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0. Introduction. A. Weinstein [8] presented a quasi-classical calculation
of the energy spectrum for a free particle moving on a sphere of constant
curvature in any dimension. He showed that the quasi-classical spectrum
resembles quite closely, in terms of both eigenvalues and multiplicities,
the spectrum of the quantum hamiltonian Δj2. For the case of d-sphere
Sd of constant sectional curvature one, his result is as follows: The
quasi-classical eigenvalues are

and the multiplicity of λw is

ra(λj =

d - 3
d odd ,

d even .

Note that the counting starts with n = (d + l)/2(eZ odd) or τι = d/2(d even).
It is well-known that the eigenvalues of the quantum hamiltonian Δ/2
on Sd are

and the multiplicity of μn is

lfn
n n - 1

where the counting starts with n = 0. See Berger-Gauduchon-Mazet [2].
In this note, we will present a slightly modified calculation of the

quasi-classical energy spectrum for a free particle moving on Sd and
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show that the multiplicities of the resulting quasi-classical eigenvalues
are equal to the multiplicities of the corresponding quantum eigenvalues.
Our result is as follows: The quasi-classical eigenvalues are

K = l ( t d - 1

and the multiplicity of vn is

2n

n n-l

where the counting starts with n — 0.

1. Preliminaries, Let ( | ) denote the hermitian inner product and
V — 1 denote the complex structure in the complex d-space Cd = Rd 0
V — lRd. The symplectic structure [, ] in Cd is defined by [u, v] =
Im(u\v) for u,veCd. A linear subspace L in Cd is called Lagrangian
if dim L = d and [uy v] = 0 for all u, v e L. The real subspace Rd and
the imaginary subspace V—lRd are Lagrangian. Let Λ(d) denote the
set of all Lagrangian subspaces in Cd. Λ(d) is a manifold, Λ(d) = U(d)/O(d)
(ArnoΓd [1]). For any LeA(d), there exists a Ue U(d) such that L =
U{V^lRd). Although U is not [determined uniquely, W(L) = C/C/-1 is
determined uniquely for each L W(L) is a symmetric unitary matrix
(Leray[4]). Let us define Det2: Λ(d) -+ S1 by Det2(L) = άetW(L), where
S1 is the circle oriented counterclockwise. The one-dimensional
homology and cohomology groups of Λ(d) are free cyclic: Hi{A{d)y

Z) = H^Λid), Z) = Z. For the generator of the cohomology group
H^Aid), Z), we may take the cocycle a whose value on an oriented closed
curve i:Sl—> A(d) is equal to the degree of the composition Det2©?: Sι —>
S1 (ArnoΓd [ID-

EXAMPLE (ArnoΓd [1]). Consider a one-parameter group of automor-
phisms

Tk{θ) =

For any L = U(V-lRd)eΛ(d), let us
7»,t: [0, π] -+ Λ{d) by ^,t((?) = Tk(θ)(L).

k

d — k

define an oriented closed curve
Then
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W{Tk(θ){L)) = {Tk{θ)U){Th{θ)UΓ = Tkφ)UU-'Tk{ΘΓ = Tk{θ)W{L)Tk{θ) .

Therefore

Όet\Tk(θ)(L)) = det (Tk{θ)W{L)Tk(θ)) = e2'~kθ Det2 (L) .

Thus the value of the class a on the curve ykiL is equal to k.

Now, following Fujiwara [3], let us define the Maslov index. Let
I be a d-dimensional complete Riemannian manifold with Riemannian
metric < , > and Levi-Civita connection V. We may identify the tangent
bundle TM with the cotangent bundle T*M by means of the metric, and
we then have the connection map K: TT*M^ TM. Let π: T*ikf->ikf be
the projection. For any ξ e T*M, the d-dimensional subspaces hξ —
kernel (K \TζT*M) and vζ = kernel^* | TζT*M) are called the horizontal subspace
and the vertical subspace in TξT*M, respectively. Note that TζT*M =
hζφvζ. The Sasaki metric ((, )) in T*M is defined by ((X, Y)) = <7r*(X),
τr*(Γ)> + (K(X),K(Y)) for X, YeTζT*M. The restrictions K\Vξ:vξ-+
Tπ{ξ)M and π*\hξ:hξ-+T^M are isometries. Let J:TT*M-+ TT*M
denote an almost complex structure defined by π*°J = —K and K<>J =
7Γ*. In local coordinates (yί9 , yd; ηlf , ηd) in Γ*M associated with a
normal coordinate system (y19 , yd) about π(ξ) in ikf, Jξ = J\Tξτ*M TξT*M-+
TζT*M is given by Jξ(dldyό) = d\dηά and J^d/drjj) = -d/dys for i = 1, 2,
• , d. Note that J(v€) = hξ and J(fe )̂ = vξ.

