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A MULTILINEARIZATION OF LITTLEWOOD-PALEY S
^-FUNCTION AND CARLESON MEASURES

Kόzό YABUTA

(Received February 21, 1981)

Introduction. Recently Coif man and Meyer [4] introduced a class of
multilinear operators as a multilinearization of Littlewood-Paley's g-func-
tion. They studied If estimates of such operators, using the notion of
Carleson measures. In this note we shall develop their study further,
by weakening their assumptions and obtain H1, BMO and Lp estimates.
Our techniques are essentially modifications of theirs, but we need many
devices to make their ideas deeper at many points. Our main results
are Theorems 1 and 2, and stated in Section 2. Notations and definitions
are given in Section 1. There we introduce some classes of weight func-
tions to state our theorems. In Section 3 we shall give preliminary
lemmas and prove the main theorems in Section 4. In these sections
Carleson measures play very important roles, but there we only quote
lemmas giving relations between BMO and Carleson measures. We shall
treat them systematically in Section 6, because we wish to treat many
things related to BMO and Carleson measures. There, for example, we
shall improve some recent results of Strichartz [11]. Some applications
and examples of the main theorems are given in Section 5.

We thank A. Uchiyama and M. Hasumi for very useful conversations
with them.

1. Notations and Definitions. & = &(Rn) = Co(Rn) denotes the set
of all infinitely differentiable functions with compact support on Rn: the
^-dimensional Euclidean space. £f = ^(Rn) is the set of all infinitely
differentiable functions whose derivatives decrease rapidly. Recall that
a locally integrable function / is said to be of bounded mean oscillation
on Rn if the mean oscillation of / on any cube Q with sides parallel to
the axes

MO (f,Q) = -^

is uniformly bounded, where fQ denotes the mean of / on Q
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and \Q\ is the Lebesgue measure of Q. The equivalence classes of func-
tions of bounded mean oscillation modulo functions constant a.e. form a
Banach space with norm \\f\\* = supρMO (/, Q). We denote by BMO
this Banach space or the space of all functions of bounded mean oscil-
lation. H1 = H\Rn) is the Hardy space H1 of Stein and Weiss with
norm || \\Hi9 and fliJ, is the space of all feS^ such that the Fourier
transform / has compact support bounded away from the origin (see [9,
p. 231]).

A positive measure μ on Rl+1 = Rn x (0, °o) is said to be a Carleson
measure if there exists C > 0 such that

[ dμ(x, t) ^ Cεn

ίx—y\<t Jo

for any ε > 0 and y eRn. We denote by Ί(μ) the infimum of such C.
Next we introduce some classes of weight functions related to the

Dini condition. Let W be the set of all nondecreasing functions w on
(0, 1] with 0 ^ w(t) ^ 1 on (0, 1]. We set for a > 0

Wo=

W, = \w 6 W; Γ w{t) log (e + l/f)4L ^ lj ,

W? = \w e W; [ wi/b(t) logι+« (e +. 1/ί)— ^ lj ,

WS = \weW; ^ w\t) log2+α (e + 1/tyψ ^ l} ,

W, = {we W; there exists C> 0 s.t. δn (t) ^ Cw(bt), 0 < δ, ί < 1} .

Then we have essentially W0ZDW9ZDW1'D W2. In fact, we have Wx 3 W2.

And if w e W19 we get by easy calculation w(t) log21/ί ^ 2\ w(t) log l/t(dt/t).

Hence we get Γw2(t) log3 (e + l/t)(dt/t) < 2(1 + Iog2)2. °If we Ws, using
Jo

the boundedness of w, we get easily w(t)/t e L\0, 1) by Holder's inequality.
For a multi-index a = (αx, α2, , αn) 6 Zn, d" is the differential opera-

tor (a^/Sff1) (aα2/3ί2

α2) •' 0 β /3«W and IαI = IαxI + Iα21 + - - - + Iαn | . || / H,
always denotes the usual Lp norm of /. Integration of / over the whole

space Rn is often written as \ f(x)dx. The Fourier transform of / will

be denoted by /;

/(£) = j f(x)e-ix'ζdx ,
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where x ξ = x& + x2ξ2 + + xnξn-
The letter C will always denote a constant and does not necessarily

denote the same one. The letters j , ft, m and r will always denote
integers.

2. A class of multilinear operators: Statement of main results.
For ft + 1 functions φQf φu ---,φk on Rn and a function u(t) e L°°(R+) we
define a (ft + l)-linear operator Γ by

S °° k dt

Π (0m,t*α»M*)—
0 m=0 £

where $5m t(x) = φm(xjt)t~n and (̂ *α)(a?) = \ 0(a? — y)a(y)dy. This is a multi-

linearization of so-called Littlewood-Paley's gr-function (Coifman-Meyer

[4, p. 144]). What we will show in this paper is the following two

theorems which generalize Coifman-Meyer's theorem 33 in [4, p. 144].

