
Tόhoku Math. Journ.
32(1980), 539-556.

FUNDAMENTAL MATRICES OF LINEAR AUTONOMOUS RETARDED
EQUATIONS WITH INFINITE DELAY

Dedicated to Professor Taro Yoshizawa on his sixtieth birthday

TOSHIKI NAITO

(Received July 30, 1979, revised October 12, 1979)

1. Introduction. If x: (— oo, A) —> Cn, then for any t in (—coyA)
we let oγ. ( - oo, 0] -> Cn be defined by xt(θ) = x(t + θ), - ^ < θ ^ 0. The
linear autonomous retarded equation with infinite delay is an equation

(1.1) dx/dt = L(xt) ,

where L: & ->Cn is linear and continuous, and & is a linear space of
some functions φ: (— co, 0] -> C\ Hypotheses (Ho), •••, (H4) imposed on
the space ^ are stated in Section 2. In [6], under these hypotheses
the fundamental matrix X(t) of this equation is defined for ί > 0 in terms
of the inverse Laplace transform. It has also been proved that X gives
the variation-of-constants formula of solutions of the nonhomogeneous
equation corresponding to Equation (1.1). The objective of this paper is
to establish that, if we set X(0) = I and X(t) = 0 for t < 0, then X
satisfies Equation (1.2) below which is naturally induced from Equation
(1.1) (Theorem 5.2).

To obtain this result, in Section 3 we first consider the representation
of the operator L. From Hypotheses (HJ and (H2) the operator L induces
a linear operator Lo on the space ^ of continuous functions mapping
(— co, 0] into Cn with compact support. Furthermore, Lo becomes a
"Radon" measure on (— c°, 0]. A well known result of measure theory
implies that Lo has a unique "Borel" prolongation L over the space Γ
of bounded and Borel measurable functions mapping (— ̂ >,0] into Cn

with compact support. Introducing this operator, we define an n x n
matrix function 7)(β), — °° < θ ^ 0, which becomes a kernel function of
the linear operator L when this is represented by a Stieltjes integral.
More precisely, the representation of L(<f) is proved only for the functions
φ which are either an element of the space & or an exponential func-
tion exp(λ0)δ with a lower bound ao for Re λ, where 6 is in C*. If
we set ζ(t) = —τ]( — t) for t ;> 0, then the representation of G(X) =
L(exp(X-)I) with respect to η is interpreted as a Laplace-Stieltjes trans-
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form of ζ. In Section 4, a classical theorem on the characterization of
generating functions is applied for G(λ). Consequently, under an additional
Hypothesis (H5) for & the lower bound α0 for Reλ is replaced by the
best possible one. Thus the representation of L(φ) is obtained for all
of the concrete functions φ which are known to be the elements of
every space & satisfying Hypotheses (Ho), •••, (H5).

Observe that, for every t ^ 0, L(Xt) may not have a meaning but
L(Xt) is well defined since Xt obviously lies in Γ. Hence Equation (1.1)
with L replaced by L is naturally introduced. As final results, we prove
that

(1.2) dX/dt = L(Xt) a.e. in t ^ 0 ,

and that, if Xr lies in & for some r ^ 0, then X(t) satisfies Equation
(1.1) for every t ^ r. From the results established in Section 3, these
assertions are obtained by the method of Laplace and Laplace-Stieltjes
transform. We emphasize that L is continuous in Lebesgue; roughly
speaking, the bounded convergence theorem holds for L on every compact
interval of (— oof 0]. This property makes the proofs of the above results
easy to follow.

In case the delay is finite and the phase space is C([ — r, 0], CΛ), the
general theory of the fundamental matrix is well known (cf. [3]). Kappel
[5] introduced the method of Laplace-Stieltjes transform into the study
of neutral functional differential equations. Under several conditions on
phase spaces and linear operators, Corduneanu [1] treated the fundamental
matrix in case the delay is infinite. The Laplace transform was also
used. See Hale and Kato [4] for examples of the space & satisfying
Hypotheses (Ho), , (H5). Corduneanu and Lakshmikantham [2] contains
complete references for the papers concerning equations with infinite delay.

2. The space & and basic results. Let & be a linear space of
functions mapping (— co, 0] into Cn with elements φ, ψ, having semi-
norm \φ\&, \ψ\&, . We say that φ and ψ in & are equivalent if
\Φ — ψ\& = 0, and denote by φ the equivalence class of φ. The collection
of equivalence classes, designated by &f becomes a normed linear space
if we define \φ\^ = \φ\&. On the spaces & and &f, we impose the
following hypotheses. The presentation is apparently different from the
one in [6] but both hypotheses are equivalent to each other.

(Ho) & is a Banach space.
(H^ If x is a function mapping (— coy a + A) into Cn with A > 0

such that x is continuous on [σ, σ + A) and xσ lies in &, then xt also
lies in & and xt is a continuous function of t for t in [σ, σ + A).
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(H2) There exist functions K(t) and M(t) oft^O wi th t h e following

propert ies:

( i ) K(t) is continuous for t in [0, °o).

