# ON THE MULTIPLICITIES OF THE SPECTRUM FOR QUASI-CLASSICAL MECHANICS ON SPHERES 

Kiyotaka Ii

(Received January 24, 1977, revised September 13, 1977)
0. Introduction. A. Weinstein [8] presented a quasi-classical calculation of the energy spectrum for a free particle moving on a sphere of constant curvature in any dimension. He showed that the quasi-classical spectrum resembles quite closely, in terms of both eigenvalues and multiplicities, the spectrum of the quantum hamiltonian $\Delta / 2$. For the case of $d$-sphere $S^{d}$ of constant sectional curvature one, his result is as follows: The quasi-classical eigenvalues are

$$
\lambda_{n}=\frac{1}{2}\left(n+\frac{d-1}{2}\right)^{2} \quad\left(n>\frac{d-1}{2}\right),
$$

and the multiplicity of $\lambda_{n}$ is

$$
m\left(\lambda_{n}\right)=\left\{\begin{array}{cc}
2\binom{n+\frac{d-3}{2}}{d-1} & d \text { odd } \\
2\binom{n+\frac{d-2}{2}}{d-1} & d \text { even }
\end{array}\right.
$$

Note that the counting starts with $n=(d+1) / 2(d$ odd) or $n=d / 2(d$ even). It is well-known that the eigenvalues of the quantum hamiltonian $4 / 2$ on $S^{d}$ are

$$
\mu_{n}=\frac{1}{2} n(n+d-1)=\frac{1}{2}\left(n+\frac{d-1}{2}\right)^{2}-\frac{(d-1)^{2}}{8},
$$

and the multiplicity of $\mu_{n}$ is

$$
m\left(\mu_{n}\right)=\frac{2 n+d-1}{n}\binom{n+d-2}{n-1}
$$

where the counting starts with $n=0$. See Berger-Gauduchon-Mazet [2].
In this note, we will present a slightly modified calculation of the quasi-classical energy spectrum for a free particle moving on $S^{d}$ and
show that the multiplicities of the resulting quasi-classical eigenvalues are equal to the multiplicities of the corresponding quantum eigenvalues. Our result is as follows: The quasi-classical eigenvalues are

$$
\nu_{n}=\frac{1}{2}\left(n+\frac{d-1}{2}\right)^{2},
$$

and the multiplicity of $\nu_{n}$ is

$$
m\left(\nu_{n}\right)=\frac{2 n+d-1}{n}\binom{n+d-2}{n-1}
$$

where the counting starts with $n=0$.

1. Preliminaries. Let ( $\mid$ ) denote the hermitian inner product and $\sqrt{-1}$ denote the complex structure in the complex $d$-space $\boldsymbol{C}^{d}=\boldsymbol{R}^{d} \oplus$ $\sqrt{-1} \boldsymbol{R}^{d}$. The symplectic structure [,] in $\boldsymbol{C}^{d}$ is defined by $[u, v]=$ $\operatorname{Im}(u \mid v)$ for $u, v \in \boldsymbol{C}^{d}$. A linear subspace $L$ in $C^{d}$ is called Lagrangian if $\operatorname{dim} L=d$ and $[u, v]=0$ for all $u, v \in L$. The real subspace $\boldsymbol{R}^{d}$ and the imaginary subspace $\sqrt{-1} \boldsymbol{R}^{d}$ are Lagrangian. Let $\Lambda(d)$ denote the set of all Lagrangian subspaces in $C^{d} . ~ \Lambda(d)$ is a manifold, $\Lambda(d) \cong U(d) / O(d)$ (Arnol'd [1]). For any $L \in \Lambda(d)$, there exists a $U \in U(d)$ such that $L=$ $U\left(\sqrt{-1} \boldsymbol{R}^{d}\right)$. Although $U$ is not 'determined uniquely, $W(L)=U \bar{U}^{-1}$ is determined uniquely for each $L . W(L)$ is a symmetric unitary matrix (Leray[4]). Let us define $\operatorname{Det}^{2}: \Lambda(d) \rightarrow S^{1}$ by $\operatorname{Det}^{2}(L)=\operatorname{det} W(L)$, where $S^{1}$ is the circle $\left\{e^{\sqrt{-1} \theta}\right\}$, oriented counterclockwise. The one-dimensional homology and cohomology groups of $\Lambda(d)$ are free cyclic: $H_{1}(\Lambda(d)$, $\boldsymbol{Z}) \cong H^{1}(\Lambda(d), \boldsymbol{Z}) \cong \boldsymbol{Z}$. For the generator of the cohomology group $H^{1}(\Lambda(d), Z)$, we may take the cocycle $\alpha$ whose value on an oriented closed curve $\tilde{\gamma}: S^{1} \rightarrow \Lambda(d)$ is equal to the degree of the composition $\operatorname{Det}^{2} \circ \tilde{\gamma}: S^{1} \rightarrow$ $S^{1}$ (Arnol'd [1]).

