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0. Introduction. A.Weinstein [8] presented a quasi-classical calculation
of the energy spectrum for a free particle moving on a sphere of constant
curvature in any dimension. He showed that the quasi-classical spectrum
resembles quite closely, in terms of both eigenvalues and multiplicities,
the spectrum of the quantum hamiltonian 4/2. For the case of d-sphere
S? of constant sectional curvature one, his result is as follows: The
quasi-classical eigenvalues are
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Note that the counting starts with » = (d + 1)/2(d odd) or n = d/2(d even).
It is well-known that the eigenvalues of the quantum hamiltonian 4/2

on S¢ are
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and the multiplicity of p, is
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where the counting starts with n = 0. See Berger-Gauduchon-Mazet [2].
In this note, we will present a slightly modified calculation of the

quasi-classical energy spectrum for a free particle moving on S¢ and
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show that the multiplicities of the resulting quasi-classical eigenvalues
are equal to the multiplicities of the corresponding quantum eigenvalues.
QOur result is as follows: The quasi-classical eigenvalues are

o= nsdzLY,

and the multiplicity of v, is
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where the counting starts with » = 0.

1. Preliminaries. Let (|) denote the hermitian inner product and
V=1 denote the complex structure in the complex d-space C* = R’
Vv —1R?. The symplectic structure [,] in C¢ is defined by [u, v] =
Im (u|v) for u,veC® A linear subspace L in C? is called Lagrangian
if dimL =d and [u, v] = 0 for all w,ve L. The real subspace R! and
the imaginary subspace V' —1R® are Lagrangian. Let A(d) denote the
set of all Lagrangian subspaces in C?. A(d) is a manifold, 4(d) = U(d)/0(d)
(Arnol’d [1]). For any L€ A(d), there exists a Ue U(d) such that L =
U/ —1R%. Although U is not /determined uniquely, W(L) = UU"" is
determined uniquely for each L. W(L) is a symmetric unitary matrix
(Leray[4]). Let us define Det® A(d) — S' by Det*(L) = detW(L), where
S! is the circle {ev=i¢}, oriented counterclockwise. The one-dimensional
homology and cohomology groups of A(d) are free cyclic: H,(A(d),
Z) = H'(A(d), Z) = Z. For the generator of the cohomology group
H'(A(d), Z), we may take the cocycle @ whose value on an oriented closed
curve 7: S'— A(d) is equal to the degree of the composition Det?%: S —
S* (Arnol’d [1]).

ExaMPLE (Arnol’d [1]). Consider a one-parameter group of automor-
phisms

e\/—w

eV—1i0

Tk(a) =

d — k.

1
For any L =U(1/ —1R% € A(d), let us define an oriented closed curve
Ye.ct [0, 7] — A(d) by ¥:,.(0) = TW(6)(L). Then
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W(T(0)L)) = (TOUNTO)U)™* = T@)UUTW(0)™" = TW(0) W(L) T(0) -
Therefore

Det*(T,(0)(L)) = det (T(6) W(L) T4(6)) = ¢*'~™ Det? (L) .
Thus the value of the class @ on the curve 7, , is equal to k.

Now, following Fujiwara [3], let us define the Maslov index. Let
M be a d-dimensional complete Riemannian manifold with Riemannian
metric {, ) and Levi-Civita connection /. We may identify the tangent
bundle TM with the cotangent bundle 7*M by means of the metrie, and
we then have the connection map K: TT*M — TM. Let m: T*M — M be
the projection. For any &€ T*M, the d-dimensional subspaces h, =
kernel (K |y ry) and v, = kernel(wy |, .x) are called the horizontal subspace
and the vertical subspace in T,T*M, respectively. Note that T.T*M =
h:e @ v.. The Sasaki metric {, ) in T*M is defined by (X, Y) = (w(X),
. (Y)) + (K(X), K(Y)) for X, Ye T, T*M. The restrictions K|,,:v. —
T. oM and =m,l|y:h;— T.yM are isometries. Let J: TT*M — TT*M
denote an almost complex structure defined by n,oJ = —K and KoJ =
T4 Inlocal coordinates (v, -++, ¥4 %, * -+, Wa) in T*M associated with a
normal coordinate system (y,, « -+, ¥,) about 7(¢) in M, J.=J |rguy: Te T*M —
T.T*M is given by J.(0/oy;) = d/on; and J.(d/on;) = —ad/oy; for j =1, 2,
.-.,d. Note that J(v,) = h, and J(h;) = v,.

