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1. Introduction. If x:(—co, A)— C", then for any ¢ in (—co, A)
we let z,: (— 0, 0] — C* be defined by x,(0) = x(t + 6), —< < 6 =0. The
linear autonomous retarded equation with infinite delay is an equation

(1.1) dx/dt = L(z,) ,

where L: &# — C* is linear and continuous, and <# is a linear space of
some functions ¢: (—, 0]— C*. Hypotheses (H), ---, (H,) imposed on
the space <& are stated in Section 2. In [6], under these hypotheses
the fundamental matrix X(¢) of this equation is defined for ¢ > 0 in terms
of the inverse Laplace transform. It has also been proved that X gives
the variation-of-constants formula of solutions of the nonhomogeneous
equation corresponding to Equation (1.1). The objective of this paper is
to establish that, if we set X(0) =1 and X(¢) =0 for ¢t <0, then X
satisfies Equation (1.2) below which is naturally induced from Equation
(1.1) (Theorem 5.2).

To obtain this result, in Section 3 we first consider the representation
of the operator L. From Hypotheses (H,) and (H,) the operator L induces
a linear operator L, on the space & of continuous functions mapping
(—c0, 0] into C* with compact support. Furthermore, L, becomes a
“Radon” measure on (—c, 0]. A well known result of measure theory
implies that L, has a unique “Borel” prolongation L over the space I’
of bounded and Borel measurable functions mapping (— o, 0] into C*
with compact support. Introducing this operator, we define an n X n
matrix funection 7(d), — < 8 =<0, which becomes a kernel function of
the linear operator L when this is represented by a Stieltjes integral.
More precisely, the representation of L(g) is proved only for the functions
¢ which are either an element of the space & or an exponential fune-
tion exp(\@)b with a lower bound «, for Re), where b is in C*. If
we set () = —n(—t) for ¢t =0, then the representation of G(A) =
L(exp(\n-)I) with respect to 7 is interpreted as a Laplace-Stieltjes trans-



540 T. NAITO

form of {. In Section 4, a classical theorem on the characterization of
generating functions is applied for G(\). Consequently, under an additional
Hypothesis (H;) for <# the lower bound a, for Re\ is replaced by the
best possible one. Thus the representation of L(¢) is obtained for all
of the concrete functions ¢ which are known to be the elements of
every space <# satisfying Hypotheses (H,), ---, (H,).

Observe that, for every £ = 0, L(X,) may not have a meaning but
L(X,) is well defined since X, obviously lies in I". Hence Equation (1.1)
with L replaced by L is naturally introduced. As final results, we prove
that

(1.2) dX/dt = L(X,) ae.int=0,

and that, if X, lies in <& for some » = 0, then X(¢) satisfies Equation
(1.1) for every t = ». From the results established in Section 3, these
assertions are obtained by the method of Laplace and Laplace-Stieltjes
transform. We emphasize that L is continuous in Lebesgue; roughly
speaking, the bounded convergence theorem holds for I on every compact
interval of (—co, 0]. This property makes the proofs of the above results
easy to follow.

In case the delay is finite and the phase space is C(|—7, 0], C*), the
general theory of the fundamental matrix is well known (cf. [3]). Kappel
[56] introduced the method of Laplace-Stieltjes transform into the study
of neutral functional differential equations. Under several conditions on
phase spaces and linear operators, Corduneanu [1] treated the fundamental
matrix in case the delay is infinite. The Laplace transform was also
used. See Hale and Kato [4] for examples of the space <# satisfying
Hypotheses (H,), ---, (H;). Corduneanu and Lakshmikantham [2] contains
complete references for the papers concerning equations with infinite delay.

2. The space <Z and basic results. Let <Z be a linear space of
functions mapping (— 0, 0] into C* with elements ¢, 4, - -- having semi-
norm |élg, |vle, +--. We say that ¢ and « in <& are equivalent if
|¢ — 4r|l> = 0, and denote by ¢ the equivalence class of ¢. The collection
of equivalence classes, designated by .7, becomes a normed linear space
if we define |¢|s = |¢|s. On the spaces < and B, we impose the
following hypotheses. The presentation is apparently different from the
one in [6] but both hypotheses are equivalent to each other.

(Hy) &Z is a Banach space.

(H,) If x is a function mapping (—c, o + A) into C* with 4 > 0
such that x is continuous on [, 0 + A) and z, lies in <&, then x, also
lies in <&Z and x, is a continuous function of ¢ for ¢ in [o, 0 + A).
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(H,) There exist functions K(t) and M(¢t) of t = 0 with the following
properties:

(i) K(t) is continuous for ¢ in [0, ).

(i) M(¢t) is locally bounded on [0, ) and submultiplicative, that is,
M(t + s) = M(t)M(s) for t, s = 0.

