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INDEX OF SOME GAUSS-CRITICAL SUBMANIFOLDS
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Introduction. As is well-known, the Gauss map is an excellent
device in classical differential geometry where curves and surfaces in a
Euclidean three-space are studied. The same is true when the Gauss
map is applied to an m-dimensional submanifold in a Euclidean w-space.
In this case the image lies in the Grassmann manifold G(m, n — m) which
is not a sphere nor a projective space if m satisfies 1 < m < n — 1.

Let M be an m-dimensional compact orientable C°° submanifold in a
Euclidean w-space E* such that the Gauss map Γ: M-> G(m, n — m) is
regular. We consider only the case 1 < m < n — 1, for, if m = n — 1,
then Γ maps every closed hypersurface onto the (n — l)-sphere, whereas,
if m — 1, a simpler method may be available. Nevertheless, one of the
motives of the present study lies in the fact:

Let C be a closed curve with positive curvature in a Euclidean three-
space. Then the Gauss image of C in the standard sphere has the least
length when and only when C lies in a plane.

Assuming the standard Riemannian metric on G(m, n — m), we get
a volume form on Γ(M). From the pull back of this volume form to
M we get an integral Vol*(Γ(ikf)). As the Gauss image Γ(M) is immersed
in the Grassmann manifold, Vόi*(Γ(M)) is not always the volume of
Γ{M). When M moves smoothly in En, Vol*(Γ(M)) moves in R. Thus we
can consider a submanifold Mo which is a critical point of Vol*(Γ(M)).
Mo is called a Gauss-critical submanifold and is denoted by GCS. As it
is always the case with critical points, there arises the problem of finding
the index. The purpose of the present paper is to prove that a submanifold
M which lies in a linear subspace Em+1 as a closed hypersurface with
positive second fundamental form is a GCS whose index is zero.

A theorem related to this result has been obtained by Chern and
Lashof [1], namely,

THEOREM OF CHERN AND LASHOF. Let i:M-^En be an immersion
of an m-dimensional compact manifold M into a Euclidean n-space En.
Then the total absolute curvature τ(M, i, En) is equal to 2 if and only
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if the immersion i is an imbedding and iM is a convex hypersurface
in a linear subspace Em+1 of En.

See also N. H. Kuiper [2] for related topics.
In the integral Vol*(Γ(ikf)) and also in the total absolute curvature

the second fundamental form plays an essential role, but the relation
between them is difficult to find. An obvious difference is that Vol*(Γ(M))
is defined only when the Gauss map Γ is regular in the present study.

In § 1 we recall the Gauss map together with some symbols used in
the present paper. Vol*(Γ(M)) is defined. In §2 a general formula of
the second variation of Vol*(Γ(Λf)) is given. In §3 we consider an
infinitesimal deformation of a submanifold of En starting from a closed
hypersurface Mo of Em+1. In §4 the formula of the second variation is
obtained. In § 5 an integral inequality on a closed hypersurface of Em+1

with positive second fundamental form is obtained and with the use of
this inequality the Main Theorem (Theorem 5.6) is proved.

1. Gauss map and Gauss-critical submanif olds. Let (M, g) be an
m-dimensional closed G°° submanifold of En, where g is the Riemannian
metric induced by immersion. Let xh(h, i, j, = 1, , n) be the
rectangular coordinates in En and yκ(tc,X,μ, ••• = 1 , — -,m) the local
coordinates in any coordinate neighborhood of M such that the immersion
M->En is given locally by C°° functions

M is assumed to be covered by a set of such coordinate neighborhoods.
We define

(1.1) Bλ

h = B\ = dxh/dy\ gμX = Σ B)3\ .

Then guλ are the covariant components of the Riemannian metric g. The

contravariant components are gμλ which satisfy gμagλa = δμ

λ (a, β,Ύ, —

1, •••, m). We use them for lowering and raising the indices in Greek

letters. Let j * j be the Christoffel symbols derived from guλ and Vλ the

symbol of Van der Waerden-Bortolotti's covariant differentiation. Then

(1.2) Hμλ

h = VμB
h

λ = dμdλx
h - j K \dκx

h ,

where dλx
h = dxh/dyλ, is the second fundamental tensor.

We define

(1.8) Gμλ = Σ*Hμa

hHλ«
h.
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Then Gμλ is non-negative and we can define an m-form ω on M whose
local expression is

(1.4) ω = [det (GWP'W Λ Λ ί f .