THEOREM 1. Let \ φt(x) \^(l + \x D^wXl/l + \x\) for some ^ e l f 2 n W4

(i = 0, 1, , ft). Suppose there exist positive constants KaΛ, Cati9 A and
B such that

KaM\-^-x , \ξ\>B, \a\£n + l , ϊ = 0 , 1 , -••,&,

Cati\ξ\^9 \ ξ \ < A , | α | ^ n + l , i = 1 , 2 , . . . , ft,

C α , 0 | ξ | - ' α ' + 1 , \ a \ < A , \ a \ £ n + l .

Then there exist Clt C2, C^ > 0
( i ) || T(α0, •• , α t ) | | 2 ^ C ί | | w | U | α 0 | U Π } = . l | α i | | c o | | α 1 | | ί for α . e L 2 ^ ) ,

α0 e BMO, as eL°° (j = 2, , ft),
( i i) ||Γ(αo, al9 •• , α f c ) | U ^ C o o | | u | U Π k l k i l l o o | | α 0 | U /or a . e L ^ n L 2 ,

α0 G BMO, α, e L°° (i = 2, , ft),

(iii) | |Γ(α0, α l f , ak)\l ^ CJ|^IUHα0 |U UU W^AUW^W^ for a^H^
aQ 6 BMO, αy 6 L°° (i = 2, ., ft).

THEOREM 2. φif u be the same as in Theorem 1. Then there exist
Clf C2, Coo > 0 such that

( i ) \\T(ao,alf •• , α f c ) | | 2 ^ C 2 | | u | U | | α 0 | | 2 Π ^ i l k i l U for aoeL\ a3eL~

( i i ) II Γ(α 0 , α l f - - , α 4 ) I L ^ Cooll^HcollαolU Π ^ i I I ^ l U / o r α 0 6 B M O n L 2 ,
(j = 1 , 2 , - • - , & ) ,

(iii) || Γ(α0, α l f - , ak) ||x ^ d | | u IUH α0 ||Hi Π*=i II α, IU /or α0 6 flj, α, 6 L°°
(ί = 1,2, ••-,&).

We have as a consequence of Theorems 1 and 2 the following, using
the multilinear interpolation theory of Calderόn [2].
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THEOREM 3. Let φi9 u be the same as in Theorem 1 and 1 <Ξ pt ^ °°
(i = 0, 1, , fc) αwd 0 < 1/p = 1/po + l/px + + 1/p* ^ 1. Γfee^

C = C(ptf k, n, CaΛ, Ka>%) > 0 such that

II Γ ( α o , α l f , α * ) | |p ^ C\\ u | U | a Q \\θiPo) Π II α , \\ηlpJ)
3=1

for a0 e L'™ , aό e LW (j = 1, , k) ,

(g = 1), =Lq ( 1 < ? < oo), L^(oo) = BMO

and | |a| |9 ( f f, are the corresponding norms of a.

REMARK 1. In the above three theorems, if I φά{x)dx = 0, then the

assumption a, e L°° (or L°° Π L2) can be replaced by as e BMO (or BMO Π L2,
respectively).

REMARK 2. In order to prove (i) and (ii) of Theorems 1 and 2 we
do not need wte W^ (i = 0, 1, , k).

REMARK 3. In Theorems 1, 2 and 3, wt e W2 can be replaced by
wt e Wz (i = 1, 2, , ft). And ^ 0 e TΓ2 can be replaced by w0 e T73 if we
treat only the case a^L00 instead of the case α0eBMO.

REMARK 4. In Theorem 1 (ii), a1 e L°° Π L2 cannot be replaced by
αx G L°°. Also in Theorem 2 (ii), a0 e BMO Π L2 cannot be replaced by α0 6
BMO. One can easily give counterexamples.

3. Fundamental lemmas. We begin with some elementary lemmas.

LEMMA 3.1. Let m e {0, 1, 2, 3}. Let wlf w2 e Wm and

\f,{x)\ ^ ( 1 + | ^ | ) - ^ ( 1 / 1 + I a? I) xeRn, j = l,2.

Then for any d0 > 0 there exist w e Wm and C > 0 depending only on n
and d0 such that for all 0 < δ < δQ

I / M * M x ) I ^ C ( l + \x\rnw(l/l +\x\) xeRn .

REMARK. The following proof shows that if wl9 w2 e W^ we can choose
w e W4, and if a, > α2 > 0 and ws e WS* (j = 1, 2), w e T7fc

α2 (fc = 2, 3).