(iii) For every function a2 which arises in (H,), it holds that, for
c=St<o+ A,

|2, = K(t — o)sup{|a(s)]: 0 = s =t} + Mt — 0)|x,|. .

(Hy) |¢(0)] < K|g|, for all ¢ in <# and some constant K.

(H) If {¢*} is a Cauchy sequence of % and {¢*(6)} converges to #(f)
uniformly for # in each compact set of (— o, 0], then ¢ also lies in <&
and ¢* — @ as k — oo.

Now, from the papers [4] and [6] let us introduce some results which
will be needed in the following sections. Suppose L:.<# — C* is linear
and continuous. Hypotheses (H,), (H,) and (H;) guarantee the unique
existence of the solution xz(¢)(t) on [0, ) of Equation (1.1) with the
initial condition x, = ¢ in <& For ¢ in <7, we set

T.t)¢ = x,(¢) for t=0.

Then T,(t) is a continuous linear operator on <& into <. If we set
T.(t)p = (T,(t)p)" for ¢ in <& then T,(t): & — <# is also linear and
continuous. Furthermore, Hypothesis (H,) means that TL(t) is a strongly
continuous semigroup on the space &7 This is called the solution semi-
group of Equation (1.1).

It is well known that the type number a, of the semigroup 7,(t) is
defined as

a, = lim [log |T,(t)[)/¢ = inf [log | T.®) |1/t ,

which may be — o but not + . For bounded sets B of a Banach space
X, let a(B) denote the Kuratowski measure of noncompactness of B. It
induces the semi-norm a(T) for bounded linear operators T: X — X defined
by a(T) = inf{k: a(TB) < ka(B) for all bounded sets B in X}. Using
this semi-norm, we define the “essential” type number 3, of T.(8) as

A = lim [log a(T(£)))/¢ = inf [log a(T )]/t -

In addition to a direct result that B, < a,, we can prove that g, is
independent of L [6, p. 79]. Therefore, if we denote by 8 this common
value of 3;, then 8 < «, for all L. Furthermore, following the proof
of [6, Theorem 4.5, p. 81], we know that
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(A) B=a, and B < a, if and only if g8 < 0.

It rleed hardly be said that «, is the type number of the solution semi-
group T(t) of the trivial equation dx/dt = 0. Because of its importance,
T,(t) is designated by a special symbol S(¢). Clearly, it is given by

(0) for t+6=0
2.1) St))0) = |
#(t + 0) for t+6<0.

The number S has also the following relation with the structure of
the space <& [6, Theorem 4.4, p. 79]. For \ in C and b in C*, let o(\)b
denote the function of § in (— o, 0] defined as

[o(\)b](#) = b for 6 =<0 .

Then w(\)b lies in <2 for N in C; = (\€C: Re N > B}, and
(A,) (@(\)b)" is an analytic function of \ in C; into .Z
For simplicity, let the symbol @&(\)b mean (w(\)b)".

3. Representation theory for continuous linear functionals on 7.
It is well known that every linear and continuous operator L: C([—7, 0],
C") — C™ is represented by a Stieltjes integral with respect to a matrix
function of bounded variation in [—7, 0]. In this section, an analogues
result will be proved for linear and continuous operators L: <% — C".
However, the representation of L(¢) is restricted to the following func-
tions; that is, ¢ is in & introduced in Section 1 or ¢ = @(\)b for Rex >
a, and b in C", where «, is the type number of S(¢).

By Hypothesis (H,), the space &” is a linear subspace of <&. For
each ¢ in &, supp ¢ denotes the support of ¢, and |4|.. = sup{|g(@)|: — <
#<0}. If L is a linear and continuous operator on <# into C", then
the restriction of L on % is clearly a linear operator on & into C®
which we denote by L,. ‘Hypothesis (H,) implies that the operator L, is
continuous on % in the sense that, if supp ¢ lies in [—%, 0], then

3.1 | Lo(p)| = | LIK(@)[9]. -

Now, we introduce some results from measure theory (cf. [7, pp.
521, 1-521, 12]). Suppose X is a locally compact metric space. Denote
by & (X) the linear space of continuous functions mapping X into C
with compact support. A linear operator ¢ mapping & (X) into a Banach
space E is called a Radon measure on X into K if g is continuous in
the sense that, for each compact set K of X, there exists a constant ¢,
such that |z(¢)| < cxsup{|é(x)|: € X} provided supp¢ lies in K. Let
I'(X) be the linear space of bounded and Borel measurable functions
¢: X — C with compact support. Obviously, & (X) is a linear subspace
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of I'(X). A sequence {¢*} of I'(X) is said to converge in Lebesgue (or
L-converge) to a function ¢ in I'(X) if {¢*(x)} are uniformly bounded,
their supports are all contained in a compact set and ¢*(x) — ¢(x) as
It — o for each x in X. A linear operator v on I'(X) into E is said to
be continuous in Lebesgue (or L-continuous) if the sequence {v(¢*)} con-
verges to v(¢) for any sequence {¢*} of I'(X) which converges in Lebesgue
to ¢. A Borel prolongation of a Radon measure ¢ is a linear operator
v: I'(X) — K such that v(¢) = p(¢) for ¢ in &°(X) and v is continuous in
Lebesgue. It is known that, if E is of finite dimension, then every Radon
measure on X into E has a unique Borel prolongation.