From ω we define

(1.5) 7 = j ω .
M

Now the Grassmann manifold G(m, n — m) is the space of m-planes
Π of En passing the origin and the Gauss map Γ carries a point p of
M into an element Π of G(m, n — m) which is an m-plane parallel to Mp.
On the other hand the Grassmann manifold bears the standard Riemannian
metric g of K. Leichtweiss [3], [5] and the ratio of any line element in
(M, g) to its Gauss image is given by

Thus, if Γ is regular, namely άet(Guλ)>0, ω is the volume form of the
Gauss image [4]. But, as Γ is an immersion, 7 differs in general from
Vol(Γ(ikf)) and is denoted by Vol*(Γ(M)).

Let Mo be one of such submanifolds and {M(t), ίei?} a set of m-
dimensional closed submanifolds such that ikΓ(O) = Mo. Moreover, we
assume that, if I = [—ε, ε] for some ε > 0, there exists a C°° map φ: Mo x
I-^En where φ(M09t)=M(t) for tel. For sufficiently small ε, Γ is
regular for all M(t), -ε^t^ε, and we put 7(ί) = Vol*(Γ(Λf(t))). If
t = 0 is a critical point of 7(ί) for every such set {M(t), tel}, we say
that MQ is a Gauss-critical submanifold and denote it by GCS.

The equation of GCS was obtained in [4]. A submanifold of E*
which lies in a subspace Em+1 of En as a closed hypersurf ace with positive
second fundamental form is a GCS. The purpose of the present paper
is to prove that the index is zero for such a submanifold.

2. Second variation of Vol*(Γ(Λf)). If v is the volume form of
(Af, g), we get from (1.4) and (1.5)

(2.1) 7(0 - ( [det(G,,)/det(sr/f,)]1/2^
Jjf(ί)

for Vol*(Γ(Λf(t))). As, in the second member, GμX, gμλJ and v depend on
t, in order to get the derivatives dy/dt and d2y/dt2 we prefer for the
present the following expression,

(2.2) ?(«)={ [det(Guλψ
2dy
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where dy = [A.et{gμX)Yι/2v does not depend on t. Notice that we take
coordinate neighborhoods such that p e Mo and φ(p, t) e M(t) have always
the same local coordinates and the immersion M(t) —> E* is expressed
locally by

(2.3) xh =x\yι, - ,ym;t) .

From (2.2) we get

(2.4) 4 τ
at

(2.5) -%k = \ ^Idet (GμXψ>dy.
dt iinwdt

Let us define (G'1)"1 by

Then we have

(2.6)

(2.7) -|-[d

i[det (G
2

If we use vector fields £*, 57* defined by

dt dt

we get from (1.1) and (1.2)

dt λ dt h '

g = gffJg.,, = Σ
Oί Ot h

4r 111 = Σ ̂ v^ξ* + Σ iV
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where Bih = gx"Bh

a. We also obtain from (1.3)

(2.8) Λ-Gβa = ( Σ HβP

hVaVoe + Σ HaP

hVβVoe)
Ot \ Λ Λ

(Σ rf* + Σ *}V,£
h

(2.9) J I G , . = (Σ H,*VaVtf + Σ Ha^^jήg"'

- Σ JV-ff*, W ( Σ Bh

μvxt + Σ tfiv

+ V
J

ot

όt

Σ ^ Σ
- 2 Σ HβaΉa;g°*g>x Σ

3. A submanifold Mo of En which lies in Em+1 as a closed hyper-
surface with positive second fundamental form. Now let us consider
the case where Λf(0) = Mo is imbedded in En as a closed hypersurface
with positive second fundamental form in a subspace Em+i of En. As
M(t), t Φ 0, need not be confined to that Em+1, the vector fields ζh and
ηh are arbitrary for t = 0. Let C (X = m + 2, , n) be orthonormal

normal vectors of Em+ι which are constant vectors. Let us take a rec-
tangular coordinate system of En such that the Em+ί under consideration
is given by xm+2 — = xn = 0 and the components Ch of C satisfy.
C1 = = Cw+1 = 0. We also obtain
X X

(3.1) Hμλ

k - hμλN
h

for Mo where Nh is the unit normal vector field lying in Em+1 and hμλ

the second fundamental form of Mo as a hypersurface of Em+1.
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We also get

(3.2) VμN
h = - V « >

(3.3) Vuhμλ = VΛa

and the equation of Gauss,

(3.4) Kvμ{ = hμλhS - KiK*

With the use of these equations we want to get formulas for dj/dt and
d27/dtz at t = 0. In the following calculation all quantities are to be
evaluated at t = 0.

Then we get

(3.5) ^ - j

(3.6) -jr^*.* =

We also get from (1.3) and (3.1)

(3.7) Gμl = KM, (G~y = lCrkr> ,

where kμX are defined by kμahla = δμ

x.
In order to apply Green's theorem in the subsequent calculation we

rewrite (2.4) and (2.5) in the following form where v is the volume form
of Mo,

(3.8) $L = \ Av,

dt JMQ

(3.9) 2gf = ϊ Bv.

