *, and pairing denoted by parentheses. Let J: X— >P(J£"*)
be the duality map defined by / e Jx when (x, /) = ||#||2 = ||/||2 An operator
A in X is a function from X to P(X). A is single-valued if Ax never
contains more than one point. The domain D(A) of A is the set of x
with Ax nonempty, and the range R(A) of A is the union of the sets Ax.
We identify A with its graph in XxX. We add operators, multiply by
scalars and take inverses. Let ( , )β: X x X— >R be defined by

- \\g\\*).

If A is an operator in X, the following are equivalent by Benilan
[1] or Kato [7].

(1) If λ> 0, x.eAx, y.eAy, then \\(x + λ^) - (y + λyJH ^ \\x-y\\.
( 2 ) If xt 6 Ax, ?/! 6 Ay, then (x, — y19 x — y)8 ^ 0.
( 3 ) If #! e A#, 7/i 6 A#, then there is / e J(x ~ #) with Re (XL — ylf

A is called accretive iff. any of these hold. If there are several Banach
spaces we will index the norms, duality map, functions ( , )8, closure
operations, etc, by the space, as \x\z,Jχ(x)9 and (x, y)x,8, and clz(A).
Supposing A accretive, A is called m-accretive iff. R(I + \A) = X for
λ > 0, and A is called maximal iff. it is maximal with respect to inclusion
among accretive sets with domain contained in cl (D(A)).

We write A e A(w) to mean A + wl is accretive, in which case A is
maximal means A + wl is maximal.

Let (Ω, B, μ) be a measure space. For p e [1, oo ], let Lp = (LP(M X), \ \p)
denote the space of (equivalence classes of) measurable functions/: M— >X,

with |/|5 = \l/l p ^ < °°> an(i t^e usual modification for p — oo.

THEOREM 1.1. Let (Y, \ |F) and (Z, \ \z) be Banach spaces over R
or C, with Z continuously contained in Y. Let Fn be a sequence of
single valued operators in Z, with D(Fn) — D(F] for all n. Suppose
Fn: D(F)—*Y converges to F: D(F)—+Y uniformly on bounded subsets of
Z. Let A be an operator in Z. Suppose w e R+ and A + Fn + wl is
accretive in Y for all n. Let C and D be subsets of Z.

Suppose one of the following hold. (1) C is bounded. (2) There is
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xQ € D(A) with FnxQ bounded in Z and also A + Fn + wl is accretive in
Z for all n.

Suppose (I + λ(A + Fn))C 2 D for λ e (0, w~1}, and all n. Then the
closure clγ(A + F) of A + F in Y x Y satisfies (I + λ cly(A + JF)) clF(C) 2
clF(jD) for λ 6 (0, w~l), and wl + clF(A + F) is accretive in Y.

PROOF. Let (1 + λw)^ + λ(α< + Fyt) = xίf i = 1, 2, with w"1 > λ > 0,
and α« e A^. Then (1 + λw)^ + λ(α< + Fnyj) — > a?, in F. Since A + .Fn + w I
are accretive in Y, taking limits gives \y± — y2\γ ^ \x± — x2\γ. That is,
A + F + wl is accretive in Y, and consequently clF(A + F) + wl is accre-
tive in Y.

Since clF(A + F} + wl is accretive it is enough to show

(I + λ clF(A 4- ί7)) clF(C) 2 D

for λ 6 (0, w"1)- Given x in D, let 2/Λ = (I + λ(A + FJ)'lx. We claim #Λ

are bounded. If C is not bounded, take a 6 AzQ. Since A + Fn + wl are
accretive in Z,

x0 z

for some KeR, proving the claim. Take an e Ayn with 7/% + λα% + ̂ Fnyn =
a?. Then

- λw) I ί/Λ - ym \ 2

Y ^ ((yn + λαΛ + λ^^/J - (τ/m + λαw + \Fnym\ yn - yjγ>s

m - Fnym, yn - ym}YίS .