The canonical one-form on T*M will be denoted by w. Let us recall
|, = n*(&) for £ T*M. The symplectic form Q is defined by 2 = dw.
In local coordinates (¥, «-+, Y3 M1y ==+, 9y) in T*M associated with local
coordinates (v, -+, ¥%;) in M, we have w| = >3 &dy; and 2| =

¢_ dn;Ady;, where &; = £(0/0y;). £|. introduces a symplectic structure
in T.T*M. Thus we have a notion of Lagrangian subspaces in T.T*M.
The following three lemmas are due to Fujiwara [3].

LEMMA 1. bk, and v, are Lagrangian subspaces in T.T*M.

For a linear isometry ¢,: h. — R%, we define a linear map @.: T.T*M —
C* = R*@V'—1R? as follows: @, =, and §,(X)=—1"—ILog;oJ,(X) for
Xewv. Then @, is bijective and we have

LEMMA 2. (i) @ T.T*M — C* is a symplectic linear map.
(ii) If ¥, is anmother symplectic map such as D then ¥.0;'e
o) c U(d).

Let A(T.T*M) denote the set of all Lagrangian subspaces in the
symplectic space T.T*M. Since the image of a Lagrangian subspace
under a symplectic linear map is a Lagrangian subspace, @, induces a
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map B.: AT, T*M) — Ad).
LEMMA 3. &, = ¥,, where ¥, is as in Lemma 2.

For the proof, it is sufficient to note that A(d) = U(d)/O(d). A sub-
manifold L’ in T*M 1is called isotropic if the pull-back of 2 to L’ is
identically zero. An isotropic submanifold L is called Lagrangian if
dim L =dim M. Let v: S'— L be an oriented closed curve on a Lagrangian
submanifold L. Then the tangent space T, L to L at v(t) is a Lagrangian
subspace in T,,,T*M. Thus we have an oriented closed curve %:S'—
A(d) defined by 7(t) = @,,( Ty ).

DEFINITION (Fujiwara [3]). The Maslov index Ind,v of v on L is
defined by Ind, v = a(¥).

The free Hamiltonian h: T*M — R is defined by h(v) = 1/2{v, v).
The Hamiltonian vector field H on T*M for which H] 2 = dh generates
the geodesic flow y = {3} on T*M. In local coordinates (¥, *--, ¥a
Ny, +++, Ny in T*M associated with a normal coordinate system (y,, - -+, ¥,)
about 7(£) in M, H|, is written as H|. = 3., &;(0/0m;). A closed Lagrangian
submanifold L in T*M is called a quasi-classical state if it satisfies the
Maslov’s quantization condition (Maslov [5]):

For any oriented closed curve v on L,

1 S w — —l-IndL(v) is an integer .
2r  Jr 4

A quasi-classical state L in T*M is called a quasi-classical eigenstate if
h is constant on L. The value of % on a quasi-classical eigenstate L
is called the eigenvalue of L. A foliation &© on T*M is called a Jacobi
foliation if its leaves are Lagrangian submanifolds in T*M. A Jacobi
foliation corresponds classically to an orthogonal decomposition of the
quantum state space. See Slawionowski [6], [7]. In the next section,
we will construct a Jacobi foliation .&%, on the cotangent bundle T*S¢
of the d-sphere S¢ and select from its leaves all those which satisfy the
quantization condition. See Weinstein [8].

2. Calculations for spheres. We will consider the spheres
Sk = {(xo, LN xd)eR‘i+llx3 + cee + xi ] 1, xk-{—l = oeee =y = O}