PROOF. We have

( 1 ) I A . */,(*) I

( I /i,ι(» - v)Mv) \dv
l ^ l l / 2

l/i,a(
\x-y\>\x\/2

2"(2δ + |*|)--w1(2δ/2δ + I a? I) j (1 + | y |)-n

+ 2"(2 + I a: I)—«7,(2/2 + |x | ) j (1 + | y |)-"Wχ(l/l +
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Hence

( 2 ) I fltδ * Mx) I ^ C(23 + I a; |)"^1(2δ/2δ + | x |)

Now, if \x\ <; 1 we have clearly

O/ I «/l,δ ,/2\ t*// I == ^2V^-/ 1 I J l δ\ ^/ |WΊΛ/ — W<L\1.) 1 | J \\J0) \\MJJ ^ J- .

J J

And if I a? I > 1 we have (23 + \x\)n ^ 2~n(l + \x\)n

y and so, by using t h e
monotonicity of w1

( 4 ) |/i,$*/2(#)| ^ ^ ( 1 + |cc|)~7l^1(2δo/2δo + \x\)

+ C2(1 + |αj|)-"w2(2/2+ |x | ) .

Combining (3) and (4) we obtain t h e desired result .

L E M M A 3 . 2 . L e t ge<9* be s u c h t h a t g{ξ) = 1 (\ξ\ < 1/4) , = 0 (\ζ\ ^
1/2) and m 6 {0, 1, 2, 3}. Let w e Wm. Then, if | f(x) \ ̂  (1 +1 x |)-nw(l/l +1 x\)
and supp/ c {1/2 < \ζ\ < 2}, there exist wx 6 Wm and A, B > 0 such that
for any 3 > 0

PROOF. (5) follows from Lemma 3.1. (6) is rather easy.

LEMMA 3.3. Let g and w be the same as in Lemma 3.2 and 30 > 0.
Then for any f with \f(x)\ <; (1 + \x\)~nw(l/l + \x\) and s u p p / c { | f | < 2},
there exist wί e Wm and A, B > 0 such that for any 3 ^ δ0 the inequalities
(5) and (6) hold.

PROOF. Similar to the above proof.

LEMMA 3.4. Let w eW0. Then there exists C > 0 such that for any
φ with \φ(x)\ ^ (1 + \x\)~nw(l/l + \x\) and for any Carleson measure μ
on Rl+1 it holds

n+1\f*Φt\2dμ(x, t) rg C7(j«)||/||2 for
R+

PROOF. Since (1 + \x\)-nw(l/l + \x\)eL\Rn) and is radial, the
tangential maximal function of / * φt{x) is bounded by a constant multiple
of Hardy-Littlewood's maximal function of f{x) (Stein and Weiss [10,
p. 59]). Hence we have the desired inequality by the Further result 4.4
in Stein [9, p. 236].

LEMMA 3.5. Let wlf w2 e Wo and suppose φ{x) e L\Rn) satisfies
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\φ(x) - φ{y)\ ^ wβx - 2/1) for x,yeRn ,

\x\) for 2\y\£\x\.

Then for any a > 0 there exists C > 0 such that

\ sup \f*φt(y)\dx£C\\f\\Hί for / e f f .
J/ϊ% \x-y\<at

This lemma was originally obtained by Fefferman-Stein [7, p. 152].
Our modification is due to M. Kaneko.

LEMMA 3.6. Let woeWof] W, and \φ(x)\£(l + \x\)~nw(l/l + \x\) and
s u p p l e { | f I < 1}. Then there exists C> 0 such that for any Carleson
measure μ on R\+ι it holds

feH1.

PROOF. Let h e SS be such that h(ξ) = 1 on {| ς | < 1}. Since supp φ c
{\ξI < 1}, we have then φ = φ*h. Hence dφ/dXj = φ*(dhldxό). Thus by
Lemma 3.1 we have for j = 1, , w

^ C/l + |cc|)-nw2(l/l + |a?|) for some w2 6 Wo Π W4.

We get Iφ(x + y) — φ{x)\ <*C0\y\ for some Co > 0. There also exists Cλ > 0,
by virtue of the mean value theorem and the monotonicity of w29 such
that

\φ{x + y) - φ(x)\ <; Ct\y\(X + \x\)-nw2(2/2 + \x\) , 2\y\ < \x\ .

Hence if \y\ < 1 and 2 |y | < |a?|, we get, because of w2e W4,

\φ(x + y ) ~ φ(x)\ ^ C 2 ( l + \ x \ ) - n w 2 ( \ y \ / l + \x\) ,

for another C2 > 0. If |τ/| ^ 1 and 2|τ/| < |cc|, using weWΊ and i ts

monotonicity, we ge t

Thus we can find w1 e Wo Π TΓ4 and C > 0 such that

|0(a? + y) - φ(x)\ ^ C(l + I |̂)—wx(|7/1/1 + |^|) , 2\y\ < \x\ .

Therefore φ satisfies the assumption in Lemma 3.5, and hence by that
lemma and the Further result 4.4 in Stein [9, p. 236] we obtain the
desired result.