Now Fn—>F uniformly on the bounded set {ym} of Z, giving | yn — y
0. Hence, there is T/ e Y with yn—*y in F. Since yft + λαΛ +
a? + λ(F - Fn)»Λ -> a? in Γ, we have a; 6 (I + λ clF(A + F) elF(C). q.e.d.

LEMMA 1.1. Le£ X be a Banach space, with X and X* uniformly
convex. Suppose A and B are single-valued, and A e A(wA), B e A(wB).
Let C be a closed convex subset of X such cl (C ΓΊ D(A + B)) — C. Let
A be maximal and B closed. Suppose that for λ small, λ > 0,
R( I + λA) ̂  D(A\ (I + \ATC c C, (I + λΰ)C => C and (I + \(A + B))C => C.
Let SA be generated on D(A}(~ cl(D(A))) by —A, and let SB and SA+B be
generated on C by —B]G and — (A + B)\C9 to use the terminology of Brezis
and Pazy [3], i.e., SA(t)x — lirn^^ (/ + (t/n)A)~n for xeD(A), and SB and
SA+B likewise. Then for xeC, SA+B(t)x = limw_oo (SA(t/n}SB(t/n))nx, and
the limit is uniform in t on every finite interval.

PROOF. Since A 6 A(wA) and A is maximal, we have R(I + λA)z>Z)(A)
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for small λ > 0 and —A is the infinitesimal generator of the semigroup
SA defined by SA(t)u = lim^ (I + (tjn)AYnu for u e D(A) and t ^ 0 (see
[9, Theorem 3]). It follows from ( I + λA)"1*? c C that each SA(t) maps
C into itself. We next consider Bl — B\c (the restriction of B to C Π D(B)\
Clearly 5,6 A(wB) and 5(1+ λB1)( = (J+ λB)C)=>C="ϋ(TD(5) - 5(50 for
small λ > 0. Note that the closedness of B implies that B± is also closed.
Therefore —Bγ is the infinitesimal generator of the semigroup SB on C
defined by SB(t)u = lim^ (I + (t/n)B)~*u( = limΛ^(I + (tln)BJ-*u) ίoγ ueC
and t ̂  0, i.e., lim^0 r

1^ - SB(i)w) - B^ - Bu for u 6 D(B1) = D(B) n C.
(See [9. Cor. 2].) Also, — (A + J5) l£7(= — (A + BJ) generates a semigroup
S^+JB on C, because A + Bl e AC^ + w*) and R(I + λ(A + BJ) D C =
£>(A + 5) n C - D(A + A) for small λ > 0.

We use the following result from [2, Cor. 4.3]. For t > 0, let Γ(ί)
be Lipschitz with constant lf(ί) mapping a closed convex subset C of X
into itself. Let AeA(w) be single-valued, clJ5(A) = C, cl(jβ(I+ λA))z>C
for λe(0, w~l). Then — cl(Λ) generates a semigroup S(f) on C. If (i)
M(t] = 1 + w£ + o(t) as ί->0 and (ii) r1^ - Γ(ί»->Ax as t-»0 for
x 6 D(Ά), then lim^^oo (T(tln))nx — S(t)α? for α; e C, and the limit is uniform
on bounded t intervals.

We now use the above results by putting T(t) = SA(t)SB(t) and A =
A + J?!. For each ί — > 0, Γ(t): C->C is Lipschitz with constant ew^ew^ =
1 + (̂ ^ + WB)t + o(ί) as ί — > 0. Thus, to prove the lemma, it suffices to
show that

( * ) lim r\u - T(t)u) = (A + B,)u for u e D(A + B,) .
ί-»0

For u eD(A + Bl)( = D(A + J5) n C), t~\u - T(t)u) - t~\u - SA(t)u) + yt,
where yt = Γ\SA(t)u - SA(t)SB(t)u). Now \yt\ £ e{"*+»*}t\Bu\. Apply
I - S (̂ί) at i; 6 D(A) and SΛ(ί)w, noting I - SA(ΐ) is A(wA(t) + o(ί)).