Example (Arnol'd [1]). Consider a one-parameter group of automorphisms

$$
\left.T_{k}(\theta)=\left(\begin{array}{lllll}
e^{\sqrt{-1} \theta} & & & & \\
& \ddots & & & \\
& & e^{\sqrt{-1} \theta} & \\
& & & 1 & \\
& & & \ddots & \\
& & & & 1
\end{array}\right)\right\} d-k
$$

For any $L=U\left(\sqrt{-1} \boldsymbol{R}^{d}\right) \in \Lambda(d)$, let us define an oriented closed curve $\tilde{\gamma}_{k, L}:[0, \pi] \rightarrow \Lambda(d)$ by $\tilde{\gamma}_{k, L}(\theta)=T_{k}(\theta)(L)$. Then

$$
W\left(T_{k}(\theta)(L)\right)=\left(T_{k}(\theta) U\right){\left.\overline{\left(T_{k}(\theta) U\right.}\right)^{-1}=T_{k}(\theta) U \bar{U}^{-1}{\overline{T_{k}(\theta)}}^{-1}=T_{k}(\theta) W(L) T_{k}(\theta) . . . . . . .}
$$

Therefore

$$
\operatorname{Det}^{2}\left(T_{k}(\theta)(L)\right)=\operatorname{det}\left(T_{k}(\theta) W(L) T_{k}(\theta)\right)=e^{2 \sqrt{-1 k} \theta} \operatorname{Det}^{2}(L)
$$

Thus the value of the class $\alpha$ on the curve $\tilde{\gamma}_{k, L}$ is equal to $k$ ．
Now，following Fujiwara［3］，let us define the Maslov index．Let $M$ be a d－dimensional complete Riemannian manifold with Riemannian metric 〈，〉 and Levi－Civita connection $\nabla$ ．We may identify the tangent bundle $T M$ with the cotangent bundle $T^{*} M$ by means of the metric，and we then have the connection map $K: T T^{*} M \rightarrow T M$ ．Let $\pi: T^{*} M \rightarrow M$ be the projection．For any $\xi \in T^{*} M$ ，the $d$－dimensional subspaces $h_{\xi}=$ $\operatorname{kernel}\left(\left.K\right|_{T_{\xi} T^{* M}}\right)$ and $v_{\xi}=\operatorname{kernel}\left(\left.\pi_{*}\right|_{T_{\xi} T^{*} M}\right)$ are called the horizontal subspace and the vertical subspace in $T_{\xi} T^{*} M$ ，respectively．Note that $T_{\xi} T^{*} M=$ $h_{\xi} \oplus v_{\xi}$ ．The Sasaki metric $\left.《,\right\rangle$ in $T^{*} M$ is defined by $\langle X, Y\rangle=\left\langle\pi_{*}(X)\right.$ ， $\left.\pi_{*}(Y)\right\rangle+\langle K(X), K(Y)\rangle$ for $X, Y \in T_{\xi} T^{*} M$ ．The restrictions $\left.K\right|_{v_{\xi}}: v_{\xi} \rightarrow$ $T_{\pi(\xi)} M$ and $\left.\pi_{*}\right|_{h_{\xi}}: h_{\xi} \rightarrow T_{\pi(\xi)} M$ are isometries．Let $J: T T^{*} M \rightarrow T T^{*} M$ denote an almost complex structure defined by $\pi_{*} \circ J=-K$ and $K \circ J=$ $\pi_{*}$ ．In local coordinates（ $y_{1}, \cdots, y_{d} ; \eta_{1}, \cdots, \eta_{d}$ ）in $T^{*} M$ associated with a normal coordinate system（ $y_{1}, \cdots, y_{d}$ ）about $\pi(\xi)$ in $M, J_{\xi}=\left.J\right|_{T_{T^{*}}}: T_{\xi} T^{*} M \rightarrow$ $T_{\xi} T^{*} M$ is given by $J_{\xi}\left(\partial / \partial y_{j}\right)=\partial / \partial \eta_{j}$ and $J_{\xi}\left(\partial / \partial \eta_{j}\right)=-\partial / \partial y_{j}$ for $j=1,2$ ， $\cdots, d$ ．Note that $J\left(v_{\xi}\right)=h_{\xi}$ and $J\left(h_{\xi}\right)=v_{\xi}$ ．

