Toéhoku Math. Journ.
31 (1979), 57-62.

ON THE ABSOLUTE CONTINUITY OF MEASURES
RELATIVE TO A POISSON MEASURE

HIiroAKI MORIMOTO

(Received November 7, 1977, revised March 1, 1978)

1. Introduction. Let (2, F, P) be a complete probability space with
a non-decreasing right continuous family (F,),<;c.. of sub o-fields of F
such that F, contains all null sets and F = V,», F,. Let N = (N,) be a
stochastic point process on (2, F, P), that is, an F,-adapted process with
right continuous paths taking values in Z, =1{0,1,2, ---} such that
Ny,=0 and 4N, =N, — N,_=0 or 1 for all ¢&. We assume here that
F, is the o-field generated by (N, s <t). If there exists a positive
predictable process » = (\,) such that the process N defined by

A~

M=M—ﬁ$

is a local martingale, then (N, P) is said to be a stochastic point process

with the intensity . Now, let P, be a Poisson measure; that is, (N,)

is a Poisson process with respect to P,. J. H. Van Schuppen and E.

Wong proved in [6] that if P is equivalent to P,, then (N, P) is a stochastic

point process with some intensity. Our interest lies in giving a necessary

and sufficient condition for the equivalence P ~ P, under some assumptions.
Our aim is to prove the following theorems.

THEOREM 1. Let (N, P) be a stochastic point process with the intensity
A and assume that

P<Sj(|xs 1] + |\, log \, ds < oo) ~1.

Then, P s equivalent to P, if and only if

(1) E[( il N;‘)exp(gj(xs - 1)ds>] ~1.

The sample paths of the process N have only a finite number of
discontinuities in [0, 1], and so we get:

THEOREM 2. Let (N, P) be a stochastic point process with the intensity
N. Then, P is equivalent to P, on F, if and only if
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(2) ERJ;A;)prp%—D@ﬂzl.

2. Preliminary lemmas. The reader is assumed to be familiar with
the martingale theory given in [3].

Let M be a local martingale and L be the unique solution of the
stochastic integral equation:

L=1+YLJM;

Obviously, L is a local martingale.
Our proofs are based on the following lemma obtained by J. H. Van
Schuppen and E. Wong [6].

LeMMA 1. Let X be a local martingale such that the process (X, M)
exists. If L is a uniformly integrable positive martingale, then dP' =
L_dP defines a probability measure and the process (X, — (X, M),) is a
P’-local martingale.

For the proof, see [6]. We note that if (L,,,) is a positive martingale,
then dP"” = L,dP defines also a probability measure and X,,, — (X, M),
is a P"-local martingale. As is proved in [3], if ¢ is a predictable

t
process with P(S | s I Neds < oo) =1 for every t, then the Stieltjes integral
t A 0
S U, AN, is a local martingale. The following lemma gives a sufficient
[
condition for its integral to be a uniformly integrable martingale.

LEMMA 2. If p=(t,) is a predictable process such that E Dw] ;z,])\,,ds] <
t A~ 0
oo, then the process <S UAN,) is a uniformly integrable martingale.
0

Proor. It is sufficient to show that Sty,dﬁ,) is uniformly integrable.
0 tATy, A~
Let T, 1 « be stopping times such that for each =, (S |y,|dN,) is a
martingale. Then for every =

B[ "imlan, ] = B[ 1minds],

and so, letting n— o, we find that E[Stlﬂs!dN,:‘ = El:gtl‘u,lx,ds} There-
0 0
fore,

0

Bl sup || af| | = B | 11081 = 28 {1l s ]

From the assumption it follows that <St,u,dl\7,> is uniformly integrable.
0
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LEMMA 3. Let gt = (1) be a predictable process with P(r]p,lx,ds <
0
oo> =1. Then for any a,b >0,

P (Sl}p

S:ysdﬁs

> a) < (2b/a) + P<S:°|y3|7nsds > b) .

ProOF. Let T — inf {t; S’] 1, | Nods > b} and £ = ¢t.I,op. Then the
process f' is a predictable pl?ocess such that E[rlmlx,ds < b, and so
by Lemma 2 <S:p§dl\73> is a uniformly integrable rtilartingale. Therefore,
from the definition of T and Doob’s maximal inequality it follows that

P <s1t1p

S:#sdl\?,

- )= Flow| [

>a,T:oo>+P(T<oo)

< P<sup

S:y;dﬁs > a> + P(S:lp,lxsds > b)

= (B[ 1211a8,1 )/ a) + P({ 1l nds > ) -

By the definition of g, the first term on the right hand side is smaller
than 2b/a. Thus the lemma is proved.