Re ((v -

Suppose t(n) — > 0 and y ί (Λ) converges weakly to y. Putting ί —
dividing by £(%) and letting ^ — > c>o f we obtain

Re (Av — A^ + Bu — y, J(v — u)) ^ —

Since A is maximal and u 6 cl (J9(A)), Au + y — Bu = Au. Then yί(n, — »
Bu, and consequently yt—>Bu as £— >0. q.e.d.

LEMMA 1.2. Let X be a Banach space, X and X* uniformly convex.
Let C be a closed convex subset of Lp = LP(M', X), j)G(l, °°). Suppose
A, F are single-valued operators in Lp, A and FeA(w), and
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Let F be maximal and A closed. Suppose that for λ small, λ > 0, we
have R(I + λF) 2 D(F), (I + λFΓΌ C G, (I + \A)C 2 C and

(I + \(F + A)}C 2 C .

Let SF be generated on el (D(F)) by —F, and let SA and SF+A be generated
on G by —A\c and ~(F+A)\C. For u,veC, and te(0, 1), suppose
\SA(ΐ)u - SA(k)v\(p-ι_a(t»-ι ^ H*\u - v\p and

\SF(t)u - SF(t)v\9 ^K^u- H*-ι-α<ί»-ι ,

where K, H e R and a: R+ — > R+ are given. Then SA+F(f) is of type HK,
i.e., \SA+p(t)u - SA+F(t}v\p ^ (HKY\u - v\p.

PROOF. By Day [5, 6], LP(M; X) and Lg(M; X*) are uniformly convex.
By Lemma 1.1,

Since

Sr(±)sA(±)x - Sr(±)sA(ϊ-)y ^ H*"K*"\x~y\Pί\n/ \n/ \nJ \n/ p

for xf y in C, the result follows.

COROLLARY 1.1. If Fn is sequence of operators satisfying the above
for all n, Fn e A(wn}, A + Fn closed, then the restriction of A + F% to C
is in A(log(flX)).

PROOF. By Miyadera [9, Corollary 2], since A + Fn is single-valued,
for x 6 D(A + Fn), the right derivative of SA+Fn(t)x exists and is equal
to -(A + Fn}x. q.e.d.

2. Almost accretive Nemytskii operators. Let (If, B, μ) be a measure
space. Let (X, \ |) be a separable Banach space over C. For pe[l, co],
let Lp - If (Mi X}. We also put Lp for LP(M; R) as in (2), (3) when
there is no confusion. Given f:Mx X~> X, we define F:U~+U, where
U = {u: M —>-X"}, by (Fu)(x) — f ( x , u(x)). F also denotes the mapping
on equivalence classes of functions equal a.e. F is called a Nemytskii
operator. We will use the following conditions.

(1) / satisfies the Caratheodory conditions, i.e., / is measurable in
x for ueX, and continuous in u for x a.e.

( 2) W: M -»(- oo, 0] is measurable, e~tw e Ll for ί ^ 0, and for s e
M, u —> f(s, u) — W(s)u is accretive in X.
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(3) I /(a?, u)\ £ ΣίLi Tt(x)\u\p<, where pfft < &, ,̂ pae[l, oo), and

( 4 ) TΓ^M"— >[0, oo ) is measurable, and for seM, ueX, \f(sfu)\ ^
8)(l + \u\).
( 5 ) JS?Λ = {s 6 M : % — > /(s, %) + ?m is accretive in Jf and | f ( s 9 u) \ ̂
+ \u\) for ue^Γ}. Let /Λ(s, u) = /(*,,%) if se #„, and /n(β, w) = 0 if

THEOREM 2.1. Le£ / sαέis/V (1), (2), (3), and (4). Defining fn by (5),
FΛ and F from fn and /, Fn and F are bounded continuous operators

from LPi to LP2. Fn converges to F uniformly on bounded subsets of
LP1. Fn + nl is bounded, continuous, and accretive in Lp for pe[l, oo).
Letting Sn be generated by —Fn in Lp, for all r,

\Sn(t)u - Sn(t)v\ίl(l/p+tM £ \e~w\t

r\u - v\p .