( i i ) M(t) is locally bounded on [0, ©o) and submultiplicative, t h a t is,

M(t + s) ^ M(t)M(s) for ί, s ^ 0.
(iii) For every function & which arises in (HJ, it holds that, for

0" ̂  ί < σ + A,

\xt\a ^ K(t - σ ) s u p { | ί φ ) | : < 7 ^ s ^ ί} + ΛΓ(ί - σ)\xo\^ .

(H3) |^(0)| <: ϋΓ|pL for all φ in ^ and some constant K.
(H4) If {φk} is a Cauchy sequence of & and {pfc(#)} converges to <j>{θ)

uniformly for θ in each compact set of (—°°, 0], then φ also lies in <S$
and φk —> φ as fc —> °o.

Now, from the papers [4] and [6] let us introduce some results which
will be needed in the following sections. Suppose L: & —> Cn is linear
and continuous. Hypotheses (Hx), (H2) and (H3) guarantee the unique
existence of the solution x(ψ)(t) on [0, ©o) of Equation (1.1) with the
initial condition x0 = © in .^. For φ in ^ , we set

TL(t)φ = a;t(9) for t ^ 0 .

Then ΓL(ί) is a continuous linear operator on & into ^ . If we set
fL{t)φ = (TL(t)φy for $ in .^, then fL(t)\&->& is also linear and
continuous. Furthermore, Hypothesis (Hx) means that fL(t) is a strongly
continuous semigroup on the space &. This is called the solution semi-
group of Equation (1.1).

It is well known that the type number aL of the semigroup fL(t) is
defined as

aL = lim [log | fL(t) \]/t - inf [log | fL(t) \]/t ,

which may be — co but not + co. For bounded sets B of a Banach space
Xj let a(B) denote the Kuratowski measure of noncompactness of B. It
induces the semi-norm a(T) for bounded linear operators T: X—> X defined
by a{T) = inf{λ;: a{TB) ^ ka(B) for all bounded sets B in X}. Using
this semi-norm, we define the "essential" type number βL of fL(t) as

βL = lim [log a(fL(t))]/t - inf [log α(ίL(ί))]/ί .
ί-»oo ί>0

In addition to a direct result that βL ^ αL, we can prove that βL is
independent of L [6, p. 79]. Therefore, if we denote by β this common
value of βL, then β ^ aL for all L. Furthermore, following the proof
of [6, Theorem 4.5, p. 81], we know that
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(AJ β ^ a0, and β < a0 if and only if β < 0.
It need hardly be said that a0 is the type number of the solution semi-

group fo(t) of the trivial equation dx/dt = 0. .. Because of its importance,
T0(t) is designated by a special symbol S(t). Clearly, it is given by

(2.1) m ) m |
W ; \φ(t + θ) for t + θ < 0 .

The number β has also the following relation with the structure of
the space & [6, Theorem 4.4, p. 79]. For λ in C and 6 in C*, let α)(λ)6
denote the function of 0 in (— °°, 0] defined as

[ω(X)b](θ) - eXθb for 0 ^ 0 .

Then ω(x)b lies in .^? for λ in Cβ = {λ e C: Re λ > /3}, and

(A2) (α>(λ)6)~ is an analytic function of λ in Ĉ  into ,Φ.

For simplicity, let the symbol d (λ)6 mean

3. Representation theory for continuous linear functionals on &.
It is well known that every linear and continuous operator L: C([ —? , 0],
Cn) —> Cw is represented by a Stieltjes integral with respect to a matrix
function of bounded variation in [ —r, 0]. In this section, an analogues
result will be proved for linear and continuous operators L: & -> C\
However, the representation of L(φ) is restricted to the following func-
tions; that is, φ is in '<& introduced in Section 1 or φ = ω(X)b for Reλ >
α0 and b in C", where a0 is the type number of S(ί).

By Hypothesis (HJ, the space ^ is a linear subspace of &. For
each ^ in ^ , supp^ denotes the support of φ, and 1̂ 1̂  = sup{|^(0)|: — oo <
θ ^ 0}. If L is a linear and continuous operator on & into C"1, then
the restriction of L on ^ is clearly a linear operator on <&' into C*
which we denote by Lo. Hypothesis (H2) implies that the operator Lo is
continuous on ^ in the sense that, if supp^ lies in [ — t, 0], then

(3.1)

Now, we introduce some results from measure theory (cf. [7, pp.
521, 1-521, 12]). Suppose X is a locally compact metric space. Denote
by ^(X) the linear space of continuous functions mapping X into C
with compact support. A linear operator μ mapping ^{X) into a Banach
space E is called a Radon measure on X into E if μ is continuous in
the sense that, for each compact set K of X, there exists a constant c*
such that \μ(φ)\ ^ cκsui){\φ(x)\: xeX] provided supp^ lies in K. Let
Γ(X) be the linear space of bounded and Borel measurable functions
φ:X-^C with compact support. Obviously, C^{X) is a linear subspace
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of Γ(X). A sequence {φk} of Γ(X) is said to converge in Lebesgue (or
L-converge) to a function φ in Γ(X) if {φk(x)} are uniformly bounded,
their supports are all contained in a compact set and φk(x) —> φ(x) as
k —> co for each & in X. A linear operator v on Γ(X) into i? is said to
be continuous in Lebesgue (or L-continuous) if the sequence {v(φk)} con-
verges to v(φ) for any sequence {φk} of Γ{X) which converges in Lebesgue
to φ. A Borel prolongation of a Radon measure μ is a linear operator
v\ Γ(X) —> i? such that v(φ) — μ(φ) for φ in ^ ( X ) and v is continuous in
Lebesgue. It is known that, if E is of finite dimension, then every Radon
measure on X into E has a unique Borel prolongation.

