Tôhoku Math. Journ. 30 (1978), 517-524.

ON THE MULTIPLICITIES OF THE SPECTRUM FOR QUASI-CLASSICAL MECHANICS ON SPHERES

Κιγοτακά Ιι

(Received January 24, 1977, revised September 13, 1977)

0. Introduction. A. Weinstein [8] presented a quasi-classical calculation of the energy spectrum for a free particle moving on a sphere of constant curvature in any dimension. He showed that the quasi-classical spectrum resembles quite closely, in terms of both eigenvalues and multiplicities, the spectrum of the quantum hamiltonian $\Delta/2$. For the case of *d*-sphere S^d of constant sectional curvature one, his result is as follows: The quasi-classical eigenvalues are

$$\lambda_n=rac{1}{2}\Bigl(n+rac{d-1}{2}\Bigr)^{\!\!\!2}\qquad\Bigl(n>rac{d-1}{2}\Bigr)$$
 ,

and the multiplicity of λ_n is

Note that the counting starts with n = (d + 1)/2(d odd) or n = d/2(d even). It is well-known that the eigenvalues of the quantum hamiltonian d/2 on S^d are

$$\mu_n = rac{1}{2}n(n+d-1) = rac{1}{2} \Big(n+rac{d-1}{2}\Big)^{\!\!\!2} - rac{(d-1)^2}{8}$$
 ,

and the multiplicity of μ_n is

$$m(\mu_n) = rac{2n+d-1}{n} {n+d-2 \choose n-1}$$
,

where the counting starts with n = 0. See Berger-Gauduchon-Mazet [2].

In this note, we will present a slightly modified calculation of the quasi-classical energy spectrum for a free particle moving on S^d and

к. п

show that the multiplicities of the resulting quasi-classical eigenvalues are equal to the multiplicities of the corresponding quantum eigenvalues. Our result is as follows: The quasi-classical eigenvalues are

$$oldsymbol{
u}_n=rac{1}{2}\Bigl(n+rac{d-1}{2}\Bigr)^{2}$$
 ,

and the multiplicity of ν_n is

$$m(oldsymbol{
u}_n) = rac{2n+d-1}{n} inom{n+d-2}{n-1} \ ,$$

where the counting starts with n = 0.

1. Preliminaries. Let (|) denote the hermitian inner product and $\sqrt{-1}$ denote the complex structure in the complex d-space $C^d = R^d \oplus$ $\sqrt{-1}R^d$. The symplectic structure [,] in C^d is defined by [u, v] =Im (u | v) for $u, v \in C^d$. A linear subspace L in C^d is called Lagrangian if dim L = d and [u, v] = 0 for all $u, v \in L$. The real subspace \mathbb{R}^d and the imaginary subspace $\sqrt{-1}R^d$ are Lagrangian. Let $\Lambda(d)$ denote the set of all Lagrangian subspaces in C^d . $\Lambda(d)$ is a manifold, $\Lambda(d) \cong U(d)/O(d)$ (Arnol'd [1]). For any $L \in A(d)$, there exists a $U \in U(d)$ such that L = $U(\sqrt{-1}R^d)$. Although U is not determined uniquely, $W(L) = U\overline{U}^{-1}$ is determined uniquely for each L. W(L) is a symmetric unitary matrix (Leray[4]). Let us define $\operatorname{Det}^2: \Lambda(d) \to S^1$ by $\operatorname{Det}^2(L) = \det W(L)$, where S^1 is the circle $\{e^{\sqrt{-1}\theta}\}$, oriented counterclockwise. The one-dimensional homology and cohomology groups of $\Lambda(d)$ are free cyclic: $H_1(\Lambda(d))$, $Z) \cong H^1(\Lambda(d), Z) \cong Z$. For the generator of the cohomology group $H^{1}(\Lambda(d), \mathbb{Z})$, we may take the cocycle α whose value on an oriented closed curve $\tilde{\gamma}: S^1 \to \Lambda(d)$ is equal to the degree of the composition $\operatorname{Det}^2 \circ \tilde{\gamma}: S^1 \to \mathcal{I}(d)$ S^{1} (Arnol'd [1]).