3. Proof of Theorem 1. Sufficiency: Let M, = St(x;l — 1)dN,, which

is a local martingale. Then the solution L of L, = 1°+ Sth_olMs is given
0
by

L, = ( 11 N;‘) exp (S:()vs — 1)ds> ,

8=t
Ng#Ng_

which can be rewritten as exp <~ St log M dN, — St(l — A, + A, log )»s)ds>.
0 0
Let L. = (I, ) exp(S (v — Dds). By Lemma 3,
0

Ng#:Ng_

P <31t1p

St log )»adl\AT,

> a> < (2b/a) + P(S:’uog N nds > b)

and letting @ — « and then b — - we find that P(‘ Smlog )u,dl\AT,‘ < oo) =1.

Thus L, converges to L, > 0 a.s. By the assumptioon 1), E[L.] = 1, and
so L is a uniformly integrable positive martingale. Let dP’' = L_dP.
As L_,> 0, P’ is equivalent to P. From Lemma 1, it follows that 1\7,—
<N, M), = N, —t is a P’-local martingale, that is, P’ = P, on F.
Necessity: The process L defined by L, = E[dP,/dP|F,] is a uniformly
integrable positive martingale with L, =1. Let us consider the local
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martingale M defined by M, = StL;_ldL,,. Then, L is a solution of L, =
t 0 t A~
1+ \L,_dM, and the process M has a representation M, = Sv,dN, for

0 0
a predictable and integrable process v ([1], p. 1018). Therefore, setting
p=v+1, we have

L= 1 ) exp (—SZ(ps — 1)x8d3> .

Ng#Ng_

By Lemma 1, N, — (N, M), = N, — Stpe,,xsds is a P,-local martingale, and
0
so we have gt = A\ because N, —t is a P,local martingale. Then, L, is
rewritten as follows:
t
L, = ( I x;l> exp (Soo”* — 1)ds> :

s<t
Ns;th_

Consequently, letting ¢ — o, the theorem is established.

4. Proof of Theorem 2. Sufficiency: Let M, = Sm(x;l —1)dN,,
0 t

which is a local martingale. The solution L of L, =1 + SL,_dMs is
0

given by
L, = ( 1 x;l) XD (S:“(x,, _ l)ds) .

SSTAL
s*FNg_

Since the sample paths of N have only a finite number of discontinuities
in [0, 1], L is a positive supermartingale. Furthermore, by the assumption
(2), E[L,] =1, and so L is a martingale. Let dP” = L, dP. Then P"is
equivalent to P on F,, and by Lemma 1, N;,, — (N, MY, = N,y —t A L
is a P"-local martingale. This implies that P” = P, on F..

Necessity: Let D be the Radon-Nikodym derivative of P, with respect
to P on F,. Then the process L defined by L, = E[D|F,] is a uniformly
integrable positive martingale such that L, =1 and L, = L,,, for all ¢.
The same argument as in the proof of the necessity of Theorem 1 gives

1= (g, ) o[ v

Thus, the theorem is established.

5. Sufficient conditions. We first give a sufficient condition for P
and P, to be equivalent.

PROPOSITION 1. Suppose that for some constant K,
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P<§m[x, log N, |ds < oo, rm ~llds= K)=1.
0 0
Then n satisfies (1).
ProOOF. Recall that
t
L, = ( 1 x;l) exp (go(x,, - 1)ds)

gFNg_

is a positive local martingale. Thus to prove (1), it suffices to show that

L is uniformly integrable. For that purpose, define the local martingale
M by

M = S:(x;l — DIy dR, .

t
Then the solution L’ of the equation L; =1 + SL;_dM,' is given by
0

L, = (ngs_(l + O = l)Iu,q,)) exp (S(N - 1)Ius<uds>

t A t
— exp <— S (log M)l <y dN, — g 1 =, + ), log 7\,3)Ius<1,ds> .
0 0

By Lemma 3 it is easy to see that P(lr(logxs)I“sQ,dl\Af,‘ < oo) = 1.
0

Thus L; converges to L. a.s. Furthermore, we have E[L.] < 1, because
L' is a positive supermartingale. By a simple calculation,

sup L, = sup exp (— S:log NaAN, + SZ(M — 1)ds>
< exp (= | togn) Iy o, + (v, — 11ds)
< Liexp(2( I —11ds)
so that we have E[sup, L,] < . Consequently, L is uniformly integrable.

Similarly, we can give a sufficient condition for P and P, to be
equivalent on F,.

PROPOSITION 2. Suppose that for some constant K,
1
P(S Mis < K) =1.
0

Then N satisfies (2).

The proof is the same as that of Proposition 1 with ¢ replaced by
t AL
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