The canonical one-form on T*M will be denoted by ω. Let us recall
α>|€ = π*(£) for ί e Γ*ikf. The symplectic form ί? is defined by Ω — dω.
In local coordinates (yl9 •• ,yd'fVif "••> %) ίn Γ*ikί associated with local
coordinates (y19 ,yd) in Λf, we have ω\ξ = ΣiUi^j^Vj a n d ^le =
ΣUidViΛdyif where ίy = ξ{βldyά). Ω\ξ introduces a symplectic structure
in TξT*M. Thus we have a notion of Lagrangian subspaces in TςT*M.
The following three lemmas are due to Fujiwara [3].

LEMMA 1. hζ and vξ are Lagrangian subspaces in TςT*M.

For a linear isometry <pξ: hξ-+Rd, we define a linear map Φζ: TξT*M^>
Cd = Rd@V^ΪR* as follows: Φξ\hξ = φζ and Φζ{X)=-V^Λoφξojξ(X) for
Xevξ. Then Φξ is bijective and we have

LEMMA 2. (i) Φξ: TξT*M->Cd is a symplectic linear map.
(ii) If Ψς is another symplectic map such as Φξ, then Ψξoφj1e

O(d) c U(d).

Let A(TξT*M) denote the set of all Lagrangian subspaces in the
symplectic space TξT*M. Since the image of a Lagrangian subspace
under a symplectic linear map is a Lagrangian subspace, Φζ induces a
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map Φξ:A(TtT*M)-+A(d).

LEMMA 3. Φξ = Ψξ, where Ψξ is as in Lemma 2.

For the proof, it is sufficient to note that Λ(d) = U(d)/O(d). A sub-
manifold V in T*Λf is called isotropic if the pull-back of Ω to ΊJ is
identically zero. An isotropic submanifold L is called Lagrangian if
dim L = dim M. Let y: S1-^L be an oriented closed curve on a Lagrangian
submanifold L. Then the tangent space Tnt)L to L at τ(ί) is a Lagrangian
subspace in TrU)T*M. Thus we have an oriented closed curve y: S1 —>
A{d) defined by y(t) = Φnt)(TrU)L).

DEFINITION (Fujiwara [3]). The Maslov index IndLγ of 7 on L is
defined by Indz 7 = a(j).

The free Hamiltonian Λ,: T*M-^R is defined by h(v) = l/2(v,v}.
The Hamiltonian vector field Jϊ on T*M for which ϊl\ Ω - dh generates
the geodesic flow χ = {χt} on T*M. In local coordinates (yί9 , 3/d;
Vu ι d̂) i n ϊ 1 * ^ associated with a normal coordinate system (ylf , yd)
about ττ(f) in ikf, H\ζ is written as Jϊl^ = Σί=i fi(5/597i) A closed Lagrangian
submanifold L in T*M is called a quasi-classical state if it satisfies the
Maslov's quantization condition (Maslov [5]):

For any oriented closed curve 7 on L,

2π
\ ω — —IndL(7) is an integer .
h 4

A quasi-classical state L in T*M is called a quasi-classical eigenstate if
h is constant on L. The value of h on a quasi-classical eigenstate L
is called the eigenvalue of L. A foliation ^ on T*M is called a Jacobi
foliation if its leaves are Lagrangian submanifolds in T*M. A Jacobi
foliation corresponds classically to an orthogonal decomposition of the
quantum state space. See Slawionowski [6], [7]. In the next section,
we will construct a Jacobi foliation j*fd on the cotangent bundle T*Sd

of the d-sphere Sd, and select from its leaves all those which satisfy the
quantization condition. See Weinstein [8].