In the sequel, we shall use propositions, which will be proved in
Section 6.
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LEMMA 3.7. Let w1 e Wo and w2 e W2, and \ ψά(x) | <: (1 + | x

I a?I) (J = 1, 2) with supp ^ c { l / 2 < | £ | < 2} cmd ψ2(0) = 0.

exists C > 0

/or all

?, t)t~ιdtdx ^

toiR"), veL"(Rn

+

+1) and aeBMO(Rn).

PROOF. Let heHά>(Rπ) and / be the above integral. Then since
supp fc{1/2 < \ξ\ < 2}, there exists g eS* such that

Let u =
that

Let P((x) = cBί(f + |a;|2)- ("+ 1 ) / 2 be the Poisson kernel for Rn

+

+ί. Then, since
pt(ξ) — e~ t | { |, we have ψ l l t = (tdPJdt)*ut. Hence we have

. Then by Lemma 3.1 there exist Cx > 0 and w 3 e Wo such

11| x

R» Jo
t-

(a?, t)

dt

where φ(x) = u(—x) and h(x, t) is the Poisson integral of h. Now let
F = (h, hu - -, hn) be the generalized Cauchy-Riemann system for h (Stein-
Weiss [10, p. 231]). Then as is known (Stein [9, p. 217])

^(n + ί)\F\A\F\ .

Hence we get by Cauchy-Schwarz's inequality

G foo V/2/f foo \l/2

I tΔ\F\dtdx) ( I \F\(\φt\*\a*ψ2it\
2)rιdtdx) .

Rn Jo / \jRn Jθ /

Since heHt0 we have

( [°tά\F\dtdx = [ \F(x,0)\dx^C\\h\\Hι.
JΛ^JO jRn

Next, as is easily seen,

Since αeBMO, |^2(α?)| ^ (1 + \x\)-nw2(l/l + \x\) and ^ f2(x)dx = 0, we see

by Proposition 6.1 that dμ = \a*<f2Λ\H~1dtdx is a Carleson measure with

y(μ) <; C | |α | | # . By the lemma below, which we shall soon prove, we have
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that \φt\*dμ is also a Carleson measure with y(\φt\*dμ) ^ C{t(μ). There-
fore by the Further result 4.4 in Stein [9, p. 236] the second term in
(7) is smaller than C2\\a||*||Λ|Ui. Thus we obtain the desired result.

REMARK. If aeL°°(Rn), then w2eW2 can be replaced by w2eWz.

One can use Proposition 6.2 in this case instead of Proposition 6.1.

LEMMA 3.8. Let w be a nondecreasing function on (0, 1) with

S wtyt^dt 5̂  1. Then there exists C > 0 such that if φ(x) is a nonnega-
0

tive valued function with \φ(x)\ <L(1 + \x\)~~nw(ljl + \x\), φt*dμ is a
Carleson measure for any Carleson measure μ on Rn

+

+1 and

Ί{φt*dμ) ^Cy(μ) ,

where the convolution is taken with respect to xeRn.

PROOF (Suggested by A. Uchiyama). Let s > 0 and xoeRn. Then

Uxo) = \ [\ Φt(x ~ y)dμ(y, t)dx
J|x-xol<s JO Jit*

ύ\ Π (1 + I& - v\/t)-nw(t/t +\x- y\)t~ndxdμ(y, t) .
JRn JO J|x-α;ol<β

Dividing Rn into the meshes with side length s and center sk, keZn,
and using the monotonicity of w we have

Is(xo) ^ Σ (( \'dμ(y, t)) \ (1 + \x\rnw(l/l + \x\)dx
|fc|<4 \ J |y—aro-βfe! <β JO / JRn

+ Σ (\ \' dμ(y, ί))(3/| k |) w(8/3 + | k |)
lfc|̂ 4 \J\y-χo-8k\<8 Jo /

^ CΛμ)sn \ (1 + I x IΓM1/1 + I x \)dx .

Since the last integral is equal to a constant multiple of 1 w(t)t~ιdt, we
Jo

have established the lemma.
4. Proof of Theorems 1 and 2. First we shall give propositions

fundamental to prove our main theorems. For δ = (d0, δl9 , δm) we
denote

S oo m
Π

o i=o
v α y ) t t ( ) ^ ,
•" t

where u(t)eL°°(R+) and ajt φ3- are appropriate functions.

PROPOSITION 4.1. Let w, e W2 (j = 0,1, , m), w0 e TF4 and \φs(x)\ ^

(1 + I x D-w/l/l + I x I) wΐίfe supp ^ c {1/2 < I ξ | < 2} (j = 0,1, , r),
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suppφj c {\ξI < 2} (j = r + 1, ••-, m). Let ηr+u , ηm > 0. Then for
any δj > 0 (j = 0, • , r) and any δs ^ ηs (j = r + 1, , m) we have

I I W , « ! , - • - , « » ) I U W ^ C J M I U Π l l α* II* Π l | α y | | - l l / l l ί ( , )

/or ax, •••, α r e B M O , α r + 1 , - -, ameLco

and f e Lβ{p) ,

( i ) i / v = 2, α(p) = /3(p) = 2,
( i i ) i / p = oo, α(p) = /3(p) = * α îcί L^(2>) sίαwds /or BMO Π I/2,
(iii) if p = 1, α(p) = 1, L^(ί)) sίαtids for flj α^ώ ^(p) /or if1.