EXAMPLE (Arnol'd [1]). Consider a one-parameter group of automorphisms

For any $L = U(\sqrt{-1}R^d) \in \Lambda(d)$, let us define an oriented closed curve $\tilde{\gamma}_{k,L}: [0, \pi] \to \Lambda(d)$ by $\tilde{\gamma}_{k,L}(\theta) = T_k(\theta)(L)$. Then

518

 $W(T_k(\theta)(L)) = (T_k(\theta)U)\overline{(T_k(\theta)U)}^{-1} = T_k(\theta)U\overline{U}^{-1}\overline{T_k(\theta)}^{-1} = T_k(\theta)W(L)T_k(\theta)$

Therefore

 $\operatorname{Det}^{\scriptscriptstyle 2}(T_k(\theta)(L)) = \det \left(T_k(\theta) W(L) T_k(\theta) \right) = e^{2\sqrt{-1}k\theta} \operatorname{Det}^{\scriptscriptstyle 2}(L)$.

Thus the value of the class α on the curve $\tilde{\gamma}_{k,L}$ is equal to k.

Now, following Fujiwara [3], let us define the Maslov index. Let M be a d-dimensional complete Riemannian manifold with Riemannian metric \langle , \rangle and Levi-Civita connection V. We may identify the tangent bundle TM with the cotangent bundle T^*M by means of the metric, and we then have the connection map $K: TT^*M \to TM$. Let $\pi: T^*M \to M$ be the projection. For any $\xi \in T^*M$, the *d*-dimensional subspaces $h_{\xi} =$ kernel $(K|_{T_{\xi}T^{*}M})$ and $v_{\xi} = \text{kernel}(\pi_{*}|_{T_{\xi}T^{*}M})$ are called the horizontal subspace and the vertical subspace in $T_{\xi}T^*M$, respectively. Note that $T_{\xi}T^*M =$ $h_{\varepsilon} \bigoplus v_{\varepsilon}$. The Sasaki metric $\langle\!\langle , \rangle\!\rangle$ in T^*M is defined by $\langle\!\langle X, Y \rangle\!\rangle = \langle \pi_*(X), Y \rangle$ $\pi_*(Y)
angle + \langle K(X), \, K(Y)
angle$ for X, $Y \in T_{\xi}T^*M$. The restrictions $K|_{v_{\xi}}: v_{\xi} \to T_{\xi}T^*M$. $T_{\pi(\xi)}M$ and $\pi_*|_{h_{\xi}}:h_{\xi} o T_{\pi(\xi)}M$ are isometries. Let $J\colon TT^*M o TT^*M$ denote an almost complex structure defined by $\pi_* \circ J = -K$ and $K \circ J =$ π_* . In local coordinates $(y_1, \dots, y_d; \eta_1, \dots, \eta_d)$ in T^*M associated with a normal coordinate system (y_1, \dots, y_d) about $\pi(\xi)$ in $M, J_{\xi} = J|_{T_{\xi}T^*M}$: $T_{\xi}T^*M \rightarrow T_{\xi}T^*M$ $T_{\varepsilon}T^*M$ is given by $J_{\varepsilon}(\partial/\partial y_j)=\partial/\partial\eta_j$ and $J_{\varepsilon}(\partial/\partial\eta_j)=-\partial/\partial y_j$ for j=1,2, \cdots , d. Note that $J(v_{\varepsilon}) = h_{\varepsilon}$ and $J(h_{\varepsilon}) = v_{\varepsilon}$.

The canonical one-form on T^*M will be denoted by ω . Let us recall $\omega|_{\xi} = \pi^*(\xi)$ for $\xi \in T^*M$. The symplectic form Ω is defined by $\Omega = d\omega$. In local coordinates $(y_1, \dots, y_d; \eta_1, \dots, \eta_d)$ in T^*M associated with local coordinates (y_1, \dots, y_d) in M, we have $\omega|_{\xi} = \sum_{j=1}^d \xi_j dy_j$ and $\Omega|_{\xi} = \sum_{j=1}^d d\eta_j \wedge dy_j$, where $\xi_j = \xi(\partial/\partial y_j)$. $\Omega|_{\xi}$ introduces a symplectic structure in $T_{\xi}T^*M$. Thus we have a notion of Lagrangian subspaces in $T_{\xi}T^*M$. The following three lemmas are due to Fujiwara [3].