fork=1,2, .-+, d, with the Riemannian metric induced from the Euclidean
metric daf + -+ +dxi on R, Let 1<sk<m<d. S* is a totally
geodesic submanifold in S™. The (co)tangent bundle of S* with the Sasaki
metric is naturally imbedded as a totally geodesic submanifold in that
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of S™. The canonical one-form and the symplectic form on 7*S™ pull
back to the corresponding forms on T*S* The restriction of the free
Hamiltonian on 7*S™ to T*S* is that of T*S*. The geodesic flow on
T*S™ leaves T*S* invariant, and its restriction to T*S* is the geodesic
flow on T*S*. Thus there may be no confusion if we write the canonical
one-form ®, the symplectic form 2, the free Hamiltonian %, the Hamil-
tonian vector field H, the geodesic flow ¥ = {}. |t € R} on T*S*, for any
k=12, ---,d. As before, we will identify the tangent bundle and the
cotangent bundle of S*. Restricting the vector field dx,,, on R to S¥,
we have a normal cross-section X,,, = d#,,,|sx: S*— T*S**, X, denotes
the tangent vector dux,|, to S' at »p = (1,0, ---, 0)e R**'. We will first
construct a Jacobi foliation &% on T*S? with a small exceptional set.
For any a, € R, let L(a,) = {}.(a,X,) € T*S'|t € R}. Then &, = {L(a,)|a, € R}
is a Jacobi foliation on T*S!. Let m: T*S* — S* denote the projection.
Regarding L(a,) as a subset of T*S* we have a submanifold L(a,) # [a,] =
{Y, + aZXZIR(Yl)IYI. € L(a,)} in T*S?, for any a, > 0. L(a, a,) = {(Y,)|Y, €
L(a,) % [a,]} is a two-dimensional submanifold in 7*S®*. Thus we have a
foliation &4 = {L(a,, a,)|(a,, a,) € R?, a,> 0} on T*S* with a small exceptional
set. Iterating this procedure, we have a foliation &%, = {L(a,, ---, a;)|(a,,
cev, ) ER* a; >0 for j =2} on T*S* with a small exceptional set.
From the construction, it is easy to see that the leaves L(a,, ---, a;)
are k-dimensional tori which are invariant under the geodesic flow.
The free Hamiltonian 2 is constant on L(a, ---, a,) and is equal to
(@t + -+ + a)/2.

LEmMMA 4. L(a,, --+, ay) ts a Lagrangian submanifold in T*S*.

ProorF. We will prove this by induction. L(a,) is a Lagrangian
submanifold in T*S!. If we assume that L(a, :---, ;) is a Lagrangian
submanifold in 7*S? then an easy computation shows that L(a, ---,
a;)#[a;4,] is an isotropic submanifold in 7T*S’*'. For any tangent
vector Z to L(a,, ---, a;)#[a;.], 2Z, H) =dh(Z) = Z(h) = 0, since h is
constant on L(a,, ---, ;) #[a;,,]. The tangent space of L(a,, ---, a;;,)
at a point Y;,, e L(a, ---, a;) #[a;,,] is spanned by the tangent space of
L(a,, +-+, a;) ¥ [a;;,] at Y;,, and the Hamiltonian vector Hl|,,  at Y;,,.
Since the geodesic flow leaves 2 invariant, it follows that L(a,, ---, a;.,)
is a Lagrangian submanifold in T*S7+. q.e.d.

Thus we have a Jacobi foliation &, on T*S% with a small exceptional
set. Now we will calculate the Maslov index for oriented closed curves
on L(a, +--, a;). Let S'r)~[0, 27r]/{0} U {277} denote the oriented
circle of radius . For k=1,2, .--,d, let us define a curve v;: S'(r,) —
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L(ay, -++, @) by 7i(t) = x:(X5-10;X;],), where r, = (3., a})™* and p =
1,0, ---,0). 7;is an oriented closed curve. ¢, = wo7v; is a closed geodesic,
its tangent vector ¢.(t) is equal to 7.(tf). Define a curve 7v,: S'(r,) —
L(a, « -+, as) by 7:(t) = 7i(t) + 2i-i1 @; Xl 0. 7 is an oriented closed
curve on L(a, *++, @), ToYy = C4e 7y, *++, 74 are generators of the one-
dimensional homology group H,(I(a,, «--, ay), Z) = @°Z of L(a, ---, a,).

LEMMA 5. Ind;,. .7 = 2(k — 1).

.....