C2, C^, Cx do not depend on δ = (1, δl9 , δm).

PROOF. Let ve£S be such that v(f) = 1 on |£ | < l/8m, = 0 (|£|
l/4m) and ^ = Φ3 ,δj*v, ψj = φjtδj — θs (j = 1, 2, , m). Then by Lemmas
3.2 and 3.3 we get for some w) 6 W2

( 8 ) I ̂ (aί) I, I θj(x) I ^ C(«, + I a; | Γ " w j ί * ^ + I x I) .

We have furthermore

( 9 ) [ψ^dx^O (i = l ,2, ,m) and

H e n c e w e g e t b y L e m m a 6.4

(10) | | α * 0 i f t | U f H α ^ ^ l U ^ C ^ I α l l * t > 0 , α e B M O ( i = l , « , r ) ,

l|α**i,tl|oo, l |α*f i > t | |oo ^ Ci||α||oo ί > 0 , α e L M ( i = r + 1, , m) ,

and by Proposition 6.1

(11) 7(| α * ^ , . ^ ) ! 2 * " 1 ^ ^ * ) ^ CJIαHimaxίl, δy)

Ύ(| α * ̂ ,,/,/α) l^dίr te) ^ dH α ||2* , ae BMO (i - 1, . . . , m) .

We note, if δj ^ 16m, then ψά = 0, since supp fάa supp ^ i f β y Π supp(l —
v) c {1/25, < |f | < 2/δj} n {|f I > l/8m} = 0 .

Now Tδ(f, au , αTO) can be written in the following form

(12) Tδ = Γ (/ * φ0>t) ft (α, * θό,t)^ψ-dt
Jo i=i ί

S oo ri m T,

(f*Φ».t) Π (*ih*θih,ύ Π (α J i k*^»..)ί*(ί)-^-
Proof of (i). The first term in (12) can be written in the form
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(13) g(x) = [°ψt*\(Jr*Φo.t) Π (a
Jo L ii

for some radial function ψeS^ with s u p p l e { 1 / 4 < \ξ\ < 4}. Then for
any heL\Rn) we have via Fubini's theorem

h{x)g(x)dx = I 1 (h*ψt)(f *φQtt) Π (aj*θj,t)u{
Rn Jo jRn ' j=l

Hence by Cauchy-Schwarz's inequality and by (10) and Lemma 6.6

G
Coo \l/2/f foo \l/2

\ \ h * ψ t \ H - ι d t d x ) [ \ \ \ f * φ o > t \ H - 1 d t d x j

x IMUΠIk IL Π ||αj||-
3=1 r+1

To estimate the second term, put

S
oo rj_ r r+T2

(f*Φo,t) Π (ttjfe*^*,ί) Π (ak*ψk,t) Π (̂ fc* f̂e,t)
0 fc=l r :+l r+1

m

where rx + r2 < m — 1. In the following for the sake of simplicity we
denote the integrand in S(f) by A(ί, a?)*"1. Without loss of generality
we may assume 16m >̂ δrι+1 ^ ^ 3r and 16m ^ δ r + r 2 + 1 ^ *> δw . Let
)y = min (δr, δm). Assume first η = δr. Then the spectrum of the integrand
is contained in {\ξ\ < 32m(m + ΐ)/ηt). Let φe^ be radial and $(£) = 1
(If I < 32m(m + 1)), = 0 (\ξ\ > 64m2). Then we get

For any heL2 we put /2 = I hS{f)dx. Then we have via Fubini's
JΛΊ

theorem
/2 = Γ f (fe*^t)A(ί, x)t-χdxdt .

JO J Λ ^

By (11) and Cauchy-Schwarz's inequality we have

(16) \It\ £ C\\u\Un \\ah\\* Π | | α 4 | u ( Γ \ \f *φ*tt\H-*dxdtf*
fc=l r+1 \Jθ JRn /

G f oo \ 1/2

I \h*φn\2\ar*φrtt\
2t-1dtdx) .

G foo \l/2

\ IΛ*^! 2 !^*^,^ ! 2 *- 1 ^^) . By (11) and
Rn Jo /



LITTLEWOOD-PALEY'S 0-FUNCTION 261

Lemma 3.4 this is bounded by C||Λ||2 | |α rll* By Lemma 6.6 the first
integral on the right hand side of (16) is bounded by C | | / | | 2 . Next the
case δm = min (δr, δm) can be treated in a quite similar way. Hence we
have

|( Ts(f, au •• ,aj(x)h(x)dx
I JRn Π Kll* Π

k=l r+l
for all h e L2, which implies the desired result.