LEMMA 1. h_{ε} and v_{ε} are Lagrangian subspaces in $T_{\varepsilon}T^*M$.

For a linear isometry $\varphi_{\xi} \colon h_{\xi} \to \mathbb{R}^{d}$, we define a linear map $\Phi_{\xi} \colon T_{\xi}T^{*}M \to C^{d} = \mathbb{R}^{d} \bigoplus \sqrt{-1}\mathbb{R}^{d}$ as follows: $\Phi_{\xi}|_{h_{\xi}} = \varphi_{\xi}$ and $\Phi_{\xi}(X) = -\sqrt{-1}\circ\varphi_{\xi}\circ J_{\xi}(X)$ for $X \in v_{\xi}$. Then Φ_{ξ} is bijective and we have

LEMMA 2. (i) $\Phi_{\varepsilon}: T_{\varepsilon}T^*M \to C^d$ is a symplectic linear map.

(ii) If Ψ_{ε} is another symplectic map such as Φ_{ε} , then $\Psi_{\varepsilon} \circ \Phi_{\varepsilon}^{-1} \in O(d) \subset U(d)$.

Let $\Lambda(T_{\varepsilon}T^*M)$ denote the set of all Lagrangian subspaces in the symplectic space $T_{\varepsilon}T^*M$. Since the image of a Lagrangian subspace under a symplectic linear map is a Lagrangian subspace, Φ_{ε} induces a

map $\widetilde{\varPhi}_{\varepsilon}: \Lambda(T_{\varepsilon}T^*M) \to \Lambda(d)$.

LEMMA 3. $\widetilde{\Phi}_{\varepsilon} = \widetilde{\Psi}_{\varepsilon}$, where Ψ_{ε} is as in Lemma 2.

For the proof, it is sufficient to note that $\Lambda(d) \cong U(d)/O(d)$. A submanifold L' in T^*M is called isotropic if the pull-back of Ω to L' is identically zero. An isotropic submanifold L is called Lagrangian if dim $L = \dim M$. Let $\gamma: S^1 \to L$ be an oriented closed curve on a Lagrangian submanifold L. Then the tangent space $T_{\gamma(t)}L$ to L at $\gamma(t)$ is a Lagrangian subspace in $T_{\gamma(t)}T^*M$. Thus we have an oriented closed curve $\tilde{\gamma}: S^1 \to \Lambda(d)$ defined by $\tilde{\gamma}(t) = \tilde{\Phi}_{\gamma(t)}(T_{\gamma(t)}L)$.

DEFINITION (Fujiwara [3]). The Maslov index $\operatorname{Ind}_L \gamma$ of γ on L is defined by $\operatorname{Ind}_L \gamma = \alpha(\tilde{\gamma})$.

The free Hamiltonian $h: T^*M \to \mathbf{R}$ is defined by $h(v) = 1/2 \langle v, v \rangle$. The Hamiltonian vector field H on T^*M for which $H \perp \Omega = dh$ generates the geodesic flow $\chi = \{\chi_i\}$ on T^*M . In local coordinates $(y_1, \dots, y_d;$ $\eta_1, \dots, \eta_d)$ in T^*M associated with a normal coordinate system (y_1, \dots, y_d) about $\pi(\xi)$ in $M, H|_{\xi}$ is written as $H|_{\xi} = \sum_{j=1}^{d} \xi_j(\partial/\partial \eta_j)$. A closed Lagrangian submanifold L in T^*M is called a quasi-classical state if it satisfies the Maslov's quantization condition (Maslov [5]):

For any oriented closed curve γ on L,

-

$$rac{1}{2\pi}\int_{ au}\omega-rac{1}{4}\mathrm{Ind}_{\scriptscriptstyle L}(\gamma)$$
 is an integer.