The canonical one－form on $T^{*} M$ will be denoted by $\omega$ ．Let us recall $\left.\omega\right|_{\xi}=\pi^{*}(\xi)$ for $\xi \in T^{*} M$ ．The symplectic form $\Omega$ is defined by $\Omega=d \omega$ ． In local coordinates（ $y_{1}, \cdots, y_{d} ; \eta_{1}, \cdots, \eta_{d}$ ）in $T^{*} M$ associated with local coordinates $\left(y_{1}, \cdots, y_{d}\right)$ in $M$ ，we have $\left.\omega\right|_{\xi}=\sum_{j=1}^{d} \xi_{j} d y_{j}$ and $\left.\Omega\right|_{\xi}=$ $\sum_{j=1}^{d} d \eta_{j} \wedge d y_{j}$ ，where $\xi_{j}=\xi\left(\partial / \partial y_{j}\right) .\left.\quad \Omega\right|_{\xi}$ introduces a symplectic structure in $T_{\xi} T^{*} M$ ．Thus we have a notion of Lagrangian subspaces in $T_{\xi} T^{*} M$ ． The following three lemmas are due to Fujiwara［3］．

Lemma 1．$h_{\xi}$ and $v_{\xi}$ are Lagrangian subspaces in $T_{\xi} T^{*} M$ ．
For a linear isometry $\varphi_{\xi}: h_{\xi} \rightarrow \boldsymbol{R}^{d}$ ，we define a linear map $\Phi_{\xi}: T_{\xi} T^{*} M \rightarrow$ $\boldsymbol{C}^{d}=\boldsymbol{R}^{d} \oplus \sqrt{-1} \boldsymbol{R}^{d}$ as follows：$\left.\Phi_{\xi}\right|_{h_{\xi}}=\varphi_{\xi}$ and $\Phi_{\xi}(X)=-\sqrt{-1} \circ \varphi_{\xi} \circ J_{\xi}(X)$ for $X \in v_{\xi}$ ．Then $\Phi_{\xi}$ is bijective and we have

Lemma 2．（i）$\Phi_{\xi}: T_{\xi} T^{*} M \rightarrow \boldsymbol{C}^{d}$ is a symplectic linear map．
（ii）If $\Psi_{\xi}$ is another symplectic map such as $\Phi_{\xi}$ ，then $\Psi_{\xi} \circ \Phi_{\xi}^{-1} \in$ $O(d) \subset U(d)$.

Let $\Lambda\left(T_{\xi} T^{*} M\right)$ denote the set of all Lagrangian subspaces in the symplectic space $T_{\xi} T^{*} M$ ．Since the image of a Lagrangian subspace under a symplectic linear map is a Lagrangian subspace，$\Phi_{\xi}$ induces a
$\operatorname{map} \widetilde{\Phi}_{\xi}: \Lambda\left(T_{\xi} T^{*} M\right) \rightarrow \Lambda(d)$.
Lemma 3. $\widetilde{\Phi}_{\xi}=\widetilde{\Psi}_{\xi}$, where $\Psi_{\xi}$ is as in Lemma 2.
For the proof, it is sufficient to note that $\Lambda(d) \cong U(d) / O(d)$. A submanifold $L^{\prime}$ in $T^{*} M$ is called isotropic if the pull-back of $\Omega$ to $L^{\prime}$ is identically zero. An isotropic submanifold $L$ is called Lagrangian if $\operatorname{dim} L=\operatorname{dim} M$. Let $\gamma: S^{1} \rightarrow L$ be an oriented closed curve on a Lagrangian submanifold $L$. Then the tangent space $T_{\gamma(t)} L$ to $L$ at $\gamma(t)$ is a Lagrangian subspace in $T_{\gamma(t)} T^{*} M$. Thus we have an oriented closed curve $\tilde{\gamma}: S^{1} \rightarrow$ $\Lambda(d)$ defined by $\tilde{\gamma}(t)=\widetilde{\Phi}_{\gamma(t)}\left(T_{\gamma(t)} L\right)$.

Definition (Fujiwara [3]). The Maslov index $\operatorname{Ind}_{L} \gamma$ of $\gamma$ on $L$ is defined by $\operatorname{Ind}_{L} \gamma=\alpha(\widetilde{\gamma})$.