PROOF. Since X is separable, the sets En are measurable. Hence,
fn satisfy (1). Also, fn satisfy (3). Since Λ and / satisfy (1) and (3),
Fn and F are bounded and continuous from LPi to LP2 by Krasnoselskii

[8]. By (2) and (4), M - U?=ι E* Consequently, ( τ^/(Pί~p^ -+ 0 as
J&n'

^—>co for l<*i<,m. By (3), Fn converges to F uniformly on bounded sets.
The definition of En gives \fn(s, u)\ ̂  n(l + \u\), and so Fn is bounded

and continuous from Lp to Lp for all p since (1) is satisfied by fn [8],
Since u — * fn (s, u) + nu is accretive in X, it follows that Fn + nl is
accretive in ZΛ

Let Sn be generated in Lp by — Fn. Then for u, v eLp, s a.e. in M,
by (2),

\(SΛ(t)u)(8) - (Sn(t)v)(8)\ £ e-*w^\u(s) - v(8)\ .

Hence, we have \Sn(t)u — 8 n ( t ) v \ l j ( ί / p + t / r ) ^ | e~w \ 1 1 u — v\p. q.e.d.

3. Hypercontractive semigroups. Let (M, B, μ) be a measure space.
Let Σ = {z 6 C: | arg («) | < 0τr} where ί e (0, 1/2]. Let (X, | |) be a reflexive
Banach space over (7, and for pe[l, oo] let Lp = LP(M; Z). Let C be a
closed convex nonempty subset of Lp, pe(l, °°).

DEFINITION. We say (ί7(^): ^ecll'} is a hypercontr active semigroup
on C if the following are satisfied. For zedΣ, U(z):C—*C is nonex-
pansive, i.e., | U(z)u — U(z)v \9£\u — v\P. Also U(0)u ~ u and U(z) U(w)u =
Z7(ίδ + w)w for ^ 6 C and z, w 6 cl J. U(z)u — > t6 for a? 6 G as 2 — > 0. There
is ε =£ 0, KeR, such that for %, v e C, | Z7(l)w — U(l)v \ p+ε ^ K\ u — v \ p.
For u in C, z—+U(z)u is holomorphic on J.

LEMMA 3.1. Let Ω denote the bent strip {zeΣ:\ arg (z — 1)| > θπ}.
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Let f: cl (Ω) — > C be continuous, and analytic on the region Ω. Suppose
I f(z) I έ* Λfo on bdy Σ and \ f(z) \ ̂  Ml on bdy Σ + 1. Then there is a
continuous function a(t): [0,1] —> R, analytic on (0, 1), α(έ) ̂  Ct for some
C, satisfying |/(t)| ^ Aff^Afo1-^.

PROOF. We use the standard three lines theorem and a Schwartz-
Christoffel transform. We map

{z: Im (z) > 0, 0 < Re (z) < 1} into {z e Ω: Im (z) > 0}

by the composition of z(s) = —cosπs and

l + p)°-\l - p)θdp + H

where K - 1/Γ (1 + p)θ~l(l - p)θdp and H - -l^Pί1 + 3P)'~l(l - P)'dp
J-l JO

The map s —» w(s} takes [0,1] to [0,1], and is continuous on the boundary.
The derivative of s —* w(s) at s 6 (0,1) is a constant times

sin πs(l — cos πsY^CL + cos πs)θ.

Let the inverse mapping be a. Since a\w) — l/w'(a(w)), by expanding
the trig, functions we see there is C e R such that for a(w) small, af(w) <i
Ca(w)2(l-θ)/a(wϊ. Since 20 ̂  1, a'(w) is bounded near 0. Thus there is C
such that a(w) ^ Cw for w 6 [0,1]. Extend a to Ω by reflection. Putting
g(s) — (MQIM^8f(a~l(B}) and applying the three lines theorem [13] to g
gives the result. q.e.d.