Prom (3.7) we get

[det (G^)/det (g,aψ2 = det (V)
Hence, in view of (2.6), (2.8), and (3.1), we can calculate the integrand
A of (3.8) as follows,

= det ( V ) # r H V Σ NhVβVae - h,'hβ" ΣΣ

= det (V)[*" Σ
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- V,[
I

- Σ V,[det (hμ

x)WNh]VJ* - det (h/) Σ •Σ
h

But the first term in the last member vanishes on integration by Green's
theorem. We use the symbol = if two members are equal except such
a divergence term, hence

A = - Σ V^fdet (hμ

λ)kβσNh]Vσζ
h - det (hμ

x) Σ Bh

σV>ξh .
h k

On the other hand we have

V,[det (hu

λ)kβσNh]

= det (hμ

λ)[(kSVβK
κkβσ - kβ»kσκVβKκ)Nh + kβσVβN

h] .

Hence we get A = 0 because of (3.2) and (3.3). This proves dj/dt = 0
at t = 0 and the following theorem [4].

THEOREM 3.1. A C°° submanifold Mo of E% which lies in a linear
subspace Em+1 as a closed hypersurface with positive second fundamental
form is a Gauss-critical submanifold.

REMARK. Our assumption is that the Gauss map of M is regular.
Then it is an inevitable consequence that we consider only the case of
positive second fundamental form. As a consequence there exists the
matrix (kμ

λ).

4. The second derivative (d2j/dt2)0 when MQ is a hypersurface of an
Em+ί with positive second fundamental form. We have proved in §3
that (dy/dt)0 vanishes for the submanifold Mo under consideration, and
this implies that the terms of B involving rf1 do not contribute to the
integral (d2Ύ/dt2)0. In order to get an expression for (d2y/dt2)0 which is
convenient for us in finding the index, we need some lengthy calculation
as is predictable from (2.7), (2.8), (2.9).

We first obtain after some straightforward calculation

Gβadt

G - Ύ p d G d
dt dt

+ kβσka<> Σ N'VβVaξ* Σ
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Σ B»V«? Σ (Bk

βVJh + Bk

aVβζ
h)\

i h J

= [terms involving rj]

W^ί* Σ

Σ ( ί , P

*

+ Bh

PVaζ
h)

- 2m Σ #%£* Σ 2Ϋ*V'£*

i h

- 2 Σ vαfλvαί*.
h

Substituting these formulas into (2.7) we obtain

(4.1) B = det (hu

λ)\(kβa Σ NhVβVa

- Wka< Σ N'VpV^ Σ
t

+ fc"^1-" Σ v̂

- hfrk?" Σ Bt

*

«f* Σ (Bh

βVJh + β*V,£*)

- m Σ - '̂V^4 Σ î »V'f* - Σ Vα|
λVα|Λ Ί

ί h A J

If we put

(4.2) / = Σ C*ί* X = m + 2, , w ,
X h X
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where C are as defined in §3, we get

Σ

h,i \ X X X

= Writ" Σ N'VβV£ Σ NhVaV°ξ

Σ , f
X XX

+ kW Σ Bi

PBfhVβVσζ
iVaVζh ,

h,i

hence B is reduced to

(4.3) B S det {hμ

x)Wrkra Σ V,V./VαV / + 5, + β 2 + J53 ,
.r x x

where

(4.4) B, = det (fe«θ[(^α Σ

(4.5) B2 = det (h

- 2W Σ -BrV^V^4 Σ
i A

(4.6) B3 = det (

Σ
A

Σ &*?"? Σ (5^Vαf
i h

- m Σ
ί

Now in order to prove

(4.7) B. + B. + B,^ -det (hu

λ) Σ

we first prove

(4.8) Bx = det ( V ) [ ^ r Σ (5αWfe + JB

+ (m - 1) Σ i^'V^'

The next calculation resembles that carried out in §3, but is a little
more complicated: We get
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-det (hp

ι)Wk" Σ N*V,Va? Σ
i h

= Σ Vα<T[det (hμWka"N
h,i

+ V,(det (h^k^hf'Ί^

and into the second member we substitute

= v,v,v.e* - (KM - hβah/)Vrih

which is the result of the Ricci identity and the Gauss equation. Again
we get

Σ V.51 det (hμ

x)kβ''k'"'NtNhVfiVβVcζ
h

s - Σ det (hιt

i)¥"ka"NiNhVpVaζ
iVβVσξ

h

h,i

- Σ V,(det {hμ

1)Whr'
h,ί

hence
Bι = Σ V,[det (hμ

x)(kβaka" - k>"lff)Ni

+ (m - 1) det (V) Σ ^Vαf Σ

As we have

V,[det (hμ

i

= det (h
k"" - kriff)h,r(Bi

rN
k + Bfίf*

in view of (3.2), (3.3), we get (4.8).
Now we can reduce B^+Bt to a formula where only the first derivatives

of ξh are contained: We get from (4.5) and (4.8)