The free Hamiltonian $h: T^{*} M \rightarrow \boldsymbol{R}$ is defined by $h(v)=1 / 2\langle v, v\rangle$. The Hamiltonian vector field $H$ on $T^{*} M$ for which $H 」 \Omega=d h$ generates the geodesic flow $\chi=\left\{\chi_{t}\right\}$ on $T^{*} M$. In local coordinates ( $y_{1}, \cdots, y_{d}$; $\eta_{1}, \cdots, \eta_{d}$ ) in $T^{*} M$ associated with a normal coordinate system ( $y_{1}, \cdots, y_{d}$ ) about $\pi(\xi)$ in $M,\left.H\right|_{\xi}$ is written as $\left.H\right|_{\xi}=\sum_{j=1}^{d} \xi_{j}\left(\partial / \partial \eta_{j}\right)$. A closed Lagrangian submanifold $L$ in $T^{*} M$ is called a quasi-classical state if it satisfies the Maslov's quantization condition (Maslov [5]):

For any oriented closed curve $\gamma$ on $L$,

$$
\frac{1}{2 \pi} \int_{\gamma} \omega-\frac{1}{4} \operatorname{Ind}_{L}(\gamma) \text { is an integer } .
$$

A quasi-classical state $L$ in $T^{*} M$ is called a quasi-classical eigenstate if $h$ is constant on $L$. The value of $h$ on a quasi-classical eigenstate $L$ is called the eigenvalue of $L$. A foliation $\mathscr{L}$ on $T^{*} M$ is called a Jacobi foliation if its leaves are Lagrangian submanifolds in $T^{*} M$. A Jacobi foliation corresponds classically to an orthogonal decomposition of the quantum state space. See Slawionowski [6], [7]. In the next section, we will construct a Jacobi foliation $\mathscr{L}_{d}$ on the cotangent bundle $T^{*} S^{d}$ of the $d$-sphere $S^{d}$, and select from its leaves all those which satisfy the quantization condition. See Weinstein [8].
2. Calculations for spheres. We will consider the spheres

$$
S^{k}=\left\{\left(x_{0}, \cdots, x_{d}\right) \in \boldsymbol{R}^{d+1} \mid x_{0}^{2}+\cdots+x_{d}^{2}=1, x_{k+1}=\cdots=x_{d}=0\right\}
$$