The space Γ introduced in Section 1 is the product space of ^-copies
of Γ((~ co, 0]). Clearly, <& is the subspace of Γ. Is Γ contained in &
or not? At present, we have no answer to this question under Hypotheses
(Ho), . , (H4). For & and Γ, give similar definitions of "Radon" measure,
"Borel" prolongation, etc. Then, Inequality (3.1) implies that Lo is a
"Radon" measure on (—°°, 0]. Applying the above result to Lo, one can
state the following theorem.

THEOREM 3.1. Suppose L is a linear and continuous operator on
έ% into Cn. Then there exists one and only one linear operator L on
Γ into Cn which has the following properties:

( i ) L(φ) = L(φ) for all φe<tf.
(ii) L is continuous in Lebesgue.

Now, define a function X\R-+ R by

(3.2) Z(t) - 1 for t ^ 0 , and l{t) = 0 for t < 0 .

Then, for t ^ 0, the function Xt is the indicator function of the set
[ — t, 0] in (-co, 0]. Associated with the Borel prolongation L of Lo, an
n x n matrix function η(β) for θ ^ 0 is defined by

(0 f or θ = 0
(3 3) v(θ) = ~
1 ; Λ ^ l-L(Z_,/) for θ < 0 ,

where / is the n x n identity matrix. This function is well defined and
continuous to the left at every θ < 0 since the indicator function Xt lies
in Γ((—ce, 0]) and converges in Lebesgue to ZΓ as ί—>r + 0, for τ Ξ> 0.
Also, the function rj{θ) has a limit as 0—> # + 0, <τ < 0. But it is possible
that this limit does not coincide with η(σ). On the other hand, it will
be verified that η is a function of bounded variation on each compact
interval of (-co, 0]. To estimate the variation of η, the following ob-
servation is essential.
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LEMMA 3.2. If φ is a function in & whose support lies in [ — ty — s]
for some t > s ^ 0, then

where K(t) is the function arising in Hypothesis (H2), and S(t) is defined
by Relation (2.1).

PROOF. From Hypothesis (H2), if the support of a function ψ in ^
is contained in [ —r, 0], then \ψ\& S K(r)\ψ\^. For the function φ given
in the lemma, define a function ψ in & by ψ(θ) = φ{θ — s), 0 ^ 0. Then
S{s)<\jr = φ and supp'f is contained in [ — (t — s), 0]. Thus one obtains
|^U = |SO)f U and \ψ\^ ^ K(t - s)\ψ\^. These relations and the
definition \φ\^ — \<j>\^ lead to the inequality in the lemma. q.e.d.

If / is a function of bounded variation on an interval /, let V(f, J)
denote the total variation of / on J. A function of bounded variation
on each compact interval of an unbounded interval J is called a function
locally of bounded variation on J. In case J" = (—oof 0], such a function
/ is said to be normalized if /(0) = 0 and f{θ) is continuous to the left
for every θ < 0. For a partition P of an interval [α, b] such that a —
0(0) < 0(1) < < θ{d) = δ, let m{P) = max{|0(i) - θ{i - l ) | : i = 1, , d}.

PROPOSITION 3.3. Ϊ7z,e function η defined by Relation (3.3) is a
normalized function locally of bounded variation on (—°°, 0] such that

V(V, [-*, - β ] ) ^ cIZrI JBΓ(* - β)IS(β)I for t > s S 0 ,

where c is a constant dependent on the norm of Cn.

PROOF. We have already observed that η(β) is continuous to the left
for every θ < 0. To prove the above inequality, it suίϊicies to show that
the similar estimate is valid for each component of η. Thus without
restricting the generality one can assume n — 1.

For a partition P of [-t, -s] such that -t = 0(0) < 0(1) < <
θ(d) = -8, let

For each i = 1, , d, take a complex number σ(i) such that | σ(i) \ = 1
and that \η(θ(i)) - η(θ{i - 1))| = σ(i)[ηψ(i)) - η(θ(i - 1))]. In case θ(d) =
—s < 0, we set

(3.4) ^ g

and in case θ(d) — — s = 0, we set
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(3.5) φ =