A quasi-classical state L in T^*M is called a quasi-classical eigenstate if h is constant on L. The value of h on a quasi-classical eigenstate L is called the eigenvalue of L. A foliation \mathscr{L} on T^*M is called a Jacobi foliation if its leaves are Lagrangian submanifolds in T^*M . A Jacobi foliation corresponds classically to an orthogonal decomposition of the quantum state space. See Slawionowski [6], [7]. In the next section, we will construct a Jacobi foliation \mathscr{L}_d on the cotangent bundle T^*S^d of the d-sphere S^d , and select from its leaves all those which satisfy the quantization condition. See Weinstein [8].

2. Calculations for spheres. We will consider the spheres

$$S^k = \{(x_0, \ \cdots, \ x_d) \in {I\!\!R}^{d+1} | \ x_0^2 + \ \cdots + x_d^2 = 1, \ x_{k+1} = \ \cdots = x_d = 0\}$$

for $k = 1, 2, \dots, d$, with the Riemannian metric induced from the Euclidean metric $dx_0^2 + \dots + dx_d^2$ on \mathbf{R}^{d+1} . Let $1 \leq k < m \leq d$. S^k is a totally geodesic submanifold in S^m . The (co)tangent bundle of S^k with the Sasaki metric is naturally imbedded as a totally geodesic submanifold in that

520

of S^m . The canonical one-form and the symplectic form on T^*S^m pull back to the corresponding forms on T^*S^k . The restriction of the free Hamiltonian on T^*S^m to T^*S^k is that of T^*S^k . The geodesic flow on T^*S^m leaves T^*S^k invariant, and its restriction to T^*S^k is the geodesic flow on T^*S^k . Thus there may be no confusion if we write the canonical one-form ω , the symplectic form Ω , the free Hamiltonian h, the Hamiltonian vector field H, the geodesic flow $\chi = \{\chi_t | t \in \mathbf{R}\}$ on T^*S^k , for any $k = 1, 2, \dots, d$. As before, we will identify the tangent bundle and the cotangent bundle of S^k . Restricting the vector field dx_{k+1} on \mathbf{R}^{d+1} to S^k , we have a normal cross-section $X_{k+1} = dx_{k+1}|_{S^k}: S^k \to T^*S^{k+1}$. X_1 denotes the tangent vector $dx_1|_p$ to S^1 at $p = (1, 0, \dots, 0) \in \mathbf{R}^{d+1}$. We will first construct a Jacobi foliation \mathscr{L}_d on T^*S^d with a small exceptional set. For any $a_1 \in \mathbf{R}$, let $L(a_1) = \{\chi_t(a_1X_1) \in T^*S^1 | t \in \mathbf{R}\}$. Then $\mathscr{L}_1 = \{L(a_1) | a_1 \in \mathbf{R}\}$ is a Jacobi foliation on T^*S^1 . Let $\pi: T^*S^k \to S^k$ denote the projection. Regarding $L(a_1)$ as a subset of T^*S^2 , we have a submanifold $L(a_1) \# [a_2] =$ $\{Y_1 + a_2 X_2|_{\pi(Y_1)}| Y_1 \in L(a_1)\}$ in T^*S^2 , for any $a_2 > 0$. $L(a_1, a_2) = \{\chi_t(Y_2)| Y_2 \in I_1\}$ $L(a_1) \# [a_2]$ is a two-dimensional submanifold in T^*S^2 . Thus we have a foliation $\mathscr{L}_2 = \{L(a_1, a_2) | (a_1, a_2) \in \mathbb{R}^2, a_2 > 0\}$ on T^*S^2 with a small exceptional set. Iterating this procedure, we have a foliation $\mathscr{L}_k = \{L(a_1, \dots, a_k) | (a_1, \dots, a_k)\}$ \cdots , $a_k \in \mathbb{R}^k$, $a_j > 0$ for $j \ge 2$ on T^*S^k with a small exceptional set. From the construction, it is easy to see that the leaves $L(a_1, \dots, a_k)$ are k-dimensional tori which are invariant under the geodesic flow. The free Hamiltonian h is constant on $L(a_1, \dots, a_k)$ and is equal to $(a_1^2 + \cdots + a_k^2)/2.$

LEMMA 4. $L(a_1, \dots, a_k)$ is a Lagrangian submanifold in T^*S^k .