2. Calculations for spheres. We will consider the spheres

Sk = {(a?0, , xd)eRd+ί\x2

0 + - - + x\ = 1, xk+1 - . . = xd = 0}

for k = 1, 2, , d, with the Riemannian metric induced from the Euclidean
metric dx\ + + dx\ on Rd+1. Let 1 £ k < m £ d. Sk is a totally
geodesic submanifold in Sm. The (co)tangent bundle of Sk with the Sasaki
metric is naturally imbedded as a totally geodesic submanifold in that
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of Sm. The canonical one-form and the symplectic form on T*Sm pull
back to the corresponding forms on T*Sk. The restriction of the free
Hamiltonian on T*Sm to T*Sk is that of T*Sk. The geodesic flow on
T*Sm leaves T*Sk invariant, and its restriction to T*Sk is the geodesic
flow on T*Sk. Thus there may be no confusion if we write the canonical
one-form ω, the symplectic form Ω, the free Hamiltonian h, the Hamil-
tonian vector field if, the geodesic flow χ = {χt \t eR} on T*Sk, for any
k = 1, 2, , d. As before, we will identify the tangent bundle and the
cotangent bundle of Sk. Restricting the vector field dxk+1 on Rd+1 to Sk,
we have a normal cross-section Xk+1 = dxk+1\sk: Sk —> T*Sk+ι. Xt denotes
the tangent vector dxx\p to Sι at p = (1, 0, , 0)eRd+1. We will first
construct a Jacobi foliation £fd on T*Sd with a small exceptional set.
For any a, e R, let LCαJ = { χ ^ I J e Γ*SX | ί e Λ}. Then j ^ = {Lfo) | a, e R}
is a Jacobi foliation on Γ*S1. Let π: T*Sk —> Sfc denote the projection.
Regarding L(a^ as a subset of T*S% we have a submanifold Z ĉO # [α2] =
{F, + a2X21 ff(Fl) IY1 e L(aJ} in T*S2, for any α2 > 0. L(al9 a2) = {χt( F2) | Y2 e
L(aj) # [α2]} is a two-dimensional submanif old in T*S2. Thus we have a
foliation ^ = {LCα̂  α2) | (αx, α2) 6 /ί2, α2 > 0} on Γ*S2 with a small exceptional
set. Iterating this procedure, we have a foliation ^ = {L(alf , α*)|(αif
•••, α*) eRk, aά > 0 for j ^ 2} on Γ*Sfc with a small exceptional set.
From the construction, it is easy to see that the leaves L(alf , ak)
are fc-dimensional tori which are invariant under the geodesic flow.
The free Hamiltonian h is constant on L(al9 , ak) and is equal to
(at + + αϊ)/2.

LEMMA 4. L(alf •••, αfc) is α Lagrangian submanifold in T*Sk.

PROOF. We will prove this by induction. L(αx) is a Lagrangian
submanifold in T*Sι. If we assume that L(alf •• , α J ) is a Lagrangian
submanifold in T*SJ', then an easy computation shows that L(alt ,
α, ) # [α i+1] is an isotropic submanifold in Γ*S/ + 1. For any tangent
vector £ to L(alf , α, ) # [α i + 1], β(Z, ί ί ) = dΛ(Z) = Z(Λ) = 0, since Λ is
constant on L(α u , α )̂ # [α i + 1]. The tangent space of L(alf , α i + 1)
at a point F i + 1 6 L(al9 , α, ) # [αy+J is spanned by the tangent space of
L(alf , α, ) # [α i+1] at Y"i+1 and the Hamiltonian vector -ίf|ri+1 at Yy+1.
Since the geodesic flow leaves Ω invariant, it follows that L(au •••, aj+1)
is a Lagrangian submanifold in T*Sj+ί. q.e.d.

Thus we have a Jacobi foliation ^fd on T*Sd with a small exceptional
set. Now we will calculate the Maslov index for oriented closed curves
on L(aί9 •••, ad). Let S\r) ^ [0, 27rr]/{0} U {2πr} denote the oriented
circle of radius r. For k = 1, 2, , cί, let us define a curve y'k: S\rk)-+
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L(al9 - 9 ak) by 7*00 = χ,(Σ*=iMM Λ where n = (Σy=i αy)"1/2 and p =
(1,0, , 0). 7fc is an oriented closed curve. ck = π°7fc is a closed geodesic,
its tangent vector ck(t) is equal to 7*(t). Define a curve 7fc: S^r*) —>
£(«!, •••, <*>d) by T*(ί) = 7ί(t) + Σy=*+ittΛ| e i(t) ^ i s a n oriented closed
curve on L(αw , ad), π°Ίk = ck. ylf •• , 7 d are generators of the one-
dimensional homology group H^Lfa, , ad), Z) = φdZ of L(a19 , ad).

LEMMA 5. IndL(βl,... fβί i)7* = 2(fc - 1).