Then the definition of η implies that Vp = L(^). Let ^ , n = 1, 2, ,
be the function defined by Relation (3.4) or (3.5) with X replaced by %*
which is given by Xn(t) = 1 for t ^ 0, Xn(t) = n(ί + 1/w) for -1/n < t < 0
and Xn(t) = 0 for £ ̂  — 1/tι. Obviously, ^* is in & and supp^* lies in
[-t - 1/n, -s]. Moreover, \φn\^ ̂  1 if 1/n < min{0(i) - θ{i - 1)}. Fur-
thermore, φn(θ) —> ί)(̂ ) as n -> c>o for every ^ ^ 0. Thus, by Theorem 3.1
we have L(^Λ) -> L(φ) =VP as w —> oo. Since Vp ^ 0, this implies that

On the other hand, applying Lemma 3.2 to the function φn, we see
that, \φn\^ ^ Kit - s + l/n)\S(s)\ \φn\^. These relations yield that Vp ^
\L\K(t — s)\S(s)\. It is to be noticed that K(t) is continuous. Since
the partition P is arbitrary, this concludes the proof of the estimate
for V(yj, [ — t, — s]) in the lemma. q.e.d.

THEOREM 3.4. Suppose a function φ(θ) is continuous for θ in an
interval ( — t, 0], continuous to the right for θ = — t and φ(g) = 0 for
θ < — t. Then L(φ) is represented by a Riemann-Stieltjes integral
as

L(φ) = [° dη{θ)φ(θ) ,

where 7) is the function defined by Relation (3.3).

PROOF. For a partition P of [-t, 0] such that -t = 0(0) < 0(1) <
• < θ{d) = 0, let φp be the function defined by Relation (3.5) with
σ(i) replaced by φ(τ(i))f where θ(i — 1) ^ τ(i) <; θ(i) for i = 1, , d.
Then the definition of η implies L(^p) = Σ i i f r W ) ) - ί W - l))l0(τ(i)).
It is obvious that φp converges in Lebesgue to φ as m(P) —> 0. This leads
to the theorem since L is continuous in Lebesgue. q.e.d.

THEOREM 3.5. Suppose φ is either a function in ^ or an exponential
function ω(X)b with Re λ > a0, where a0 is the type number of §(t). Then
L{φ) is represented as

L(φ) = ( dη(θ)φ{θ) = lim ( dη(θ)φ(θ) .

PROOF. By Theorem 3.4, it is clear that the above formula holds for
φ in ς^. Suppose φ = ω(X)b for λ with Re λ > a0 and 6 6 C\ For t ^ 0,
we now define φι = ptφ and ψ* = (1 — ρt)φ, where p is X\ the first member
of the family {Xn} arising in the proof of Proposition 3.3. Then it is
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obvious that φ* is in & and Φ = φι + ψ\ or γι = φ — φι for t ^ 0. This
implies fι also lies in &, and L(φ) = L{φι) + L(^*) for £ ̂  0.

It is easy to see that L(ψ*) -»0 as t —• oo. Indeed, from the trivial
relation ψ '(0) = e~x\l - p(t + θ))eX{t+θ)b for 0 g 0, it follows that ψ* =
exp(—Xt)S(t)ψ° for £ ̂  0. Since R e λ > α 0 , the definition of the type
number yields that exp( — Xt)\S(t)\ -^0 a s ί ^ ^ . This implies thatψ ι—>
0 as t —> oo, and so L(^ f) —> 0 as t —• ©o. Therefore, we have L(φ) =

Since ψ* is in <&. and φ\θ) = 0 for θ <: — (ί + 1), Theorem 3.4 asserts
that

-i
Denote the last integral by α(ί). Applying Proposition 3.3, one obtains
that, for t t: 0,

|α(t)| ^7(7, [-ί - 1, -

£ const. |L|ίΓ(l)|S(ί)l max{rtRβa, e -

which implies α(ί) -> 0 as ί —> oό. Summarizing these results, we have
the desired conclusion. q.e.d.

If we set

(3.6) ζ(t) - — 37( —ί) for t ^ 0 ,

then ζ is a function locally of bounded variation on [0, 00), It is nor-
malized in the sense that ζ(0) = 0 and that ζ(ί) is continuous to the right
for t > 0. Theorem 3.5 now asserts that

(3.7) L(ω(x)I) = \°e-λtdζ(t) for Reλ > α0 .
Jo

A function defined by such an integral is called the Laplace-Stieltjes
transform (of ζ(ί)) or the generating function of the Laplace-Stieltjes
transform [8]. On the other hand, following Corduneanu [1], we call
L(ω(X)I) the symbol of L. Thus we can say that, for X with R e λ >
aOf the symbol of L coincides with a generating function of some Laplace-
Stieltjes transform.

4. Further representation theory for L. We now show that, for
λ in the remaining strip {λ: β < Re X <̂  α j , the representation of L(ω(X)b)
is still valid. To do this, we impose an additional hypothesis o n ^ :

(H5) If φ and ψ in & satisfy \φ(β)\ ^ 1-̂ (0)1 for all θ ^ 0, then
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The result of this section, however, is not needed in the next section.