PROOF. We will prove this by induction. $L(a_1)$ is a Lagrangian submanifold in T^*S^1 . If we assume that $L(a_1, \dots, a_j)$ is a Lagrangian submanifold in T^*S^j , then an easy computation shows that $L(a_1, \dots, a_j) \# [a_{j+1}]$ is an isotropic submanifold in T^*S^{j+1} . For any tangent vector Z to $L(a_1, \dots, a_j) \# [a_{j+1}], \Omega(Z, H) = dh(Z) = Z(h) = 0$, since h is constant on $L(a_1, \dots, a_j) \# [a_{j+1}]$. The tangent space of $L(a_1, \dots, a_{j+1})$ at a point $Y_{j+1} \in L(a_1, \dots, a_j) \# [a_{j+1}]$ is spanned by the tangent space of $L(a_1, \dots, a_j) \# [a_{j+1}]$ at Y_{j+1} and the Hamiltonian vector $H|_{Y_{j+1}}$ at Y_{j+1} . Since the geodesic flow leaves Ω invariant, it follows that $L(a_1, \dots, a_{j+1})$ is a Lagrangian submanifold in T^*S^{j+1} .

Thus we have a Jacobi foliation \mathscr{L}_d on T^*S^d with a small exceptional set. Now we will calculate the Maslov index for oriented closed curves on $L(a_1, \dots, a_d)$. Let $S^1(r) \approx [0, 2\pi r]/\{0\} \cup \{2\pi r\}$ denote the oriented circle of radius r. For $k = 1, 2, \dots, d$, let us define a curve $\gamma'_k \colon S^1(r_k) \to$

к. п

 $L(a_1, \dots, a_k)$ by $\gamma'_k(t) = \chi_t(\sum_{j=1}^k a_j X_j|_p)$, where $r_k = (\sum_{j=1}^k a_j^2)^{-1/2}$ and $p = (1, 0, \dots, 0)$. γ'_k is an oriented closed curve. $c_k = \pi \circ \gamma'_k$ is a closed geodesic, its tangent vector $\dot{c}_k(t)$ is equal to $\gamma'_k(t)$. Define a curve $\gamma_k \colon S^1(r_k) \to L(a_1, \dots, a_d)$ by $\gamma_k(t) = \gamma'_k(t) + \sum_{j=k+1}^d a_j X_j|_{c_k(t)}$. γ_k is an oriented closed curve on $L(a_1, \dots, a_d), \pi \circ \gamma_k = c_k$. $\gamma_1, \dots, \gamma_d$ are generators of the one-dimensional homology group $H_1(L(a_1, \dots, a_d), Z) \cong \bigoplus^d Z$ of $L(a_1, \dots, a_d)$.

LEMMA 5. Ind_{$L(a_1,...,a_d)$} $\gamma_k = 2(k-1)$.