for $k=1,2, \cdots, d$, with the Riemannian metric induced from the Euclidean metric $d x_{0}^{2}+\cdots+d x_{d}^{2}$ on $\boldsymbol{R}^{d+1}$. Let $1 \leqq k<m \leqq d$. $\quad S^{k}$ is a totally geodesic submanifold in $S^{m}$. The (co)tangent bundle of $S^{k}$ with the Sasaki metric is naturally imbedded as a totally geodesic submanifold in that
of $S^{m}$. The canonical one-form and the symplectic form on $T^{*} S^{m}$ pull back to the corresponding forms on $T^{*} S^{k}$. The restriction of the free Hamiltonian on $T^{*} S^{m}$ to $T^{*} S^{k}$ is that of $T^{*} S^{k}$. The geodesic flow on $T^{*} S^{m}$ leaves $T^{*} S^{k}$ invariant, and its restriction to $T^{*} S^{k}$ is the geodesic flow on $T^{*} S^{k}$. Thus there may be no confusion if we write the canonical one-form $\omega$, the symplectic form $\Omega$, the free Hamiltonian $h$, the Hamiltonian vector field $H$, the geodesic flow $\chi=\left\{\chi_{t} \mid t \in \boldsymbol{R}\right\}$ on $T^{*} S^{k}$, for any $k=1,2, \cdots, d$. As before, we will identify the tangent bundle and the cotangent bundle of $S^{k}$. Restricting the vector field $d x_{k+1}$ on $R^{d+1}$ to $S^{k}$, we have a normal cross-section $X_{k+1}=\left.d x_{k+1}\right|_{s^{k}}: S^{k} \rightarrow T^{*} S^{k+1}$. $X_{1}$ denotes the tangent vector $\left.d x_{1}\right|_{p}$ to $S^{1}$ at $p=(1,0, \cdots, 0) \in \boldsymbol{R}^{d+1}$. We will first construct a Jacobi foliation $\mathscr{L}_{d}$ on $T^{*} S^{d}$ with a small exceptional set. For any $a_{1} \in \boldsymbol{R}$, let $L\left(a_{1}\right)=\left\{\chi_{t}\left(a_{1} X_{1}\right) \in T^{*} S^{1} \mid t \in \boldsymbol{R}\right\}$. Then $\mathscr{L}_{1}=\left\{L\left(a_{1}\right) \mid a_{1} \in \boldsymbol{R}\right\}$ is a Jacobi foliation on $T^{*} S^{1}$. Let $\pi: T^{*} S^{k} \rightarrow S^{k}$ denote the projection. Regarding $L\left(a_{1}\right)$ as a subset of $T^{*} S^{2}$, we have a submanifold $L\left(a_{1}\right) \#\left[a_{2}\right]=$ $\left\{Y_{1}+\left.a_{2} X_{2}\right|_{\pi\left(Y_{1}\right)} \mid Y_{1} \in L\left(a_{1}\right)\right\}$ in $T^{*} S^{2}$, for any $a_{2}>0 . \quad L\left(a_{1}, a_{2}\right)=\left\{\chi_{t}\left(Y_{2}\right) \mid Y_{2} \in\right.$ $\left.L\left(a_{1}\right) \#\left[a_{2}\right]\right\}$ is a two-dimensional submanifold in $T^{*} S^{2}$. Thus we have a foliation $\mathscr{L}_{2}=\left\{L\left(a_{1}, a_{2}\right) \mid\left(a_{1}, a_{2}\right) \in R^{2}, a_{2}>0\right\}$ on $T^{*} S^{2}$ with a small exceptional set. Iterating this procedure, we have a foliation $\mathscr{L}_{k}=\left\{L\left(a_{1}, \cdots, a_{k}\right) \mid\left(a_{1}\right.\right.$, $\left.\cdots, a_{k}\right) \in \boldsymbol{R}^{k}, a_{j}>0$ for $\left.j \geqq 2\right\}$ on $T^{*} S^{k}$ with a small exceptional set. From the construction, it is easy to see that the leaves $L\left(a_{1}, \cdots, a_{k}\right)$ are $k$-dimensional tori which are invariant under the geodesic flow. The free Hamiltonian $h$ is constant on $L\left(a_{1}, \cdots, a_{k}\right)$ and is equal to $\left(a_{1}^{2}+\cdots+a_{k}^{2}\right) / 2$.

Lemma 4. $L\left(a_{1}, \cdots, a_{k}\right)$ is a Lagrangian submanifold in $T^{*} S^{k}$.
Proof. We will prove this by induction. $L\left(a_{1}\right)$ is a Lagrangian submanifold in $T^{*} S^{1}$. If we assume that $L\left(a_{1}, \cdots, a_{j}\right)$ is a Lagrangian submanifold in $T^{*} S^{j}$, then an easy computation shows that $L\left(a_{1}, \cdots\right.$, $\left.a_{j}\right) \#\left[a_{j+1}\right]$ is an isotropic submanifold in $T^{*} S^{j+1}$. For any tangent vector $Z$ to $L\left(a_{1}, \cdots, a_{j}\right) \#\left[a_{j+1}\right], \Omega(Z, H)=d h(Z)=Z(h)=0$, since $h$ is constant on $L\left(a_{1}, \cdots, a_{j}\right) \#\left[a_{j+1}\right]$. The tangent space of $L\left(a_{1}, \cdots, a_{j+1}\right)$ at a point $Y_{j+1} \in L\left(a_{1}, \cdots, a_{j}\right) \#\left[a_{j+1}\right]$ is spanned by the tangent space of $L\left(a_{1}, \cdots, a_{j}\right) \#\left[a_{j+1}\right]$ at $Y_{j+1}$ and the Hamiltonian vector $\left.H\right|_{Y_{j+1}}$ at $Y_{j+1}$. Since the geodesic flow leaves $\Omega$ invariant, it follows that $L\left(a_{1}, \cdots, a_{j+1}\right)$ is a Lagrangian submanifold in $T^{*} S^{j+1}$.
q.e.d.