The space I’ introduced in Section 1 is the product space of n-copies
of I'((— <o, 0]). Clearly, ¥ is the subspace of I. Is I contained in <&
or not? At present, we have no answer to this question under Hypotheses
(Hy), ---, (H). For # and I', give similar definitions of “Radon” measure,
“Borel” prolongation, etc. Then, Inequality (3.1) implies that L, is a
“Radon” measure on (—c, 0]. Applying the above result to L,, one can
state the following theorem.

THEOREM 3.1. Suppose L is a linear and continuous operator onm
<% into C*. Then there exists one and only one linear operator I on
I" into C™ which has the following properties:

(i) L(g) = L(g) for all &

(ii) L is continuous in Lebesgue.

Now, define a function X: R — R by
(3.2) At)=1 for ¢=0, and X(¢t) =0 for t<O0.

Then, for ¢t =0, the function X, is the indicator function of the set
[—¢t, 0] in (—co, 0]. Associated with the Borel prolongation I of L, an
n X m matrix funection 7(d) for < 0 is defined by

5 0 for =0

(3.3) 0= 1_to.D) for 6<0,

where I is the n X n identity matrix. This funection is well defined and
continuous to the left at every 6 < 0 since the indicator function %, lies
in I'((— o, 0]) and converges in Lebesgue to X. as t —>7 + 0, for 7 > 0.
Also, the function 7(f) has a limit as § —~o0 + 0, o < 0. But it is possible
that this limit does not coincide with 7(¢). On the other hand, it will
be verified that 7 is a function of bounded variation on each compact
interval of (—oo, 0]. To estimate the variation of 7, the following ob-
servation is essential.
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LEmMMA 3.2. If ¢ is a function in & whose support lies in [ —t, —s]
for some t > s =0, then

1¢l, < K@ — 8)|S6)| 16l ,

where K(t) is the function arising in Hypothesis (H,), and S(t) is defined
by Relation (2.1).

Proor. From Hypothesis (H,), if the support of a function ~r in &~
is contained in [—7, 0], then ||, < K(7)|+4|.. For the function ¢ given
in the lemma, define a function « in & by 4(0) = ¢(@ —s), 6 < 0. Then
S(s)y = ¢ and supp+ is contained in [—(f — s), 0]. Thus one obtains
|¢|s = |S()y], and ||, < K( — s)|v|.. These relations and the
definition |¢| , = |$| 2 lead to the inequality in the lemma. q.e.d.

If f is a function of bounded variation on an interval J, let V(f, J)
denote the total variation of f on J. A function of bounded variation
on each compact interval of an unbounded interval J is called a function
locally of bounded variation on J. In case J = (— o, 0], such a function
f is said to be normalized if £(0) = 0 and f(f) is continuous to the left
for every 6 < 0. For a partition P of an interval [a, b] such that a =
000) < 6(1) <---<6(d) = b, let m(P) = max{|6(1) — (¢« —V)|:i=1, ---, d}.

ProproSITION 3.3. The function 7 defined by Relation (3.3) is a
normalized function locally of bounded variation on (— oo, 0] such that

V(’], [—ty —S])§CiL|K(t—S)[S\(S)] fO’I' t>8__2__0,
where ¢ 18 a constant dependent on the norm of C”.

Proor. We have already observed that 7(@) is continuous to the left
for every 6 < 0. To prove the above inequality, it sufficies to show that
the similar estimate is valid for each component of 7. Thus without
restricting the generality one can assume n = 1.

For a partition P of [—¢, —s] such that —t =000) <o)< --- <
0(d) = —s, let

v = £ 9(06) — 706 — )]

For each 1 =1, ---, d, take a complex number ¢(7) such that |o(?)| =1
and that |7(0(2)) — 70t — 1))| = o()[7(@(3) — (@@ — 1))]. In case 6(d) =
—8 < 0, we set

(3.4) ¢ ==X oy + X pu—nlo(@) ,

i=1

and in case 0(d) = —s = 0, we set
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d—1
(3.5) 6 = gi [—X_ o0y + X sn]o(@) + X_pu_no(d) .