We first notice that, if we define L(φ) = L(φ) for φ in &, then L
is clearly a linear and continuous operator on & into Cn, and the symbol
of L is identical to L(ώ(λ)/). From Assertion (A2) in Section 2, the
symbol of L therefore is analytic for λ with Re X>β. Hence the following
question arises: is Relation (3.7) valid for X with Re X > βl Surely, this
question has a meaning only if β < α0 (cf. (At)). At the same time, it
is not a trivial question since there exists a generating function which
is continued analytically beyond the axis of convergence [8, p. 58]. To
answer the question, we need a lemma which is obtained by combining
the results in Widder [8, pp. 306-310].

LEMMA 4.1. For a function f(x) in 0 < x < oof we have

f(χ) =

with a(t) of bounded variation in 0 <; t < co if and only if fix) has
derivatives of all orders in 0 < x < °o and there exists a constant M
such that

v \fk)(x)\(xk/k\)<M for 0<x<

By. Assertion (A2) and Hypothesis (H4), one can prove the following
lemma without difficulty.

LEMMA 4.2. // Reλ > β and b is in Cn, then, for k = 0, 1, , the
k-th derivative ώ(fc)(λ)6 of ώ(λ)6 with respect to λ is the equivalence class
of the function

[ω(k)(x)b](θ) = θheMb for θ£0.

Hypothesis (H5) is used to derive Estimate (4.3) in the following lemma.

LEMMA 4.3. Let c be a constant such that c > β and {σ(k)} a sequence
of C such that \σ(k)\ = 1 for all k. If (β — c)/2 < λ < ©o, then the series

(4.1) ζ(X)(θ) = Σ < r ( k ) ( ( X θ ) k / k i y λ + e ) θ b f o r Θ ^ O
fc=o

converges absolutely in &, and

(4.2) |(λ) = Σ σ(k)(Xk/k\)[ω^(X + c)b] .

Furthermore, if Hypothesis (H5) holds for the space &, then

(4.3) l f ( λ ) | ^ \ω(c)b\^ for 0 £ λ < oo .
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PROOF. Around λ0 with λ0 > (β — c)/2, draw a circle C of a radius
p on the half plane D = {λ: Re X > β — c}. By the assumption β — c < 0,
one can take p to satisfy \X0\/p<l. Since ώ(λ + c)b is an analytic
function on D into ^ Cauchy's estimate implies that

|ώ(fc)(λ0 + c)b\£ ^ k\ M/pk k = 0, 1, • - ,

where M = sup{|ώ(λ + c)b\^: XeC}. This guarantees that Series (4.2)
converges absolutely for λ=λ0. By Lemma 4.2, if ζn(X)(θ) denotes the sum
of the first n terms of Series (4.1), then (£*(λ))~ coincides with the sum
of the corresponding terms of Series (4.2). This implies that {(£Λ(λ0)Γ}
is a Cauchy sequence of &. Since ζn(X)(θ) —> £(λ)(0) as n —> oo uniformly
for θ in every compact set of (-oo, 0], one has Relation (4.2) by using
Hyothesis (H4).

The assumption \σ(k)\ = 1 for all k leads to the relation \σ(k)(Xθ)k\ =
(-Xθ)k for λ ^ 0 and θ ^ 0. Hence, if X ^ 0, the Definition (4.1) of
ξ(X)(θ) immediately gives the inequality |£(λ)(0)| ^ |exp(c<9)6| for all θ <; 0.
Hypothesis (H5) therefore implies Relation (4.3). q.e.d.

We now prove the main theorem of this section.

THEOREM 4.4. Let ΎJ be the function defined by Relation (3.3) and
β the common value of the "essential" type numbers of solution semigroups.
If the space & satisfies Hypotheses (Ho), •••, (H4) and (H5), then for b
in Cn,

(4.4) L(o)(λ)&) = Γ dη(θ)eλθb for Re X > β ,
J-oo

and, for every ε > 0 there exists a c(ε) such that, for t ^ s ^ 0,

V(η, [-ί, -β]) ^ β(e) max{e('+l)t, e(/3+ε)8} .

PROOF. Let ζ(t) be defined by Relation (3.6). To prove Relation (4.4),
it sufficies to show that Relation (3.7) holds with a0 replaced by β9 or
equivalently, every entry of L(ω(x)I) is the Laplace-Stieltjes transform
of the corresponding entry of ζ(t) for Re X > β. Thus we can assume
n = 1 without loss of generality.

In the beginning, we set

f(X) = £(ώ(λ)) Ξ L(ω(x)) for Re λ > β .

Let c > β be fixed. Since /(λ) is analytic in Reλ>/3, the function
f(X + c) is analytic in Re λ > β — c. We observe that f(X + c) satisfies
the condition in Lemma 4.1 with x and f{x) replaced by X and f(X + c),
respectively. In fact, since L is linear and continuous, it follows that
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/<*>(λ + β) = L(ώ(*>(λ + c)). For each k = 0, 1, , take a <x(&) in Csuch
that \σ(k)\ = 1 and that |L(ώ(fc)(λ + c))| = σ(fc)£(ώ(W(λ+c)). The sequence
{σ(k)} surely depends on λ. Let £(λ)(0) be the function defined by Relation
(4.1). Since £ is linear and continuous, and since Series (4.2) converges
in ώ, it follows that Σ Ϊ U (χk/k\)σ(k)L(ώ{k)(X + c)) = £(f(λ)). Notice
that every term of this series is nonnegative, which implies £(£(λ)) ^ 0.
Since the space £8 satisfies Hypothesis (H5), Lemma 4.3 implies that
£(l(λ)) ^ | £ | |ώ(c)U for λ ^ 0. Summarizing these results, we obtain
the desired inequality ΣϊU I/(/c)(λ + c)\(Xk/k\) ^ | £ | |ώ(c) |^ for 0 ^ X < oo.