Thus we have a Jacobi foliation $\mathscr{L}_{d}$ on $T^{*} S^{d}$ with a small exceptional set. Now we will calculate the Maslov index for oriented closed curves on $L\left(a_{1}, \cdots, a_{d}\right)$. Let $S^{1}(r) \approx[0,2 \pi r] /\{0\} \cup\{2 \pi r\}$ denote the oriented circle of radius $r$. For $k=1,2, \cdots, d$, let us define a curve $\gamma_{k}^{\prime}: S^{1}\left(r_{k}\right) \rightarrow$
$L\left(a_{1}, \cdots, a_{k}\right)$ by $\gamma_{k}^{\prime}(t)=\chi_{t}\left(\left.\sum_{j=1}^{k} a_{j} X_{j}\right|_{p}\right)$, where $r_{k}=\left(\sum_{j=1}^{k} a_{j}^{2}\right)^{-1 / 2}$ and $p=$ $(1,0, \cdots, 0) . \quad \gamma_{k}^{\prime}$ is an oriented closed curve. $c_{k}=\pi \circ \gamma_{k}^{\prime}$ is a closed geodesic, its tangent vector $\dot{c}_{k}(t)$ is equal to $\gamma_{k}^{\prime}(t)$. Define a curve $\gamma_{k}: S^{1}\left(r_{k}\right) \rightarrow$ $L\left(a_{1}, \cdots, a_{d}\right)$ by $\gamma_{k}(t)=\gamma_{k}^{\prime}(t)+\left.\sum_{j=k+1}^{d} a_{j} X_{j}\right|_{c_{k}(t)} . \quad \gamma_{k}$ is an oriented closed curve on $L\left(a_{1}, \cdots, a_{d}\right), \pi \circ \gamma_{k}=c_{k} . \quad \gamma_{1}, \cdots, \gamma_{d}$ are generators of the onedimensional homology group $H_{1}\left(L\left(a_{1}, \cdots, a_{d}\right), \boldsymbol{Z}\right) \cong \oplus^{d} \boldsymbol{Z}$ of $L\left(a_{1}, \cdots, a_{d}\right)$.