Then the definition of % implies that V" = L(g). Let ¢*, n=1,2, ---,
be the function defined by Relation (3.4) or (3.5) with X replaced by X*
which is given by X*(t) =1 fort =0, X"(t)=n( + 1/n) for —1/n <t <0
and X*(t) = 0 for t < —1/n. Obviously, ¢" is in & and supp¢” lies in
[-t —1/n, —s]. Moreover, |¢*|, =1 if 1/n < min{6(7) — 6(+ — 1)}. Fur-
thermore, ¢"(0) — ¢(6) as » — o for every § < 0. Thus, by Theorem 3.1
we have L(¢") — L(¢) =V® as m— . Since V¥ = 0, this implies that
V" = lim,.. | L(g")|.

On the other hand, applying Lemma 3.2 to the function ¢, we see
that, |¢*|, < K(t —s + 1/n)|S(s)||¢"|.. These relations yield that V* <
|L|K(t — 8)|S(s)|. It is to be noticed that K(t) is continuous. Since
the partition P is arbitrary, this concludes the proof of the estimate
for V(n,[—t, —s]) in the lemma. g.e.d.

THEOREM 3.4. Suppose a function ¢(0) is continuous for 6 in an
interval (—t, 0], continuous to the right for 6 = —t and ¢(9) =0 for

0 < —t. Then L(p) is represented by a Riemann-Stieltjes integral
as

L) = | anoyp) ,
where N 1s the function defined by Relation (3.3).

ProOF. For a partition P of [—¢, 0] such that —¢ = 6(0) < (1) <
. < 60(d) =0, let ¢ be the function defined by Relation (8. 5) with
a(z) replaced by ¢(z(1)), where 0(@ —1N=7t@)=0@) for i =1, ---,d.

Then the definition of 7 implies L(¢7) = S.&, [7(6(3)) — 960G — 1))]¢(r(z))
It is obvious that ¢” converges in Lebesgue to ¢ as m(P) — 0. This leads
to the theorem since I is continuous in Lebesgue. q.e.d.

THEOREM 3.5. Suppose ¢ is either a function in & or an exponential
Function @(\)b with Re x > a,, where a, is the type number of S(t). Then
L(g) is represented as

L) = | _ano)0) = tim | anow) .

ProOF. By Theorem 3.4, it is clear that the above formula holds for
¢ in &. Suppose ¢ = w(\)b for A with Rex > a, and beC". Fort =0,
we now define ¢’ = p,¢ and 4* = (1 — p,)¢, where p is X', the first member
of the family {X*} arising in the proof of Proposition 3.3. Then it is
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obvious that ¢' is in & and ¢ = ¢' + 4, or ' =¢ — ¢' for t = 0. This
implies +* also lies in <%, and L(¢) = L(¢*) + L(y*) for t = 0.

It is easy to see that L(y*) — 0 as t — . Indeed, from the trivial
relation () = e (1 — p(t + 0))e**+?b for 6 < 0, it follows that ' =
exp(—n)S(E)y° for ¢ = 0. Since Rex > a,, the definition of the type
number yields that exp(—xt)|S(t)| — 0 as t — co. This implies that *—
0 as t— o, and so L(y*) —0 as t— «. Therefore, we have L(p) =
lim,., L(¢").

Since ¢ is in & and ¢'(f) = 0 for § = —(¢ + 1), Theorem 3.4 asserts
that

L) = | o) + |~ anow e .
Denote the last integral by a(t). Applying Proposition 3.3, one obtains
that, for t = 0,

la@®) =V, [t — 1, —tDhsup{|¢(O)]: —t —1=0 = —t}
< const. | L| K(1)|S(t)| max{ettet, - t+0ret) |

which implies a(t) - 0 as ¢ — . Summarizing these results, we have
the desired conclusion. q.e.d.

If we set
(3.6) Et) = —n(—t) for t=0,

then  is a function locally of bounded variation on [0, ). It is nor-
malized in the sense that {(0) = 0 and that {(¢) is continuous to the right
for t > 0. Theorem 8.5 now asserts that

e L(a)(x)I)zszoe—“dC(t) for Re > a,.

A function defined by such an integral is called the Laplace-Stieltjes
transform (of {(¢)) or the generating function of the Laplace-Stieltjes
transform [8]. On the other hand, following Corduneanu [1], we call
L(w(\)I) the symbol of L. Thus we can say that, for A with Rex >
a,, the symbol of L coincides with a generating function of some Laplace-
Stieltjes transform.