From Lemma 4.1, it now follows that, for λ > 0, the function f(x + c)
is the Laplace-Stieltjes transform of some function μc(t) of bounded
variation in O ^ ί < TO This relation is obviously rewritten as

(4.5) f(X) = [°°e-λteetdμβ(t) for λ > c .
Jo

Furthermore, if we set

(4.6) ζβ(ί) = Γββ*djwβ(t) for t > 0 ,
Jo

then Relation (4.5) becomes

(4.7) L(ω(X)) = /(λ) = Γe-;<dζc(ί) for λ > c .
Jo

Combining this with Relation (3.7), we see that

(4.8) (Va'dC(t) = (Va'<2Cβ(t) ,
Jo Joo

provided X > max(α0, c). It is well known that the Laplace-Stieltjes trans-
form of a function μ locally of bounded variation does not change if μ
is replaced by its normalized function μ*, that is, μ*(0) = 0 and μ*(τ) =
limt_>r+o μ(t) — μ(0) for τ > 0. Thus we can assume that ζc(t) is normalized.
Then Relation (4.8) implies that ζ(t) = ζc(t) for ί ^ 0 since ζ is also
normalized and "there cannot exist two different normalized functions
corresponding to the same generating function" [8, p. 63]. Consequently,
we can replace ζc in Relation (4.7) by ζ. Since c > β is arbitrary, the
lower bound c is also replaced by β. Thus we conclude that

L(ω(x)) = (V*dC(t) for Re λ > β .
Jo

Finally, Relation (4.6) yields that F(ζc, [*, ί]) ^ F(μc, [β, ί]) max{ecs, ect}
for ί ^ s ^ 0. This implies the estimate for V(i}, [ — t, —s]) in the theorem
since μe is of bounded variation in [0, oo). q.e.d.
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5. The fundamental matrix. The fundamental matrix X(t) of Equa-
tion (1.1) was defined in [6] as follows. Let aL be the type number of
fL(t). A similar number μ is defined for the function M(t) arising in
Hypothesis (H2), that is, μ = l i m ^ log ikf(£)/£ = mft>0\ogM(t)/t. The
characteristic matrix of Equation (1.1) is a matrix z/(λ) defined by

z/(λ) = XI - L(ω(x)I) ,

which is well defined and analytic in λ with Re λ > β. Its determinant
does not vanish if Re λ > aL, while J(λ)"1 = (λ - aL)~ιI + O((λ - aL)~~)
as Re X —> oo. By this property, the matrix X{t) is defined through the
inverse Laplace transform of

(5.1) X{t) =

1 Cc+ίT

lim - ί — I eλtΔ{X)~ιdX for t > 0

I ΐor t = 0 ,
where c is an arbitrary constant such that c>max{αL, μ}. The following
results are proved in [6]:

(A3) X(t) is continuous for t ^ 0.
(A4) I X(t) I = O(exp(c + ε)t) as ί -* co for every ε > 0.
(A5) The matrix zί(λ)"1 is the Laplace transform of X(t) for λ with

Reλ > max{αL, μ}.
(A6) X{t) gives the variation-of-constants formula for solutions of

the nonhomogeneous equation corresponding to Equation (1.1).
For simplicity, we set

whenever this integral converges.
Our next objective is to consider whether X(t) itself satisfies Equation

(1.1) or not. This has a meaning only if X(t) is defined for t < 0 also.
As in the case of finite delay, we set

(5.2) X(t) = 0 for t < 0 .

Then every column vector function of Xt lies in Γ for t ^ 0. In short
we say that Xt lies in Γ. Similar expressions will be used for matrix
functions. Thus L(Xt) is well defined for t ^ 0, while Theorem 3.4 and
Relation (3.6) imply that

(5.3) L(Xt) - Γ dη(θ)X(t + θ) = \tdζ(s)X(t - s) for t > 0 .
J-ί Jo

Also L{Xt) is continuous to the right for £̂ >0 since, for τ^0, the function
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Xt converges in Lebesgue to Xτ as t —> τ + 0. This observation implies
that L(X0) = 27(0 — ). Similarly, L(Xt) has a limit as £ -> τ - 0 for τ > 0.
Thus L(Xt) has no discontinuity of the second kind. It is well known
that such a function is Riemann integrable over compact intervals provided
it is bounded there. Since L(Xt) is clearly locally bounded on [0, co), it
is Riemann integrable over every compact interval of [0, 00).