+ (m - 1) Σ î 'V,?* Σ î *V'5»Ί

= Σ VrΓdet (hμ

x)k^(BaiNh + B^

+ (m - 1) det (V) Σ J^Vίί4 Σ
i h

= det (hA(m + 1) Σ ̂ V,!4

L »

Σ
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Substituting this result and (4.6) into Bλ + 2?2 + B3 we get

Bt + B2 + B3

= det (V

Σ β Σ

and this is equivalent to (4.7).
From (4.3) and (4.7) we get the following lemma.

LEMMA 4.1. Let Mo be a C°° submanifold of En lying in a linear
subspace Em+1 as a closed hypersurface with positive second fundamental
form. It we consider an infinitesimal deformation of such a submanifold
Mo in En, we get for the second derivative of 7 defined in §1

= \ det

where v is the volume form of (MQ, g), hμλ is the second fundamental form
of Mo as a hypersurface of Em+ι, kμλ is given by kμahXa — δμ

λ,

f =

C being orthonormal normal vectors of Em+ί which are constant vectors
X

and ξh is the vector field of deformation.

5. Index of a Gauss-critical submanifold Mo. We first prove the
following theorem.

THEOREM 5.1. If (M9 g) is a C°° closed hypersurface of Em+1 with
the positive second fundamental form hμλ, then the following inequality
holds for any C°° function f:

(5.1) ( det (hμ

λ)[¥rk^βVσfVaV
ΰf - VjV«f]v ^ 0 ,

JM

where v is the volume form, of (M, g) and kμλ satisfies kμahλa = δμ

λ.

To prove Theorem 5.1 we need some lemmas.

LEMMA 5.2. kβakσpaβσaap is non-negative for any tensor aμλ.

PROOF. AS hμλ is positive, kμλ is also positive and, if we fix any
point, we can put kβa = kβδβa where kβ > 0 for β = 1, , m. Hence we
g e t kβ«k<">aβoaap = Σ^,α kβkσ(aβσ)

2 ^ 0.

LEMMA 5.3.
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det (h/)[mk^ka"VβVjVaVpf - (kβ"V βV Jf]v ^ 0

PROOF. We have in view of Lemma 5.2

m

(vβv,/ - λhapk
λ*vλvj) ^ o ,

m

namely,

mkβak^VβVjVaVpf - (kβaVβVJ)2 ^ 0 .

Then this lemma is immediately obtained.

LEMMA 5.4.

= \ det (hSWk'ovyjV^J + (m - W
JM

PROOF. Applying Green's theorem we get

= - \ [det (hμ

λ)
JM

- \ [V,(det (K
JM

= - \ det MW"k"Vj{V,V,V.f - Kβp/Vrf)v
JM

- \ [V,(det (h/W-k'ηVjV.Vpftv
JM

= [ [det (hμ

λ)W«k°PVpVjVβVaf]v
JM

+ ( [V/det (h/)W"k°<>)VjVβVσf]v
JM

-\ [Vβ(άet(h/W°k°<>)VjVpVj)v

+ (m - 1) ( [det (h/)VafV
af]v .

JM

As we have

V,(det {hμ

x)k^ka")VβV J - V/det {h^k^k^V^Vj

= V/det (h/Xk^k"" - k"akση)VβV J = 0 ,
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we get Lemma 5.4.

As we assume m > 1, hence m — 1 > 0, we get from Lemma 5.3
and Lemma 5.4

(5.2) \ det (hμ

λ)(kβak^VσVβfVpVj - VafV*f)v ^ 0 .
JM

LEMMA 5.5.

det (hμ

λ)(kβ

rk
ΐaVβVσfVaV

σf - kβak<">VσVβfVpVaf)v ^ 0 .

PROOF. If Sμλ = g!lβgλaSβa we have

(Sβa - saβχsβ« - s«η ̂  o ,
hence

SβJS" - SβaS« ^ 0 .

Lemma 5.5 is proved if we put Srσ = kβ

rVβVaf.

From Lemma 5.5 and inequality (5.2) we get (5.1), hence Theorem
5.1 is proved.

The following Main Theorem is a direct consequence of Theorem 5.1
together with Lemma 4.1.

THEOREM 5.6. // an m-dimensional C°° submanifold M of En lies
in a linear subspace Em+ι as a closed hypersurface with the positive
second fundamental form, then the index of M as a critical point of
the integral Vol*(Γ(Af)) is zero.
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