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1. Introduction. The author has defined the approximately continuous
Denjoy integral (AD-integral) which is more general than the Denjoy
integral in the wide sense and whose indefinite integral is approximately
continuous ([2]). The object of this paper is to generalize the AD-integral
by means of the notion of preponderant continuity ([5]).

2. The preponderantly continuous Denjoy integral. We begin by re-
producing the definition of the AD-integral for completeness. A real
valued function F(x) is said to be (ACG) on the interval [a, b] if [α, b]
is a union of countably many closed sets on each of which F(x) is
absolutely continuous.

DEFINITION 1 ([2], p. 715). An extended real valued function f(x) is
said to be AD-integrable on [α, 6] if there exists a function F(x) which
is approximately continuous, (ACG) on [α, b] and

AΌF(x) =f(x) a.e.,

where by AD we mean the approximate derivative. The definite AD-
integral of f(x) over [α, 6] is defined as F(b) — F{a).

Given a function F defined in a neighborhood of a point x0, we
shall call preponderant upper limit of F at x0 the lower bound of all
the numbers y (+°o included) for which the set {x: F(x) > y) has upper
density at xQ less than 1/2, and we denote this limit by pr lim supx_»β0F(ίc).
The preponderant lower limit of F at xOf pr lim inf X^XQ F(x)f is analogously
defined. The function F has a preponderant limit at xQ, j)τlimx^XoF(x),
if the preponderant upper and lower limits at x0 coincide. Also a function
is preponderantly continuous at a point if the function is equal to its
preponderant limit at that point.

Let ί7 be a measurable function defined on a neighborhood of a
point xQ and E be a measurable set with density at x0 more than 1/2.
Then it follows easily that if limx-XoF(x) = l(xeE) then pr lime^0 F(x) =
I. Hence the preponderant limit (resp. continuity) is a generalization
of the approximate limit (resp. continuity).

We also remark that the class of all approximately continuous f unc-
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tions defined on [a, b], written apC, is a linear space but the family of
all preponderantly continuous functions, pC, is not so.

LEMMA 1. If a non-void closed set E is a union of count ably many
closed sets Ek, then there exist an interval (I, m) containing points of
E and an integer n such that (I, m) E c.En.

For the proof, see for example [6], p. 143.

LEMMA 2 ([1], p. 543). Let ά?~ be a system of open intervals in
Io = (α, b) satisfying the following conditions:

( i ) If Ike J^(k = 1, 2, , w) and (U*=i ϊk)° = I is an open interval,
then Iej^, where ϊk is the closure of Ik, and E° is the open kernel of E.

(ii) If Ie^ and Jal (J: open interval), then J e ^
(iii) Let I be an open interval. If any open interval J with Jal

belongs to ^, then Iej^.
(iv) // ^ is a sub-system of J^ such that ^\ does not cover Io,

then there exists an Is^ such that ά?Ί does not cover I.
Then IoβJ^.

LEMMA 3. // F(x) is absolutely continuous on [α, b] and if F\x) ^ 0
a.e.f then F{x) is non-decreasing on [α, 6].

THEOREM 1. If f(x) is preponderantly continuous, (ACG) on [a, b]
and AD F(x) ^ 0 a.e., then F(x) is non-decreasing on [a, &].

PROOF. Let J^ be the system of all open intervals on (α, b) in each
of which F is non-decreasing. Then ^ satisfies evidently the conditions
(i), (ii), and (iii) in Lemma 2. If we show that J^ also satisfies the
condition (iv), then the open interval (a, b) is contained in 3?~ by Lemma
2, and therefore by preponderant continuity, F is non-decreasing on [a, 6],

Let ^ 7 be a sub-system of ^ which does not cover the interval
(α, &), and E be the set of points not covered by ^\. Then E is a
closed set. If [p, q] is any closed interval which contains no points of
E, then we can show by the method of repeated bisection that F is
non-decreasing on [p, q]. It follows from the preponderant continuity
of F that F is non-decreasing in the closure of each contiguous interval
of E with respect to (α, 6). Since F is (ACG) on [a, b], the interval is
the sum of a countable number of closed sets Ek, on each of which F
is absolutely continuous. It follows from Lemma 1 that there exist an
interval (I, m) and a natural number n such that (£, m)-EciEn. Hence
F is absolutely continuous in [I, m]Έ. Since F is non-decreasing in the
closure of each contiguous interval of [I, m]Έ with respect to (I, m),
we have F\x) ^ 0 a.e. on [I, m\. By Lemma 3, F is non-decreasing on
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[ϊ, m]. Hence (£, m) e^C But ^[ cannot cover the interval (Z, m) since
(Z, m) contains points of £7. Thus we have (iv).

Let £& denote a linear space contained in pC.

DEFINITION 2. A function f(x) defined on [α, 6] is said to be inte-
grable in the preponderantly continuous Denjoy sense on [α, 6] with
respect to ^f or PD (.S^-integrable on [α, b] if there exists a function
F e ^ n (ACG) such that

AD F(x) = f(x) a.e. .