Proof of (ii). Let / e BMO n IS, ak e BMO (k = 1, , r) and ak e L°°
(k = r + 1, , m). Let h eHoO. We use the notation in (i). We have
by (10), (11) and Lemma 3.7

ΠIL
r+l

In the other terms there are three typical ones

Type 1. rx + r 2 ^ 2 and δ r <(l/2m)min(δ r ι + l f - - -, δr_19 δ r + r a + 1 , , S J = δ'
or δm < (l/2m) min (δ r i + 1, . , δr, δr+r2+1, , δm^) = δ".

Type 2. n + r2 ^ 2 and δr ^ δf or δm ^ δ".
Type 3. n + r2 = 1.

We treat first the case of type 1 and δr < <?'. Let radial ψ e S^ be such
that ψ(ξ) = 1 on {1/4 < \ς\ < 4}, = 0 on {\ξ\ < 1/8} and {|f | > 8}. Then we
get

Thus we have for any h e ffto

J2 = ( h(x)S(f)(x)dx = Γ \ (ψδ t*h)A(t, x)t~ιdxdt
Jftw JO JRn

= Γ 1 (ψt*h)A(t/δr, x)t~λdxdt .
JO JRn

Using (10) and (11) we obtain by Lemma 3.7

ff Π
The case δm < δ" can be treated in a quite similar way.

For type 2, let φ e S? be radial and φ = 1 (|f | < 2m), = 0 (|ί | > 4m).
We treat first the case 2mδ' = δr_x and δr ^ δ'. The other cases can be
treated in the same way. We have then

For any h e H}0 we get
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73 = \ h(x)S(f)(x)dx = Γ ( (h*φδ t)A(t, x)t-'dxdt
JRK JO JRn

= Γ S (h*φt)A(tlδr, x)t'ιdxdt .
Jθ JRn

Hence from (10) we have

\ 1
J Λ T C JO

Π I | α ί | U Π KIU
3=1 r+1

Since <5r_x ^ <5r ̂  <5r_!/2m, we have from (8)

Πl + δr\x\/δr_1)-nwf

r.1((l + δr\x\/δr_1)-1)

for some w"-i e W2. Since clearly I ψr-1}1/δr(x)dx = 0, we have by Prop-
J Rn

osition 6.1

y{\ar_^ψr_ut/δr\
2t-ιdxdt) sς ^ l lα^H 2 * .

Hence by (11) and Cauchy-Schwarz's inequality

Ί{\ar_^ψr_ut/δr\\ar^frit/δr\t-ιdxdt) ^ CHα^lUHαJU .

Therefore by Lemma 3.6 we have

|MUΠKII*Π
3=1 r +

Next we treat the case of type 3. Let δ' — δr or <5W. If δ' < l/2m, one
can proceed as in type 1. If 2m ^ δr ^ l/2m, one can proceed as in type
2. If δ' > 2m, as for the first term in (12). Thus we have the desired
result.

We remark here that the assumption / 6 BMO fΊ U is used only to
apply Fubini's theorem in I19 I2 and 73. So the conclusion is valid if
f,au - , ar e BMO, αr+1, , am e L°° and at least one of them is in ZΛ

Proof of (iii). We shall use notations in the proof of (ii). However
we take here heL^nlf, / e f l j in place of feeflj, /eBMOnl/ 2 (re-
spectively). For Ji we have by (10) and Lemma 3.7

l i l ^ i i i u π
3=1

For 72 we have by (10)

\I2\ ^ C H u l U Π K IU Π llαyl
3=1 r+1
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As before we get

tr(\h*ψirt\Hr1dtdx) ^ Cmax(l, «;)

Cmax( l , δ?)||α r |U .

Furthermore we may assume δr <; 16m. Since HfeH* <; C||Λ||oo, we have
thus

y(\(h*φiri)(ar*irr,t)\t-ιdtdx) ^ C||Λ|U|αr |U

Hence by Lemma 3.6 we have

II.I ^ C\\u\U ff Ikill* Π
i=l r+1

For I 3 we have, using δ3- ^ 16m,

l|λ*Λr*IU ^ C\\h\U , Ύdαy^i. iΓί^ftte) ^ CHαylU (j = r - 1, r) .

Hence also for J3 we have the same inequality as for J2.
For type 3 we proceed as for Iu I2 and J3 if δr > 2m, 2m ^ 3r^ l/2m

and δ r < l/2m, respectively. The other cases can be treated in the same
way. Hence we have the desired inequality.

REMARKS. (1) If 0/0) = 0 for some j = r + 1, , m, then in the
conclusion lla^l*. can be replaced by 11^11 .̂ (2) If for some j = 1, , m
one has a5 e L2, then in (ii) BMO n ί'2 can be replaced by BMO.