4. Further representation theory for L. We now show that, for
A in the remaining strip {A»: 8 <Re M =< a,}, the representation of L(w(\)b)
is still valid. To do this, we impose an additional hypothesis on<#:

(Hy) If ¢ and + in 27 satisfy |¢(0)] < |4(0)| for all 4 <0, then
19le = |9 ]a-
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The result of this section, however, is not needed in the next section.
We first notice that, if we define L(§) = L(¢) for ¢ in <Z then L

is clearly a linear and continuous operator on .<# into C*, and the symbol
of L is identical to L(®(\)I). From Assertion (A;) in Section 2, the
symbol of L therefore is analytic for A with Re A>3. Hence the following
question arises: is Relation (3.7) valid for » with Re x> 3? Surely, this
question has a meaning only if 8 < a, (ef. (A,)). At the same time, it
is not a trivial question since there exists a generating function which
is continued analytically beyond the axis of convergence [8, p. 58]. To
answer the question, we need a lemma which is obtained by combining
the results in Widder [8, pp. 306-310].

LEMMA 4.1. For a function f(x) in 0 < x < o, we have

fl@) = Sjﬂda(t)

with a(t) of bounded wvariation in 0 <t < « if and only if f(x) has
derivatives of all orders in 0 < x < o and there exists a constant M
such that

S FP@) @R < M for 0< < e .

By. Assertion (A,) and Hypothesis (H,), one can prove the following
lemma without difficulty.

LEMmA 4.2. If Rex > B and b is in C", then, for k=20,1, ---, the
k-th derivative @ (\)b of @(\)b with respect to N 1s the equivalence class
of the function

[@®(\)D](6) = 6%¥b for 6 <0.
Hypothesis (H,) is used to derive Estimate (4.3) in the following lemma.

LEMMA 4.3. Let ¢ be a constant such that ¢ > B and {o(k)} a sequence
of C such that |o(k)| =1 for all k. If (8 — ¢)/2 <\ < oo, then the series

4.1) £OV(0) = é o6 (M)E1)e % for 6 <0
converges absolutely in <&, and
(4.2) &0V = 33, o())HRDIG(n + 0)b] -

Furthermore, if Hypothesis (H,) holds for the space <Z, then
(4.3) [EMV) e = [@(e)bls  for 0=\ < .
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PrOOF. Around X\, with A, > (8 — ¢)/2, draw a circle C of a radius
o on the half plane D = {\: Rex > 38 — ¢}. By the assumption g — ¢ <0,
one can take p to satisfy |\|/0 < 1. Since &\ + ¢)b is an analytic
function on D into .@A’, Cauchy’s estimate implies that

[@P (N + e)b| 5 =< k! M/ok E=0,1,---,

where M = sup {|@(\ + ¢)b|s: n€C}. This guarantees that Series (4.2)
converges absolutely for A=X\,. By Lemma 4.2, if £*(\)(¢) denotes the sum
of the first n terms of Series (4.1), then (¢"(\))” coincides with the sum
of the corresponding terms of Series (4.2). This implies that {(£"(\))"}
is a Cauchy sequence of 7. Since £*(\)(@) — £(\)(0) as m — oo uniformly
for @ in every compact set of (— o, 0], one has Relation (4.2) by using
Hyothesis (H,).

The assumption |o(k)| = 1 for all k& leads to the relation |a(k)(\0)*| =
(=x0)* for =0 and # < 0. Hence, if A =0, the Definition (4.1) of
£(\)(0) immediately gives the inequality |é(\)(0)| =< |exp(cf)b| for all § < 0.
Hypothesis (H;) therefore implies Relation (4.3). q.e.d.

We now prove the main theorem of this section.

THEOREM 4.4. Let 7 be the function defined by Relation (3.3) and
3 the common value of the “essential” type numbers of solution semigroups.
If the space <& satisfies Hypotheses (H,), ---, (H,) and (H;), then for b
n C*,

(4.4) mmmmﬁ;w@WbﬂrRu>3,

and, for every ¢ > 0 there exists a c(€) such that, for t = s =0,
V(7], [—t, _S]) é c(e) max{e(ﬁ+s)t’ e(p_H),} .

ProorF. Let {(t) be defined by Relation (3.6). To prove Relation (4.4),
it sufficies to show that Relation (3.7) holds with «, replaced by g, or
equivalently, every entry of L(w(\)I) is the Laplace-Stieltjes transform
of the corresponding entry of {(t) for Rex > 3. Thus we can assume
n = 1 without loss of generality.

In the beginning, we set

FO) = L@O) = Liw(\) for Rex > 3.