PROOF. Let $Y_j^{\scriptscriptstyle (k)}\colon S^{\scriptscriptstyle 1}(r_k) o TS^d, \ j=1,\,2,\,\cdots,\,d$, be parallel vector fields along c_k such that $\{Y_j^{(k)}(t)\}_{j=1,\ldots,d}$ forms an orthonormal basis for the tangent space to S^d at $c_k(t)$, $Y_1^{(k)}(t) = r_k \dot{c}_k(t)$, and $Y_j^{(k)}(t)$, $j = 1, \dots, k$, are tangent to S^k . For a small $\varepsilon > 0$, a map $f(y_1, \dots, y_d) = \exp_{\varepsilon_k(y_1)}(\sum_{j=2}^d y_j Y_j^{(k)}(y_1))$ is a diffeomorphism from $S^{\scriptscriptstyle 1}(r_k) imes (-\varepsilon, \varepsilon)^{d-1}$ into S^d , where exp is the exponential map. Thus we have a Fermi coordinate system (y_1, \dots, y_d) along c_k . Let $(y_1, \dots, y_d; \eta_1, \dots, \eta_d)$ denote the associated coordinate system in T^*S^d . We represent a tangent vector to T^*S^d by its component with respect to this coordinate system. We regard $L(a_1, \dots, a_k)$ as a submanifold in T^*S^d . If the tangent space to $L(a_1, \dots, a_k)$ at $\gamma'_k(t)$ is spanned by vectors $(a_{i1}, \dots, a_{ik}, 0, \dots, 0; b_{i1}, \dots, b_{ik}, 0, \dots, 0), i = 1, \dots, k$, then the tangent space to $L(a_1, \dots, a_k) \# [a_{k+1}]$ at $\gamma'_k(t) + a_{k+1}X_{k+1}|_{c_k(t)}$ is spanned by $(a_{i1}, \dots, a_{ik}, 0, \dots, 0; b_{i1}, \dots, b_{ik}, 0, \dots, 0), i = 1, \dots, k$. Since the Hamiltonian vector at $\gamma'_k(t) + a_{k+1}X_{k+1} | c_{k(t)}$ is given by $(r_k^{-1}, 0, \dots, 0,$ $a_{k+1}, 0, \dots, 0; 0, \dots, 0$, the tangent space to $L(a_1, \dots, a_{k+1})$ at $\gamma'_k(t) + \gamma'_k(t)$ $a_{k+1}X_{k+1}|_{c_k(t)}$ is spanned by the vectors $(a_{i1}, \dots, a_{ik}, 0, \dots, 0; b_{i1}, \dots, b_{ik}, 0)$ $(0, \dots, 0), i = 1, \dots, k, \text{ and } (r_k^{-1}, 0, \dots, 0, a_{k+1}, 0, \dots, 0; 0, \dots, 0).$ Similarly, the tangent space to $L(a_1, \dots, a_{k+j})$ at $\gamma'_k(t) + \sum_{i=1}^j a_{k+i} X_{k+i}|_{c_k(t)}$ is spanned by the vectors $(a_{i1}, \dots, a_{ik}, 0, \dots, 0; b_{i1}, \dots, b_{ik}, 0, \dots, 0), i = 1, \dots, k,$ and $(r_k^{-1}, 0, \dots, 0, a_{k+1}, 0, \dots, 0; 0, \dots, 0), \dots, (r_k^{-1}, 0, \dots, 0, a_{k+1}, a_{k+2}, \dots, 0)$ $a_{k+j}, 0, \dots, 0; 0, \dots, 0$. The vector $(1, 0, \dots, 0; 0, \dots, 0)$ is tangent to $L(a_1, \dots, a_d)$ at $\gamma_k(t)$. It follows that the tangent space to $L(a_1, \dots, a_d)$ at $\gamma_k(t)$ is spanned by the vectors $(a_{i1}, \dots, a_{ik}, 0, \dots, 0; b_{i1}, \dots, b_{ik}, 0, \dots, 0)$, $i = 1, \dots, k$, and $\partial/\partial y_{k+1}, \dots, \partial/\partial y_d$. Since (y_1, \dots, y_d) is a normal coordinate system about $c_k(t)$, $\{\partial/\partial y_1, \dots, \partial/\partial y_d, \partial/\partial \eta_1, \dots, \partial/\partial \eta_d\}$ is an orthonormal basis for the tangent space to T^*S^d at $\gamma_k(t)$. $\partial/\partial y_1, \dots, \partial/\partial y_d$ are horizontal vectors at $\gamma_k(t)$. $\partial/\partial \eta_1, \dots, \partial/\partial \eta_d$ are vertical vectors at $\gamma_k(t)$. $J(\partial/\partial y_j) =$ $\partial/\partial \eta_j$ for $j=1, \dots, d$. On the other hand, the tangent space to $L(a_1, \dots, a_k)$ in T^*S^k at $\gamma'_k(t)$ is spanned by the vectors $(a_{i1}, \dots, a_{ik}, 0, \dots, 0; b_{i1}, \dots, d_{ik})$ b_{ik} , 0, ..., 0), i = 1, ..., k. Thus, from the definition of the Maslov index, it follows easily that the Maslov index of the curve γ'_k on the Lagrangian submanifold $L(a_1, \dots, a_k)$ in T^*S^k is equal to the Maslov index of the

curve γ_k on the Lagrangian submanifold $L(a_1, \dots, a_d)$ in T^*S^d . Since γ'_k is an orbit of the geodesic flow on T^*S^k , we have

$$\operatorname{Ind}_{{}_{L(a_1,\ldots,a_k)}}\gamma'_k=(\operatorname{Morse index of } c_k ext{ in } S^k)\ =2(k-1)$$
 .