Next we give one more proposition similar to the former.

PROPOSITION 4.2. Let w5 e W2 (j = 0,1, , m) αwώ ii;0 6 T74. Assume
\φ3 (x)\ ^ ( 1 + |αj|)-"wy(l/l + I a: I), s u p p & c { | £ | < 2 } (i = 0, r + 1, •••, m)

supp ^ c {1/2 < | f | < 2} (i = 1, , r ) . Lei ^ > 0 (j = 1, 2, . . , r ) .
/or α^?/ 0 < δ3r ̂  ^ (j = 1, 2, , r) we have

\\Tδ(f,au •• l α J | | β ( F ) ^ C , | | u | U Π I I ^ IU Π \\aAU\fhiP) for fel/™
j=l r+1

where
( i ) if p = 2, α(p) = /3(p) - 2,
( ϋ ) if p = oof a(p) = *, /S(j>) = °° α^d L^(ί)) stands for L°° Π I/2,
(iii) if p = l, a(p) = 1, L w sία^ds /or fl"ά and β(p) for H\

Here δ = (1, δlf , δ r, 1, , 1) α^cί C:, C2, C^ do ?ιoί depend on δ, aά and /.

PROOF. We may assume r}λ — f}^.— = Vr — V a n ( i ^ ^ δ2 ^ <; <5r

without loss of generality. Let ζ(cc) be a radial function in ^ such that
ζ(ί) - 1 on {|f | < 1/Sηm}, =0 on {|f | > l/4^m} and θ, = ζ * ^ ,δi, ^ =
&,«,- ~ ^i (i — 0, 2, 3, , m). Then by Lemmas 3.2 and 3.3 we have

(17) I ψ3(x) I, I θfc) I ̂  Cδjn(l + I a; |/δy)-iι?;((l + | α l/δ,)"1)
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for some w'j e W2 and

0 (j = 0, 2, . . ,m) , J ^ (x)da; = O <j = 2, ,r).

Hence we get by Lemma 6.4 for any ί > 0

(18) R * 0 , , t | U K * f i i ( | U ^ dlα^lU U = 2, ~,r)

£C\\aj\U (j = 0,r + l, •• ,m),

and by Proposition 6.1

(19) Ίda^φ^r'dtdx) ^ Cmax(1, δΓ)llαχ||* ,

7(| a, * fSΛ fr'dtdx) ^ C max (1, δy) || α, |Γ* (j = 2, , r) ,

Ύ(|α, *-fί.tΓr^ίda;) ^ C|| a3- |U 0' = 0, r + 1, , m) .

Using θs and <ψ\, , Γ4(/, αi, , am) can be written in the form

(20) Γ (/ * ψM) Π (α, * Φi^t-'uίfidt
Jo i=i J

+ Γ (/ * ̂ β.«)(αi * &.v) Π (αy * Θ^Mfy-'dt
Jo i=2

+ Σ Γ (/ 0o.«)(αi*0Ml() Π (fljh*θik,t) Π (a^ψ^MVt-'dt .
JO fc=2 ΐ+1

The first term can be treated by Proposition 4.1. The second term can
be written in the following form

g(x) = Γ f ¥ * ί ( / ^ o > i * M Π (aό*θj>t)\u(t)t-ιdt
JO L 3=2 J

where ψ eS* is radial and suppf c{l/4 < |f | < 4}. For any heL2 we
have

U = [ h(x)g(x)dx = Γ ί (Λ*^*)^*^*)^!*^,^) Π {a^θ^
J JO JΛ^ -1 i=2

Hence by (18) and Cauchy-Schwarz's inequality

\h\ ̂  C||w|UΠ H ÎU Π \\a>s\\A ["^f^dt
3=2 r+1 \JRn JO

G foo \l/2

\ \f*θott\
2\a>i*Φi,t\2t~~1dtdx) .

By Lemmas 6.6 and 3.4 the last two terms are smaller than C||Λ||2 and
C| |/ | | 2max(l, jy'OllαJ* (respectively), since δ^η. This implies

l l | | | | I U Π I | J * K |
3=1 r+1

Now, if φeS<* is radial and ψ(ζ) = 1 on {\ξ\ < 2(m + l ) m a x ( l , 77)}, = 0 on
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> 4m max (1, η)}9 then any term in the last terms in (20) has the form

S(x) = \0φiιt*\(f*θo,t)(a>i*Φi,ι1t) Π (ajk*θiktt) Π (aj^
JO L fc=2 ϊ+1

Hence for any h e U we have

Is = J h(x)S(x)dx

= Γ ( (Λ * M C f * 0o,*)(αi * &,*) Π (o i 4 * 0i4>4) Π (oy4 *

Thus we get by (18) and Cauchy-Schwarz's inequality

\I»\ £C\\u\\n Π | | α t | L Π

G
\φ

o

1/2

Hence by Lemma 3.4 and (19) the last two terms in the above are
smaller than

Cmax(l f 9") | |α i y |Λ | | ί and Cmax (1, ψ)\\ajm | | , | | / | | 2 (respectively),

which implies

We thus obtain the inequality (i).
Proof of (ii). We may assume δ = (l/δlf 1, δ2/δί9 , δr/δlf l/δί9 , 1/δJ

without loss of generality. Since l/δ1 ^ l/ηu by Proposition 4.1 (ii) and
its remark we get the inequality (ii).