Lemma 5. $\operatorname{Ind}_{L\left(a_{1}, \ldots, a_{d}\right)} \gamma_{k}=2(k-1)$.
Proof. Let $Y_{j}^{(k)}: S^{1}\left(r_{k}\right) \rightarrow T S^{d}, j=1,2, \cdots, d$, be parallel vector fields along $c_{k}$ such that $\left\{Y_{j}^{(k)}(t)\right\}_{j=1, \ldots, d}$ forms an orthonormal basis for the tangent space to $S^{d}$ at $c_{k}(t), Y_{1}^{(k)}(t)=r_{k} \dot{c}_{k}(t)$, and $Y_{j}^{(k)}(t), j=1, \cdots, k$, are tangent to $S^{k}$. For a small $\varepsilon>0$, a map $f\left(y_{1}, \cdots, y_{d}\right)=\exp _{c_{k}\left(y_{1}\right)}\left(\sum_{j=2}^{d} y_{j} Y_{j}^{(k)}\left(y_{1}\right)\right)$ is a diffeomorphism from $S^{1}\left(r_{k}\right) \times(-\varepsilon, \varepsilon)^{d-1}$ into $S^{d}$, where $\exp$ is the exponential map. Thus we have a Fermi coordinate system ( $y_{1}, \cdots, y_{d}$ ) along $c_{k}$. Let ( $y_{1}, \cdots, y_{d} ; \eta_{1}, \cdots, \eta_{d}$ ) denote the associated coordinate system in $T^{*} S^{d}$. We represent a tangent vector to $T^{*} S^{d}$ by its component with respect to this coordinate system. We regard $L\left(a_{1}, \cdots, a_{k}\right)$ as a submanifold in $T^{*} S^{d}$. If the tangent space to $L\left(a_{1}, \cdots, a_{k}\right)$ at $\gamma_{k}^{\prime}(t)$ is spanned by vectors ( $\left.a_{i 1}, \cdots, a_{i k}, 0, \cdots, 0 ; b_{i 1}, \cdots, b_{i k}, 0, \cdots, 0\right), i=1, \cdots, k$, then the tangent space to $L\left(a_{1}, \cdots, a_{k}\right) \#\left[a_{k+1}\right]$ at $\gamma_{k}^{\prime}(t)+\left.a_{k+1} X_{k+1}\right|_{c_{k}(t)}$ is spanned by ( $a_{i 1}, \cdots, a_{i k}, 0, \cdots, 0 ; b_{i 1}, \cdots, b_{i k}, 0, \cdots, 0$ ), $i=1, \cdots, k$. Since the Hamiltonian vector at $\gamma_{k}^{\prime}(t)+a_{k+1} X_{k+1} \mid c_{k(t)}$ is given by ( $r_{k}^{-1}, 0, \cdots, 0$, $\left.a_{k+1}, 0, \cdots, 0 ; 0, \cdots, 0\right)$, the tangent space to $L\left(a_{1}, \cdots, a_{k+1}\right)$ at $\gamma_{k}^{\prime}(t)+$ $\left.a_{k+1} X_{k+1}\right|_{c_{k}(t)}$ is spanned by the vectors $\left(a_{i 1}, \cdots, a_{i k}, 0, \cdots, 0 ; b_{i 1}, \cdots, b_{i k}\right.$, $0, \cdots, 0), i=1, \cdots, k$, and ( $\left.r_{k}^{-1}, 0, \cdots, 0, a_{k+1}, 0, \cdots, 0 ; 0, \cdots, 0\right)$. Similarly, the tangent space to $L\left(a_{1}, \cdots, a_{k+j}\right)$ at $\gamma_{k}^{\prime}(t)+\left.\sum_{i=1}^{j} a_{k+i} X_{k+i}\right|_{c_{k}(t)}$ is spanned by the vectors ( $a_{i 1}, \cdots, a_{i k}, 0, \cdots, 0 ; b_{i 1}, \cdots, b_{i k}, 0, \cdots, 0$ ), $i=1, \cdots, k$, and $\left(r_{k}^{-1}, 0, \cdots, 0, a_{k+1}, 0, \cdots, 0 ; 0, \cdots, 0\right), \cdots,\left(r_{k}^{-1}, 0, \cdots, 0, a_{k+1}, a_{k+2}, \cdots\right.$, $\left.a_{k+j}, 0, \cdots, 0 ; 0, \cdots, 0\right)$. The vector ( $1,0, \cdots, 0 ; 0, \cdots, 0$ ) is tangent to $L\left(a_{1}, \cdots, a_{d}\right)$ at $\gamma_{k}(t)$. It follows that the tangent space to $L\left(a_{1}, \cdots, a_{d}\right)$ at $\gamma_{k}(t)$ is spanned by the vectors ( $\left.a_{i 1}, \cdots, a_{i k}, 0, \cdots, 0 ; b_{i 1}, \cdots, b_{i k}, 0, \cdots, 0\right)$, $i=1, \cdots, k$, and $\partial / \partial y_{k+1}, \cdots, \partial / \partial y_{d}$. Since $\left(y_{1}, \cdots, y_{d}\right)$ is a normal coordinate system about $c_{k}(t),\left\{\partial / \partial y_{1}, \cdots, \partial / \partial y_{d}, \partial / \partial \eta_{1}, \cdots, \partial / \partial \eta_{d}\right\}$ is an orthonormal basis for the tangent space to $T^{*} S^{d}$ at $\gamma_{k}(t)$. $\partial / \partial y_{1}, \cdots, \partial / \partial y_{d}$ are horizontal vectors at $\gamma_{k}(t) . \partial / \partial \eta_{1}, \cdots, \partial / \partial \eta_{d}$ are vertical vectors at $\gamma_{k}(t)$. $J\left(\partial / \partial y_{j}\right)=$ $\partial / \partial \eta_{j}$ for $j=1, \cdots, d$. On the other hand, the tangent space to $L\left(a_{1}, \cdots, a_{k}\right)$ in $T^{*} S^{k}$ at $\gamma_{k}^{\prime}(t)$ is spanned by the vectors $\left(a_{i 1}, \cdots, a_{i k}, 0, \cdots, 0 ; b_{i 1}, \cdots\right.$, $\left.b_{i k}, 0, \cdots, 0\right), i=1, \cdots, k$. Thus, from the definition of the Maslov index, it follows easily that the Maslov index of the curve $\gamma_{k}^{\prime}$ on the Lagrangian submanifold $L\left(a_{1}, \cdots, a_{k}\right)$ in $T^{*} S^{k}$ is equal to the Maslov index of the
curve $\gamma_{k}$ on the Lagrangian submanifold $L\left(a_{1}, \cdots, a_{d}\right)$ in $T^{*} S^{d}$. Since $\gamma_{k}^{\prime}$ is an orbit of the geodesic flow on $T^{*} S^{k}$, we have

$$
\begin{aligned}
\operatorname{Ind}_{L\left(a_{1}, \ldots, a_{k}\right)} \gamma_{k}^{\prime} & =\left(\text { Morse index of } c_{k} \text { in } S^{k}\right) \\
& =2(k-1) .
\end{aligned}
$$

See Maslov [5], Weinstein [8]. From this our lemma follows. q.e.d.
Now we will calculate the action integral along $\gamma_{k}$.