PROOF. Let Y$k): S\rk) -> TSd, 3 = 1, 2, , d, be parallel vector fields
along cfe such that {Yjk)(t)}3 =ltmm,td forms an orthonormal basis for the tangent
space to Sd at ck(t), Yίk)(t) = rkck(t)9 and F}*^), i = 1, •••,&, are tangent
to S*. For a small ε > 0, a map f(yl9 ••-, yd) = e x p ^ C Σ ^ F f (Ϊ/J)
is a diffeomorphism from S^r*) x ( — ε, ε)d~ι into Sd, where exp is the
exponential map. Thus we have a Fermi coordinate system (yί9 •• ,2/d)
along ck. Let (ylf , yd; ηlf •••,%) denote the associated coordinate
system in T*Sd. We represent a tangent vector to T * ^ by its component
with respect to this coordinate system. We regard L(alf •• ,αJfc) as a
submanifold in T*Sd. If the tangent space to L(alf •• ,αfc) at 7*(t) is
spanned by vectors (αt ι, , α<fc, 0, , 0; bn, , 6lfc> 0, , 0), i = 1, , k,
then the tangent space to L(alf , ak) # [ak+ί] at 7ί(t) + ak+1Xk+1\ CkU) is
spanned by (ail9 , α<fc, 0, , 0; bilf , bik, 0, , 0), i = 1, , fc. Since
the Hamiltonian vector at 7*(*) + αjk+A+ilci(f) i s given by (rί"1, 0, •••, 0,
αfc+i, 0, •••, 0; 0, « ,0), the tangent space to L(alf , ak+1) at y'k(t)+
a>k+iXk+i\ckit) is spanned by the vectors (ail9 •• ,α<Jfc, 0, •• , 0 ; 5 i l , •••,&«,
0, , 0), i = 1, , fc, and ( n \ 0, , 0, αfc+1, 0, • •, 0; 0, • , 0). Similarly,
the tangent space to L(alf , ak+j) at y'k(t) + Σ<=i &*+A+*Uu> is spanned
by the vectors (ailr , aik, 0, , 0; δ^, , bik, 0, , 0), i = 1, , fc,
and ( n 1 , 0, , 0, ak+ι, 0, , 0; 0, , 0), , (rk\ 0, , 0, αfc+1, αfc+2, ,
α fc+i, 0, , 0; 0, , 0). The vector (1, 0, , 0; 0, , 0) is tangent to
L(a19 •••, ad) at Ύk(t). It follows that the tangent space to L(alt •••, ad)
at Ύk(t) is spanned by the vectors (atl9 , aik9 0, , 0; bn, , bik, 0, , 0),
i = 1, ••-,&, and d/dyk+1, , 3/3^. Since (2/lf , yd) is a normal coordinate
system about ck(t)9 {d/dy19 , d/dyd, d/dτj19 , 9/3)7d} is an orthonormal basis
for the tangent space to T*Sd at Ύk(t). d/dylf — ,d/dyd are horizontal
vectors at 7*(ί). 3/3 î, , d/dηd are vertical vectors at 7k(t). J(d/dyd) =
3/397̂ - for i = l, , d. On the other hand, the tangent space to L ^ , , ak)
in T*Sk at τl(ΐ) is spanned by the vectors (ail9 •••, aik9 0, •••, 0; 6^, •••,
bίk, 0, , 0), i = 1, , &. Thus, from the definition of the Maslov index,
it follows easily that the Maslov index of the curve yk on the Lagrangian
submanifold L(alf , ak) in T*Sk is equal to the Maslov index of the
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curve yk on the Lagrangian submanifold L(alf -—,ad) in T*Sd. Since
Ύk is an orbit of the geodesic flow on T*Sk, we have

Indi(βl,..fβJfc,7ί = (Morse index of ck in Sk)

= 2(fc - 1) .

See Maslov [5], Weinstein [8]. From this our lemma follows. q.e.d.

Now we will calculate the action integral along yk.

S C f C2πrk C2πrk

ω = π*(yk) = \ yt =\ (jk, ck)dt = <?'„, Yk
Tk Jrk Jck JO JO

Tk

l/2

)(Σ
Therefore, the quantization condition for the Lagrangian submanifold
L(alf , ad) is w r i t t e n as

k

/ k v/9' h — 1

(δα0 - V =

for k = 1, , d. Thus we have

« 1 \ 2 \ 1/2

n2 + — j - wίj for
f o r ^ ^ w*-i >

k = 3, -- ,d .

It follows that the quasi-classical spectrum {vn}Z=Q for the sphere Sd is
given by

See Weinstein [8]. The multiplicity m(vn) of yn is the number of the
Lagrangian submanifolds L(alf , ad) which satisfy the quantization
condition and Σi=ι a)β — v* Therefore m(vn) is equal to the number of
d-tuples (nlf —-,nd) of integers satisfying 0 ^ |nγ\ <: n2 ^ ^ ^ - i ^
^d = n. Thus we have

m{vn) =

where the counting starts with n = 0. Despite the incompleteness of
the Jacobi foliation ^ , the quasi-classical multiplicity m(vn) of vn agrees
with the quantum multiplicity m(μn) of μn.
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