To proceed further, let us introduce some results from the theory
of Laplace-Stieltjes transform (see [8, pp. 83-91]). The Stieltjes resultant
of f(t) and g{t) is the function

h(t) = Γ/(* ~ s)dg(s) = \ldf{s)g{t - s)
Jo Jo

when these two integrals exist and are equal. Suppose / and g are
normalized functions locally of bounded variation in [0, 00), and denote
by Pf the countable set of points where f(t) is discontinuous, with a
similar meaning for Pg. Then h(t) exists for every t in (0, 00) not in
the set Pf+g = {t = u + v: u e Pf and vePg}, where Pf+g is empty if at
least one of the sets Pf and Pg is empty. Furthermore, h(t) can be
defined in points Pf+g so as to become a normalized function locally of
bounded variation in [0, 00).

LEMMA 5.1 [8, Theorem 11.6b, p. 89]. J//(ί), g(t) and h(t) are defined
as above, and if the integrals

F(x) = \
Jo
\e-λtdf(t) , G(λ) =
Jo

converge, one of them absolutely, then

F{X)G(X) - [°e-λtdh(t) .
Jo

We can now demonstrate the main result.

THEOREM 5.2. The fundamental matrix X(t) defined by Relations
(5.1) and (5.2) is locally absolutely continuous on [0, co), It is a unique
solution of the equation

[l + [L(Xt)dt for t > 0
(5.4) X(t) = \ Jo

(O for t<0

or

dX/dt = L(Xt) ax, in t ^ 0

X(fl) = / and X{t) = 0 for t < 0 .
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PROOF. By the standard method of successive approximations we
can show that Equation (5.4) has a unique solution which is locally
absolutely continuous. We are led to consider whether the Laplace
transform of this solution coincides with X(t). However it is difficult
to follow this line. In fact, suppose U is the solution of Equation (5.4).
Then Proposition 3.3 implies that \L(Ut)\ ^ c\L\K(t) sup{|l/(s)|: 0 ^ s ^ t).
Applying GronwalΓs lemma, we then obtain

I U(t) I ̂  exp j Γe ILI K{s)ds\ for t ^ 0 .

Thus, if we impose no other condition on K(t) than continuity, we must
estimate \U(t)\ in a different manner to consider J*f(U)(X).

However, going in the reverse direction, we can easily prove the
theorem. We start with the trivial relation [λJ — Z / ^ λ ) ! ) ] ^ ) " 1 = /
or

for Re λ > aL and λ Φ 0. It is clear that, for Re λ > 0, the function
λ"1/ is the Laplace transform of the constant function /. Also, Assertion
(Aδ) is already established.

We first show that the function

H{\) = L(ω(λ)/)(l/λ)J(λ)-1

is a generating function of a Laplace-Stieltjes transform. Indeed, Relation
(3.7) is proved in Section 3. On the other hand, if we set

Y(t) = [X(t - s)ds = [tX(s)ds for t in R ,
Jo Jo

then λ-M(λ)-1 = ^f(Y)(X) for Reλ > 7 Ξ= m a x ^ , μ, 0}, since Y(t) is the
resultant of the constant function / and the function X. We can rewrite
this relation as

(5.5) (1/λ)J(λ)-1 = [°e-λtdZ(t) for Re λ > 7 ,
Jo

where

Z(t) = [Y(s)ds for t in R .
Jo

By Relation (A4), \Y(t)\ satisfies the same order relation as \X(t)\ when
t-*oof so Integral (5.5) converges absolutely. Since Z(t) is clearly a
continuous and normalized function locally of bounded variation in [0, co),
the Stieltjes resultant
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W(t) = [dζ(s)Z(t - s) = ( ζ(ί - s)dZ{s)
Jo Jo

is well defined for every t ;> 0. Therefore, Lemma 5.1 asserts that

(5.6) if(λ) = \~e-χtdW(t) for Reλ > max{τ, a0} .
Jo

We next show that Integral (5.6) is really a Laplace transform.
Observe that, for every t ^ 0, the function Zt(θ), with θ ̂  0, satisfies
the assumptions in Theorem 3.4. Using Relation (3.6), we have

\tdζ(s)Z(t - 8) = Γ cft7(0)Z(ί + θ) = £(£«) ,
Jo J-ί

which implies TF(ί) = L(Zt) for ί ^ 0. Interchanging the order of in-
tegration and substituting the integral variable, we obtain

Zt(β) = Γ+* [UX(s)dsdu = [ * ( « - s)X(s + ̂ )ds .
Jo Jo j-o

According to Relation (5.2), this becomes

Zt(θ) = \\t - s)X(s + 0)<Z8 for 5 ̂  0 .
Jo

For a partition P of [0, ί] such that 0 = β(0) < β(l) < < β(d) = ί, we
set Φp = Σ t i (ί - σ(i))XaUMi) - s(i - 1)), where s(i - 1) ̂  α(i) ^ β(i),
i = 1, , d. Immediately, it follows that Φp is in Γ and converges in
Lebesgue to Zt as m(P) —> 0. On the other hand, the linearity of L
leads to the relation L(ΦP) = ΣLi (ί - σ(i))L(XaU))(s(i) - s(i - 1)). Since
L is continuous in Lebesgue, it follows that

(5.7) W(t) = L(Zt) = [\t - s)L(Xs)ds for t ^ 0 .
Jo

Attention must be paid to the fact that L(Xt) is Riemann integrable.
Therefore, Relation (5.6) becomes

H(X) = \°e-λt ^L(X8)dsdt for Re λ > max{τ, a0} .
Jo Jo

Summarizing the above results, we finally obtain

[°e-λtIdt = \~e-xtX(t)dt - [°e'λt ^L(Xs)dsdt
Jo Jo Jo Jo

provided Reλ > max{α0, α7, ̂ , 0}. By the uniqueness of determining
function, we have Relation (5.4). q.e.d.