Let ¢ > B be fixed. Since f(A) is analytic in Rex > 3, the function
S\ + ¢) is analytic in Rex > 8 —¢. We observe that f(\ + ¢) satisfies
the condition in Lemma 4.1 with  and f(x) replaced by A and f(A» + ¢),
respectively. In fact, since L is linear and continuous, it follows that
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FP0 + ¢) = L@*(\ + ¢)). For each k=0,1, ---, take a o(k) in C such
that |o(k)] = 1 and that |L(@®(\ + ¢))| = o(k)L(@®(A+¢)). The sequence
{o(k)} surely depends on A. Let &(\)(@) be the function defined by Relation
(4.1). Since L is linear and continuous, and since Series (4.2) converges
in <z it follows that 32, \W/k!)a(k) L@\ + ¢)) = LEEN)). Notice
that every term of this series is nonnegative, which implies L(E(\)) = 0.
Since the space <& satisfies Hypothesis (H;), Lemma 4.3 implies that
LEN) < |L||@e)|s for » = 0. Summarizing these results, we obtain
the desired inequality 335, | fYO\ + ¢) | (V¥ /k!) < |L||@c)|s for 0 < A\ < oo.
From Lemma 4.1, it now follows that, for » > 0, the function f(\ +¢)
is the Laplace-Stieltjes transform of some function p°(¢) of bounded
variation in 0 < ¢t < . This relation is obviously rewritten as

(4.5) o) = S:e‘“e“d/f(t) for A >c.
Furthermore, if we set

(4.6) () = S:e”dy”(t) for t>0,
then Relation (4.5) becomes

4.1 Lio0) = FO) = Sje‘“dC‘(t) for A >e¢.
Combining this with Relation (3.7), we see that

(4.8) e e = Terare,

provided » > max(a,, ¢). It is well known that the Laplace-Stieltjes trans-
form of a function # locally of bounded variation does not change if g
is replaced by its normalized function p*, that is, #£*(0) = 0 and p*(z) =
lim, .40 () — £4(0) for = > 0. Thus we can assume that {°(f) is normalized.
Then Relation (4.8) implies that {(¢) = {°(t) for ¢t = 0 since { is also
normalized and “there cannot exist two different normalized functions
corresponding to the same generating function” [8, p. 63]. Consequently,
we can replace {° in Relation (4.7) by . Since ¢ > g is arbitrary, the
lower bound ¢ is also replaced by 5. Thus we conclude that

Lo() = re—“dc(t) for Rex> 3.

Finally, Relation (4.6) yields that V({", [s, t]) < V(& [s, t]) max{e®, ¢}
for ¢ = s = 0. This implies the estimate for V(7, [—¢, —s]) in the theorem
since p° is of bounded variation in [0, o). q.e.d.
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5. The fundamental matrix. The fundamental matrix X(¢) of Equa-
tion (1.1) was defined in [6] as follows. Let a, be the type number of
T.(¢). A similar number p is defined for the function M(¢) arising in
Hypothesis (H,), that is, g = lim,.,log M(t)/t = inf,.,log M(t)/t. The
characteristic matrix of Equation (1.1) is a matrix 4(\) defined by

AN =M — L(o\W)I)

which is well defined and analytic in A with Rex > 3. Its determinant
does not vanish if Re\ > «a;, while 40)* = (A — ap)™'T + O((M — @)™
as Re\x — o. By this property, the matrix X(¢) is defined through the
inverse Laplace transform of 4A(\)%:

lim L S””Tem(x)—ldx for ¢>0
(5.1) X(t) = {7 2m1 Je-ir
vi for t=0,

where ¢ is an arbitrary constant such that ¢>max{a;, 1¢}. The following
results are proved in [6]:

(A;) X(t) is continuous for ¢t = 0.

(A) |X(t)] = O(exp(ec + €)t) as t — o for every & > 0.

(A;) The matrix 4\)' is the Laplace transform of X(¢) for » with

Re » > max{a,, /).
(A;) X(t) gives the variation-of-constants formula for solutions of

the nonhomogeneous equation corresponding to Equation (1.1).
For simplicity, we set

2@ = e rwar,

whenever this integral converges.

Our next objective is to consider whether X(¢) itself satisfies Equation
(1.1) or not. This has a meaning only if X(¢) is defined for ¢ < 0 also.
As in the case of finite delay, we set

(5.2) Xt) =0 for t<O0.

Then every column vector function of X, lies in /" for ¢t = 0. In. short
we say that X, lies in I". Similar expressions will be used for matrix
functions. Thus L(X,) is well defined for ¢ > 0, while Theorem 3.4 and
Relation (3.6) imply that

5.3) LX) = So_tdrj(ﬁ)X(t +0) = S:dC(s)X(t — ) for £>0.

Also L(X,) is continuous to the right for ¢=0 since, for =0, the function
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X, converges in Lebesgue to X. as t — 7 + 0. This observation implies
that I(X,) = 9(0—). Similarly, L(X,) has a limit ast — ¢ — 0 for = > 0.
Thus L(X,) has no discontinuity of the second kind. It is well known
that such a function is Riemann integrable over compact intervals provided
it is bounded there. Since L(X,) is clearly locally bounded on [0, =), it
is Riemann integrable over every compact interval of [0, o).