See Maslov [5], Weinstein [8]. From this our lemma follows. q.e.d.

Now we will calculate the action integral along γ_k .

$$egin{aligned} &\int_{{\gamma_k}} &\omega \ = \int_{{\gamma_k}} {\pi^*}({\gamma_k}) \ = \int_{{o_k}} {\gamma_k} \ = \int_0^{2\pi r_k} \langle {\gamma_k}, \, \dot{c}_k
angle dt \ = \int_0^{2\pi r_k} \langle {\gamma'_k}, \, {\gamma'_k}
angle dt \ = 2\pi \Bigl(\sum\limits_{j=1}^k {a_j^2} \Bigr)^{1/2} \ . \end{aligned}$$

Therefore, the quantization condition for the Lagrangian submanifold $L(a_1, \dots, a_d)$ is written as

for $k = 1, \dots, d$. Thus we have

$$egin{aligned} a_1 &= n_1 \ a_2 &= \left(\left(\, n_2 + rac{1}{2}
ight)^2 - n_1^2
ight)^{1/2} & ext{for} \quad n_2 \geq |\, n_1| \ , \ a_k &= \left(\left(n_k + rac{k-1}{2}
ight)^2 - \left(n_{k-1} + rac{k-2}{2}
ight)^2
ight)^{1/2} & ext{for} \quad n_k \geq n_{k-1} \ , \ k &= 3, \ \cdots, d \ . \end{aligned}$$

It follows that the quasi-classical spectrum $\{\boldsymbol{\nu}_n\}_{n=0}^\infty$ for the sphere S^d is given by

$$m{
u}_n = rac{1}{2}\sum\limits_{j=1}^d a_j^2 = rac{1}{2} \Big(n + rac{d-1}{2} \Big)^2 \ .$$

See Weinstein [8]. The multiplicity $m(\nu_n)$ of ν_n is the number of the Lagrangian submanifolds $L(a_1, \dots, a_d)$ which satisfy the quantization condition and $\sum_{j=1}^d a_j^2/2 = \nu_n$. Therefore $m(\nu_n)$ is equal to the number of *d*-tuples (n_1, \dots, n_d) of integers satisfying $0 \leq |n_1| \leq n_2 \leq \dots \leq n_{d-1} \leq n_d = n$. Thus we have

$$m(oldsymbol{
u}_n)=rac{2n+d-1}{n}inom{n+d-2}{n-1}$$
 ,

where the counting starts with n = 0. Despite the incompleteness of the Jacobi foliation \mathscr{L}_d , the quasi-classical multiplicity $m(\nu_n)$ of ν_n agrees with the quantum multiplicity $m(\mu_n)$ of μ_n .

K. II

References

- V. I. ARNOL'D, Characteristic class entering in quantization conditions, Funct. Anal. Appl., 1 (1967), 1-13.
- [2] M. BERGER, P. Gauduchon and E. Mazet, Le spectre d'une variété riemannienne, Lecture Notes in Math., 194, Springer-Verlag, Berlin, 1971.
- [3] D. FUJIWARA, A construction of fundamental solution of Schrödinger's equation on the sphere, J. Math. Soc. Japan, 28 (1976), 483-505.
- [4] J. LERAY, Complément à la théorie d'Arnol'd de l'indice de Maslov, Symposia Math., 24 (1974), 33-51.
- [5] V. P. MASLOV, Théorie des perturbations et méthodes asymptotiques (translation), Dunod, 1972.
- [6] J. J. SLAWIONOWSKI, Quantum relations remaining valid on the classical level, Rep. Mathematical Phys., 2 (1971), 11-34.
- [7] J. J. SLAWIONOWSKI, Geometry of van Vleck ensembles, Rep. Mathematical Phys., 3 (1972), 157-172.
- [8] A. WEINSTEIN, Quasi-classical mechanics on spheres, Symposia Math., 24 (1974), 25-32.

DEPARTMENT OF MATHEMATICS Yamagata University Yamagata 990, Japan