In case the delay is finite and the phase space is C([ — r, 0], Cn), Xt
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lies in the phase space for t ^ r and dX/dt = L(Xt) for all t ^ r. An
analogous result holds for our equation. Before stating the theorem, we
observe some examples of the space &. Hypotheses (Ho), --^(Hβ) are
satisfied by spaces of functions which are isomorphic to Lp((—co9 — r),
μ) x C([—r, 0]) for some special measure μ, Also, the space of continuous
functions φ{θ) which have a limit, l i m ^ c erθφ(θ), for some 7 in R. The
function Xr lies in the former but, for every t ^ 0, the function Xt

does not lie in the latter.

THEOREM 5.3. Let X be the fundamental matrix, and suppose there
exists some r ^ 0 such that Xr lies in <3$. Then it follows that

dx/dt — L(Xt) for every t ^> r .

PROOF. Consider the equation

(5.8) dY/dt = L(Yt) f o r ί ^ r , a n d Yr = Xr .

Since Xr is in &, this equation has a unique solution Y(t), and Yt is
given by Yt = TL(t - r)Xr for t ^ r. Since | TL(t) \ = O(exp(αL + e)t) as
t -> 00 for every ε > 0, the same order relation holds for | Yt \a and | Y(t) \
(cf. Hypothesis (H3)). Therefore, the Laplace transform JZf( Y)(X) converges
for λ with Reλ > aL. Also, by the condition Yr = Xr or Y(t) — X(t) for
t ^ r, Theorem 5.2 says that F is absolutely continuous in [0, r] and

(5.9) dY/dt = L(Yt) a.e. in ί e [ 0 , r ] .

Therefore, F is locally absolutely continuous in [0, co)y and integration
by parts gives

(5.10) ^(dY/dt)(X) = -I + λJ^(Γ)(λ) for Reλ > αL .

Combining Relations (5.8) and (5.9), we also obtain

(5.11) £?(dY/dt)(X) = [re~λtL(Yt)dt + Γ\~λtL(Yt)dt
JO Jr

provided Re λ > aL.
To proceed further, we set

φψ) = ( V " F ( ί + ί)dί , y(ί) = \~e-λΎ(t + θ)dt

for θ ^ 0. Following the arguments similar to the proof of Relation
(5.7), we know that the first integral in Relation (5.11) coincides with
L(Φ). Since Φ lies in <ίf, Theorem 3.1 implies that L(Φ) = L(Φ). Thus
we obtain

L(Φ) = \re-χtL(Yt)dt .
Jo
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On the other hand, using Hypothesis (H4) and the relation that | Ϋt \£ —
Yt U = O(exp(αL + ε)t) as t -> co for every ε > 0, it is not difficult to

show that

ψ = [°°e-λtΫtdt for Reλ > aL .

Since L: & —> Cn is linear and continuous, this implies that

L(Ψ) = £(#) - \~e-χtL(Ϋt)dt = tVa*L(Γt)d*

for Reλ > αL.
Thus the right hand side of Relation (5.11) coincides with L(Φ + Ψ)

for Re λ > aL. Since Γ(ί) = 0 for t < 0, it follows that Φ(0) + Ψ{θ) =
exp(λ0)^(Γ)(λ) for 0 ^ 0 , that is, Φ + Ψ = α)(λ)^(7)(λ). Relation
(5.11) now becomes

^f(dY/dt)(X) = L(α)(λ)^(7)(λ)) for Reλ > aL .

Hence in view of Relation (5.10) we obtain Δ{X)£f(Y)(X) = / for R e λ >
α z. From this result and Assertion (A5), it follows that Jέf(X)(X) =
,2f (Γ)(λ) provided Re λ is sufficiently large. This implies that X(t) = Γ(ί)
for all t in (—°°f + ^ ) . Therefore, Relation (5.8) means that dX/dt =
L(Xt) for t ^ r. This is the desired result. q.e.d.

COROLLARY 5.4. Under the same assumptions as in Theorem 5.3,
the following conclusions hold:

( i ) I -XΓ(ί) I = O(exp(αL + e)t) as t —> co for every ε > 0.
(ii) £(X4) = L(Xf) /or every t ^ r.

PROOF. The first statement follows from the estimate for \Y(t)\
given in the proof of Theorem 5.3. Theorems 5.2 and 5.3 imply that
L(Xt) = L(Xt) a.e. in t ^ r. Since £(-3 )̂ is continuous to the right for
t ^ 0, we arrive at the second statement. q.e.d.
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