$$
\begin{aligned}
\int_{\gamma_{k}} \omega & =\int_{r_{k}} \pi^{*}\left(\gamma_{k}\right)=\int_{c_{k}} \gamma_{k}=\int_{0}^{2 \pi r_{k}}\left\langle\gamma_{k}, \dot{c}_{k}\right\rangle d t=\int_{0}^{2 \pi r_{k}}\left\langle\gamma_{k}^{\prime}, \gamma_{k}^{\prime}\right\rangle d t \\
& =2 \pi\left(\sum_{j=1}^{k} a_{j}^{2}\right)^{1 / 2} .
\end{aligned}
$$

Therefore, the quantization condition for the Lagrangian submanifold $L\left(a_{1}, \cdots, a_{d}\right)$ is written as

$$
\left(\sum_{j=1}^{k} a_{j}^{2}\right)^{1 / 2}-\frac{k-1}{2}=n_{k} \in \boldsymbol{Z},
$$

for $k=1, \cdots, d$. Thus we have

$$
\begin{aligned}
& a_{1}=n_{1}, \\
& a_{2}=\left(\left(n_{2}+\frac{1}{2}\right)^{2}-n_{1}^{2}\right)^{1 / 2} \text { for } n_{2} \geqq\left|n_{1}\right|, \\
& a_{k}=\left(\left(n_{k}+\frac{k-1}{2}\right)^{2}-\left(n_{k-1}+\frac{k-2}{2}\right)^{2}\right)^{1 / 2} \text { for } \begin{array}{l}
n_{k} \geqq n_{k-1} \\
\\
\end{array} \quad \begin{array}{l}
k=3, \cdots, d
\end{array}
\end{aligned}
$$

It follows that the quasi-classical spectrum $\left\{\nu_{n}\right\}_{n=0}^{\infty}$ for the sphere $S^{d}$ is given by

$$
\nu_{n}=\frac{1}{2} \sum_{j=1}^{d} a_{j}^{2}=\frac{1}{2}\left(n+\frac{d-1}{2}\right)^{2} .
$$

See Weinstein [8]. The multiplicity $m\left(\nu_{n}\right)$ of $\nu_{n}$ is the number of the Lagrangian submanifolds $L\left(a_{1}, \cdots, a_{d}\right)$ which satisfy the quantization condition and $\sum_{j=1}^{d} a_{j}^{2} / 2=\nu_{n}$. Therefore $m\left(\nu_{n}\right)$ is equal to the number of $d$-tuples $\left(n_{1}, \cdots, n_{d}\right.$ ) of integers satisfying $0 \leqq\left|n_{1}\right| \leqq n_{2} \leqq \cdots \leqq n_{d-1} \leqq$ $n_{d}=n$. Thus we have

$$
m\left(\nu_{n}\right)=\frac{2 n+d-1}{n}\binom{n+d-2}{n-1},
$$

where the counting starts with $n=0$. Despite the incompleteness of the Jacobi foliation $\mathscr{L}_{d}$, the quasi-classical multiplicity $m\left(\nu_{n}\right)$ of $\nu_{n}$ agrees with the quantum multiplicity $m\left(\mu_{n}\right)$ of $\mu_{n}$.

## References

[1] V. I. Arnol'd, Characteristic class entering in quantization conditions, Funct. Anal. Appl., 1 (1967), 1-13.
[2] M. Berger, P. Gauduchon and E. Mazet, Le spectre d'une variété riemannienne, Lecture Notes in Math., 194, Springer-Verlag, Berlin, 1971.
[3] D. Fujiwara, A construction of fundamental solution of Schrödinger's equation on the sphere, J. Math. Soc. Japan, 28 (1976), 483-505.
[4] J. Leray, Complément à la théorie d'Arnol'd de l'indice de Maslov, Symposia Math., 24 (1974), 33-51.
[5] V. P. MASLov, Théorie des perturbations et méthodes asymptotiques (translation), Dunod, 1972.
[6] J. J. Slawionowski, Quantum relations remaining valid on the classical level, Rep. Mathematical Phys., 2 (1971), 11-34.
[7] J. J. Slawionowski, Geometry of van Vleck ensembles, Rep. Mathematical Phys., 3 (1972), 157-172.
[8] A. Weinstein, Quasi-classical mechanics on spheres, Symposia Math., 24 (1974), 25-32.
Department of Mathematics
Yamagata University
Yamagata 990, Japan