The function F(x) is called an indefinite PD (,S^)-integral and the definite
integral on [α, 6], denoted by (PD (^f)) [bf(x)dxf is defined as F(b) - F(a).

The definition of this integral requires a uniqueness theorem, namely
that if Fx and F2 both satisfy the condition of Definition 2 then

Fx(b) - F,(a) = F2(b) - F2(a) .

This is guaranteed by Theorem 1, since Fx — F2 e £f Π (ACG) and
AD (F, - F2) = 0 a.e. .

We can prove the following fundamental properties for the PD (=2 )̂-
integral as usual ([2]).

THEOREM 2. (i) The class of all PD (Jzf)-integrable functions on
[α, 6] is a linear space and the PD (^f)-integral is a linear functional
on it.

(ii) If f is PD (Jzf)-integrable on [α, 6], then f is PD (Jif)-integrable
on any subinterval [a, β], and the PD (^yintegral is an additive function
of an interval on [α, 6].

(iii) If f is PD (^f)-integrable on [a, b] and non-negative almost
everywhere, then f is Lebesgue integrable.

(iv) // {/„} is a sequence of PD (^f)-integrable functions converging
to a function f and if gu g2 are PD (^f)-integrable with g1 <. fn <^
g2(n = 1, 2, •••)» ίΛβw / is also PD (^f)-integrable and

lim (PD (j2f)) ( V (aθds - (PD (£?))[* f(x)dx .
J J

We remark that if we put Sf — apC in Definition 2, then the
PD (cφC)-integral is the AD-integral in Definition 1.

Next we shall show that our integral is strictly more general than
the AD-integral.

THEOREM 3. There exist a function f defined on [α, b] and a linear
space Jίf contained in pC such that f is PD (^f)-integrable but not
AΌ-integrable on [a, b].
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PROOF. Let In = [l/(4w + 1), l/4w] = [an, bn](n = 1, 2, •) be a sequence
of closed intervals on [0,1]. If we put E = JJSU h$ t h e n the set i£ has
1/4 right density at 0.

Let φn(x)(n = 1, 2, •••) be a sequence of functions defined on [0, 1]
as follows:

φn(x) = sin2 {O - an)π/(bn - an)} for α e /» ,

= 0 elsewhere .

Finally we define F(x) = ΣSU<£>„(». Then F(x) is continuous on [0, 1]
except at x — 0, where -P(x) is preponderantly continuous but not approx-
imately continuous, for lim^0 F(x) = 0 = F(0)(x e Ec) and the set Ec has
3/4 right density at 0.

Since φn(x) is absolutely continuous on the closed interval In and is
zero elsewhere, F(x) is (ACG) on [0,1] and is differentiate in the ordinary
sense everywhere except at 0.

Let £f be the linear space spanned by the function F(x) and the
space apC on [0, 1]. If we put

f(x) = F\x) (x Φ 0)

= 0 (x = 0) ,

then it follows from Definition 2 that the function f(x) is PD(=2^)-
integrable on [0,1]. However f(x) is not AD-integrable on [0,1]. Suppose
that / is AD-integrable. Then there exists a function G(x) which is
approximately continuous, (ACG) on [0, 1] and AD G(x) = f(x) a.e.. Since
AD (F(x) - G(x)) = 0 a.e. and F - G e & n (ACG)f we have from Theorem
1 that F — G is constant on [0, 1]. This contradicts the fact that G is
approximately continuous at 0 but F is not so.

REMARK. The preponderant derivative of a function F at x0 is defined
as the preponderant limit of the difference quotient (F(x) — F(xo))/(x — x0)
as x approaches xQ, and this derivative is a generalization of the approximate
derivative. However the integral does not increase when the prepon-
derant derivative is used instead of the approximate derivative in Definition
2. In fact, an (ACG) function defined on an interval is approximately
differentiable almost everywhere and is therefore preponderantly differen-
tiable almost everywhere.

REFERENCES

[1] S. IZUMI, An abstract integral X, Proc. Imp. Acad., Tokyo, 18 (1942), 543-547.
[2] Y. KUBOTA, An integral of the Denjoy type I, II, III, Proc. Japan Acad., 40 (1964), 713-

717; 42 (1966), 737-742; 43 (1967), 441-444.



DENJOY INTEGRAL 541

[3] Y. KUBOTA, A characterization of the approximately continuous Den joy integral, Canad.
J. Math., 22 (1970), 219-226.

[4] Y. KUBOTA, A constructive definition of the approximately continuous Denjoy integral,
Canad. Math. Bull., 15 (1972), 103-108.

[5] J. L. LEONARD, Some conditions implying the monotonicity of a real function, Rev.
Roum. Math, pures et appl., 17 (1972), 757-780.

[6] I. P. NATANSON, Theory of functions of a real variable, Vol. 2, Frederick Ungar, New
York, 1960.

DEPARTMENT OF MATHEMATICS

FACULTY OP SCIENCE

IBARAKI UNIVERSITY

MITO, 310 JAPAN