To proceed further, let us introduce some results from the theory
of Laplace-Stieltjes transform (see [8, pp. 83-91]). The Stieltjes resultant
of f(t) and g¢g(t) is the function

wt) = [ 7 — 9)dg(o) = 2@t 9

when these two integrals exist and are equal. Suppose f and g are
normalized functions locally of bounded variation in [0, o), and denote
by P, the countable set of points where f(f) is discontinuous, with a
similar meaning for P,. Then h(t) exists for every ¢ in (0, «) not in
the set P;y, = {t = w + v: u € P; and v e P,}, where P, is empty if at
least one of the sets P, and P, is empty. Furthermore, h(t) can be
defined in points P;., so as to become a normalized function locally of
bounded variation in [0, o).

LEMMA 5.1 [8, Theorem 11.6b, p. 89]. If f(t), g(t) and h(t) are defined
as above, and tf the integrals

Foy = [Terare), 6o = | erage
0 0
converge, one of them absolutely, then
FOOGO) = re—“dh(t) .
0

We can now demonstrate the main result.

THEOREM 5.2. The fundamental matriz X(t) defined by Relations
(5.1) and (5.2) is locally absolutely comtinwous on [0, ). It is a unique
solution of the equation

6.4 Xt {I +\Lxgat for 120

0 for t<0
or
dX/dt = L(X,) a.e.in t=0
X0 =1 and Xt)=0 for t<O0.
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Proor. By the standard method of successive approximations we
can show that Equation (5.4) has a unique solution which is locally
absolutely continuous. We are led to consider whether the Laplace
transform of this solution coincides with X(¢). However it is difficult
to follow this line. In fact, suppose U is the solution of Equation (5.4).
Then Proposition 3.3 implies that | L(U,)| < ¢|L| K(t) sup{|U(s)|: 0 < s < t}.
Applying Gronwall’s lemma, we then obtain

U] éexp{gsc|L|K(s)ds} for t=0.

Thus, if we impose no other condition on K(¢) than continuity, we must
estimate |U(t)| in a different manner to consider £ (U)(\).

However, going in the reverse direction, we can easily prove the
theorem. We start with the trivial relation [M — L(w(M\)D]4d\) "' =1
or

AT = 4007 — L@ DA/ 400

for Rex > «, and N # 0. It is clear that, for Re) > 0, the function
AT is the Laplace transform of the constant function I. Also, Assertion
(A;) is already established.

We first show that the function

H(\) = Li@M)D(A/N) 40

is a generating function of a Laplace-Stieltjes transform. Indeed, Relation
(8.7) is proved in Section 3. On the other hand, if we set

Y(t):S:X(t—s)ds: S:X(s)ds for ¢t in R,

then M40\ = £ (Y)(\) for Rex > v = max{a,, /¢, 0}, since Y(¢) is the
resultant of the constant function I and the function X. We can rewrite
this relation as

(5.5) AN AO)" = Sme—“dZ(t) for Ren>7,
where
Z(t) = S’Y(s)ds for t in R.

By Relation (A,), |Y(t)| satisfies the same order relation as |X(¢)| when
t — oo, so Integral (5.5) converges absolutely. Since Z(t) is clearly a
continuous and normalized function locally of bounded variation in [0, <),
the Stieltjes resultant
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t
W) = SodC(s)Z(t _ 5= S:C(t — §)dZ(s)
is well defined for every ¢ = 0. Therefore, Lemma 5.1 asserts that
(5.6) HO) = S:oe“‘dW(t) for Re) > max(y, aj} .

We next show that Integral (5.6) is really a Laplace transform.
Observe that, for every ¢ = 0, the function Z,(6), with 6 < 0, satisfies
the assumptions in Theorem 3.4. Using Relation (3.6), we have

\acwze -5 = | dnoyze + 0 = Lz,

which implies W(t) = L(Z,) for t = 0. Interchanging the order of in-
tegration and substituting the integral variable, we obtain

Z.0) = S”” SuX(s)dsdu - S (t —9)X(s + 0)ds .
0 0 —_
According to Relation (5.2), this becomes
Z.(0) = S'(t — §)X(s + 0)ds for 0<0.
0

For a partition P of [0, ] such that 0 = s(0) < s(1) < --- < s(d) = t, we
set @7 =37, (¢ — (1) X,(8(2) — s(¢ — 1)), where s(i — 1) < g (i) < s(3),
=1, ..., d. Immediately, it follows that @” is in I" and converges in
Lebesgue to Z, as m(P) — 0. On the other hand, the linearity of L
leads to the relation L(®7) = 3\, (t — 6(3))L(X,,)(s(1) — s(i — 1)). Since
L is continuous in Lebesgue, it follows that

(5.7) W) = I(Z) = g:(t — §)[(X)ds for £=0.