Proor. Let Y{®:S'(r,) — TS% 7 =1,2,---,d, be parallel vector fields
along ¢, such that {Y{¥(¢)},;-,... .. forms an orthonormal basis for the tangent
space to S? at ¢, (t), Y{¥(t) = r.é,(t), and Y¥(¢), 7 = 1, , k, are tangent
to S*. For a small ¢ >0, a map f(y,, -+, ¥s) = expc,,w(z, Y5 Y (y,)
is a diffeomorphism from S'(r,) X (—¢, &)?' into S% where exp is the
exponential map. Thus we have a Fermi coordinate system (y,, ---, ¥,)
along ¢,. Let (y, -, ¥4 My, ++-, Ny) denote the associated coordinate
system in T*S?. We represent a tangent vector to T*S¢ by its component
with respect to this coordinate system. We regard L(a, ---, a;) as a
submanifold in T*S¢ If the tangent space to L(a, ---, a;,) at v.(t) is
spanned by vectors (a;, -+, @4, 0, <<+, 0; by, ==+, by 0,022, 0), 2 =1, -+, k,
then the tangent space to L(a, ---, a;) # [as;,] at 7i(®) + @ Xiil oo I8
spanned by (a;, *++, @y, 0, +++, 0; by, *++, 0,0, -+, 0),2 =1, .-+, k. Since
the Hamiltonian vector at v.(t) + @+, Xs11|c 0 is given by (74,0, ---, 0,
@1y 0, +++,0;0, ---,0), the tangent space to L(a, ---, axy,) at 7i(t) +
@1 Xk41 |0 1S spanned by the veetors (a, «--, @y, 0, -+, 0; by, = -+, by,
0,---,0,2=1,---, k, and (%, 0,---, 0, @4, 0,:-+,0;0,---,0). Similarly,
the tangent space to L(a,, -+, a;;;) at 7i() + =i @4y iXisi]opo 18 spanned
by the vectors (a;, *++, @4, 0, =+, 0; by, <+, 04,0, c¢+, 0, 2 =1, -«  k,
and (7550, -+, 0, @yyy, 0, <+=, 0; 0, <=+, 0), <=, (755 0, =++, 0, Gysy, Bpsar * =+
@iy 0, <+, 0;0,---,0). The vector (1,0, ---,0;0, ---,0) is tangent to
L(a,, -+, ag) at 7,(t). It follows that the tangent space to L(a, ---, a,)
at '7',,(t) is spanned by the vectors (a;, ««+, @y, 0, -+, 0; byyy e, by 0,44+, 0),
7= -, k,and 0/0y,.,, -+, 0/0y,. Since (yl, .+-, 9,) is a normal coordinate
system about ci(t), {a/ayl, «e+, 0/0Yq, 0/07,, *-+, /07,} is an orthonormal basis
for the tangent space to T*S" at v.(t). 0d/oy, ---, 0/0y, are horizontal
vectors at v.(t). d/on, ---, d/on, are vertical vectors at v, (t). J(9/dy;) =
ojon; for j=1, ---, d. On the other hand, the tangent space to L(a,, - - -, a,)
in T*S* at v.(t) is spanned by the vectors (a,, ---, a4, 0, <<+, 0; b;y, *--,
b, 0, +++,0),42=1, --+, k. Thus, from the definition of the Maslov index,
it follows easily that the Maslov index of the curve 7} on the Lagrangian
submanifold L(a,, ---, a;) in T*S* is equal to the Maslov index of the
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curve 7, on the Lagrangian submanifold L(a,, ---, a;) in T*S? Since
7. is an orbit of the geodesic flow on T*S*, we have

Ind;,,. 0p7i = (Morse index of ¢, in S*)
=2k —1).
See Maslov [5], Weinstein [8]. From this our lemma follows. g.e.d.

Now we will calculate the action integral along 7,.
2rr 2xr
S ® =S T (i) :S Ve =S i Gyt =S ", iyt
Tk Tk k 0 0

k 1/2
- 2n<z a;-) )
=1

Therefore, the quantization condition for the Lagrangian submanifold
L(a, +---, a;) is written as

k 1/2 k—1
(éaﬁ-) —— =n,e”Z,
for k=1, -.--,d. Thus we have
a =",

a, = ((’ng + %)2 — nf)” for n, = [n,],

a, = <<nk + k—1 >2 — (n,,_l + k — 2>2>1/2 for m, =mn,,,

2 2
k=3,---,d.

It follows that the quasi-classical spectrum {v,};_, for the sphere S? is
given by

_1& ., 1 d— 1\
”“E%W—E@+ )
See Weinstein [8]. The multiplicity m(v,) of v, is the number of the
Lagrangian submanifolds L(a,, ---, a;) which satisfy the quantization
condition and Y%, a%/2 = v,. Therefore m(v,) is equal to the number of
d-tuples (n,, -+, n,) of integers satisfying 0 < [n,| S n, < -+ S my, <
ny = n. Thus we have

m,) = M(

n+d—2
n b

n—1
where the counting starts with » = 0. Despite the incompleteness of

the Jacobi foliation &4, the quasi-classical multiplicity m(v,) of v, agrees
with the quantum multiplicity m(y,) of ,.
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