LEMMA 3.2. Let (U(z): z e cl Σ} be a hyper contractive semigroup. Let
a(t) be as in Lemma 3.1. Then there exists δ Φ 0, with the same sign
as ε, and M > 0 such that for t e [0, 1],

\U(t)f -Z7(ί)λ|(p-ι^(ί)l)-ι g j f f ' l / - A | ,

Aiso, ΐ/ C has nonempty interior, and there is q with \ U(z)f — U(z)h \ q ̂
|/ — h\q, then given a closed interval I contained in the open interval
between p and q, S and C may be taken so that the inequality above
holds with p replaced by any r e L

PROOF. Given f,heC, t e [0, 1], put s"1 = (1 - a(t))/p + a(t)/(p + ε),
where a(t) is as in Lemma 3.1. Take g, a measurable simple function
from M to X* with support of finite measure, g(s) = G(s)e(s} where
G: M-+R+, |β(8)jz. = 1, and \g\B, = 1. Define

φ(z) = \(U(z)f-U(z)h,g(z))dμ

where g(z) = βG((1"α(2))/3)/+α(0)/(ί)+ε)')s/. Then φ is analytic in. the interior of
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the bent strip of Lemma 3.1, and bounded and continuous on the closure.
On bdy Σ, \<?(*} \ ̂  \ U(z)f - U(z)h \ LnM,x)\ g(z) \ L^(M^ ^ \ f - h \ p. And on
bdyΣ + 1, \φ(z)\ ^ \U(z)f - U(z)h\^(xlz}\g(z)\Lp'{Xlz.} ^ k\f - h\,. By
Lemma 3.1, we have |Z7(t)/ -U(t)h\. ^ Ka(t)\f - h\p. Since α(t) ^ Ct
it follows that \U(t)f - U(t)h\(p-ι-Λ(t}{9-t-{9+.}-ι}-ι ^ (Kcγ\f - h\p. The
second result follows from the nonlinear Riesz-Thorin theorem of Browder
[4, Theorem 1, Proposition 1, and Remark in Section 3]. Note that U(t)
may not take L9 to Lg, but a translate U(t} + z does take Lq to L9,
where z e ZΛ Hence, we may assume U(t) takes X0 ~ Lr (Ί Lp Π L9 (in
the terminology of [4]) to itself. q.e.d.

THEOREM 3.2. Let X be a separable Banach space with X and X*
uniformly convex. Let f satisfy (1), (2), (3) and (4) of Section 2, and
let F: LPl —» Lp, plf p e (1, °°), be given by f. Let C be a closed convex
subset of ZΛ Suppose A e A(0), single-valued, (I + \A)C 2 C for λ > 0
small, and Gf\D(A) dense in G. Let SA(t) generated by — A\a on C have
an extension to a hypercontractive semigroup {SA(z}: Rez^grO} on C, with
ε > 0. Suppose for all n, (I + \Fn}C 2 C and (I + \(Fn + A)}C 2 C
for λ > 0 small, where Fn is defined by (5), Section 2. Suppose A is
closed in ZΛ Suppose C n LPί is bounded in LPί and Lp, or C has non-
empty interior and SA(z) is nonexpansive in the Lq norm, with p^ strictly
between p and q.

Then A + FeA(w) in Lp for some w, and (I + λcl (A + F))C 2 C
for λ > 0, small.

PROOF. Take Z = Lp n LP1. To apply Theorem 1.1, we need A +
Fn + wl accretive in Lp(and in LPl if C n LPί not bounded). This follows
by Lemma 3.2, Corollary 1.1, and Theorem 2.1. q.e.d.

COROLLARY 3.1. Let X be a separable Banach space with X and X*
uniformly convex. Let f satisfy (1), (2), (3), and (4) of Section 2, giving
F: LP1 —»Lp, plt p e (1, <χ>). Let A be m-accretive in Lp, with dense domain,
and single valued. Let SA(t) generated on Lp by —A have an extension
to a hypercontractive semigroup (SA(z): Re (z) Ξ> 0}, with e > 0. Suppose
SA(z) is nonexpansive in the Lg norm, p^ strictly between p and q.

Then cl (A + F) + wl is m-accretive for some w.

PROOF. Fn is continuous we have (Z + λFJ, and Z + \(Fn + A) sur-
jective for λ > 0, small, and Fn + A is closed. The result follows by
Theorem 3.2. q.e.d.
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