Attention must be paid to the fact that L(X,) is Riemann integrable.
Therefore, Relation (5.6) becomes

HO) = S:’e—“ S:E(Xa)dsdt for Rex > max(y, a) .

Summarizing the above results, we finally obtain

)

re—“Idt - S:e—“X(t)dt - S

0

-t S'E(X,)dsdt
0

0

provided Rex > max{a, «,, £, 0}. By the uniqueness of determining
function, we have Relation (5.4). q.e.d.

In case the delay is finite and the phase space is C([—7, 0], C"), X,
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lies in the phase space for ¢ = » and dX/dt = L(X,) for all ¢t = 7. An
analogous result holds for our equation. Before stating the theorem, we
observe some examples of the space <#. Hypotheses (H,), ---, (H;) are
satisfied by spaces of functions which are isomorphic to L?((— oo, —7),
©) X C([—r, 0]) for some special measure ¢, Also, the space of continuous
functions ¢(4) which have a limit, lim,._. e3(f), for some v in R. The
function X, lies in the former but, for every ¢ = 0, the function X,
does not lie in the latter.

THEOREM 5.3. Let X be the fundamental matriz, and suppose there
exists some r = 0 such that X, lies in <Z. Then it follows that

dx/dt = L(X,) for every t=1.
Proor. Consider the equation
(5.8) dYjdt = I(Y,) for t=7r, and Y,=X,.

Since X, is in =%, this equation has a unique solution Y(¢), and Y, is
given by Y, = T,(t — )X, for ¢t = ». Since |T.(t)| = O(exp(a, + &)t) as
t — oo for every e > 0, the same order relation holds for |Y,|, and |Y(?)|
(cf. Hypothesis (H;)). Therefore, the Laplace transform <~(Y)(\) converges
for A with Re\ > «,. Also, by the condition Y, = X, or Y(t) = X(t) for
t < r, Theorem 5.2 says that Y is absolutely continuous in [0, ] and

(5.9) dY/dt = L(Y,) a.e. in tel0,r].

Therefore, Y is locally absolutely continuous in [0, ), and integration
by parts gives

(5.10) Z2@Yldt)(n) = —I + A (Y)(\) for Rex > «a, .
Combining Relations (5.8) and (5.9), we also obtain
(.11) FAYIdH0N) = S'e—“E(Y,)dt + re‘“L( Y.)dt

provided Rex > a;.
To proceed further, we set

00) = eyt + 0ae, v = "oyt + opat

for 6 £0. Following the arguments similar to the proof of Relation
(6.7, we know that the first integral in Relation (5.11) coincides with
L(®). Since @ lies in &, Theorem 3.1 implies that L(@) = L(®). Thus
we obtain

L) = S:e—“E(Y,)dt .
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On the other hand, using Hypothesis (H,) and the relation that |¥,|; =
|Y,|s = O(exp(a, + €)t) as t — oo for every ¢ >0, it is not difficult to
show that

U= gwe—“ﬁdt for Rex > a, .

r

Sinece L: . <# — C" is linear and continuous, this implies that

L) = L) = S e[ (V)dt = S e *L(Y,)dt
for Rex > «a;.

Thus the right hand side of Relation (5.11) coincides with L(® + ¥)
for Rex > a;. Since Y(t) =0 for t < 0, it follows that @) + ¥ () =
exp(\M).Z(Y)\) for 4 <0, that is, @ + ¥ = w(\)ZL(Y)(N). Relation
(5.11) now becomes

AAY/dt)(\) = Lio\)L(Y)N) for Renx > a, .

Hence in view of Relation (5.10) we obtain 4(\)Z(Y)(\) = I for Rex >
a;. From this result and Assertion (4,), it follows that </(X)(\) =
Z(Y)(\) provided Re is sufficiently large. This implies that X(¢) = Y(¢)
for all ¢ in (— <, + ). Therefore, Relation (5.8) means that dX/dt =
L(X,) for t = r. This is the desired result. q.e.d.

COROLLARY 5.4. Under the same assumptions as in Theorem 5.3,
the following conclusions hold:

(1) |X(@)| = O(exp(a; + €)t) as t — o for every € > 0.

(ii) L(X) = L(X,) for every t = r.

ProoF. The first statement follows from the estimate for |Y(?)|
given in the proof of Theorem 5.3. Theorems 5.2 and 5.8 imply that
(X)) = L(X,) a.e. in t = ». Since L(X,) is continuous to the right for
t = 0, we arrive at the second statement. q.e.d.
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