Proof of (iii). One can prove (iii) in a way similar to the proof of
(i), by using Lemmas 3.6 and 3.7 instead of Lemmas 3.4 and 6.6. Thus
the proof of our proposition is complete.

To complete the proof of Theorems 1 and 2 we need one more step.
We introduce the following decomposition of functions and operators as
in Coif man and Meyer [4, p. 152]. Let p(ξ) be a radial function in S?
such that supp p c {2/3 < \ξ | < 2}, Σ-» P&ξ) = 1 (£ =£ 0) and Σo°° P&ζ) = 1
(0 < \ζI < 1). For a function φeL\Rn) we introduce f), ψ), f), R3 and
φ0 as follows

^i(f) = f Σ P(2*-if))^(2-^) , Φo(ξ) = ( l - Σ

Then we have by Lemma 3.1 and easy calculation:
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LEMMA 4.3. Let \φ{x)\ ^ (1 + |s|)—w(l/l + \x\)forawe Wi (or Wi)
(ε > 0). Then we have the following.

( i ) If \da$(ξ)\\ζ\w <! Ca, \ξ\<A, \a\£n + l, then there exist
wt e Wi (or Wi) and C = CΛ>0 such that

)I, IRfa)I ^ C( l + Ix\)- n w λ ( l l l + \x\) x e R n , jeN.

( i i ) If \daφ(ξ)\\ξ\M <tCa\i\, \ξ\<A, | α | ^ Λ + l , then there exist

w2 6 Wi (or Wi) and C = CΛ > 0 such that

I f)(x)I ^ C(l + Ix |Γnw2(l/l + IxI) xeRn , jeN.

(iii) If \daφ(ξ)\\ξ\w+1^Ca, | f | > J B , | α | ^ n + l, then there exist
ws e Wi (or Wi) and C = CB > 0 such that

\tf(x)\ SC(1 + |a!|)-w,(l/l + |x|) xeR" , jeN.

(iv) There exist w4 e Wi (or Wi) and C > 0 such that

I φa(x) I ^ C(l + I x |)-nw 4(l/l + I x I) x

N o w f o r o u r o p e r a t o r Γ ( α 0 , au ••-, ak; φ0, φ u ••-, φk) w e g e t t h e f o l l o w -
i n g f o r m u l a s . I f s u p p φ s c {\ξ \ < 1} (j = 0 , 1 , • • - , & ) , t h e n

(21) Γ(α 0 , α 1 ( , ak; φ0, φu , φk)

= Σ 2-ff Σ Σ Σ Σ Γ(α,f αilf
JV=O r = 0 d<3<<3'k i = 0 i = 0

Here ψ)yr is ψj, for φ = φj9 and so on. In general we have

(22) Γ(α0, •• ,α f c;^ 0, - . . , ^ )

Σ Σ ••• Σ 2 - ( Ό + - + ^ Γ ( α i 0 f ---,

Now we can prove our main theorems.

PROOF OF THEOREM 1. ( i ) The case when s u p p ^ cfl f | < 1} (J =
0,1, •••,&). We use the formula (21). Then we get

, ah, , aSk; ψi,N, ψ)viv , ψyrl<r, Rjr+1,N, , ;̂fc,i\r) IU(P)

for 2? = 2, oo, 1 in the notation of Proposition 4.2, by Lemma 4.3 and
Proposition 4.1 if le{jly —-jr}, and by Lemma 4.3 and Proposition 4.2
if 1 e {jr+l9 , jh). Hence we get
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II T(a0, " , a k ; φ O f , Φk) IU(ί>)

^ ciiuiuiooiu π K IUlαj^ Σ ( Σ
j=2 N=0 \r=0

k

^ C'll̂ HoollαolU Π l l^ lloollαilUp) .

(ii) The general case. We use the formula (22). Then we get

^ C||u||T O | |α0 |UΠ IK IUkilUίO
i=2

by the case (i) if {j0, •••,£.}= 0 , by Lemma 4.3 and Proposition 4.1 if
1 e ίio, , Or)* a n ( i by Lemma 4.3 and Proposition 4.2 if 1 6 {jr+lf , jk}-
This implies the desired inequality as above.

PROOF OF THEOREM 2. Similar to the above proof.

5. Applications and Examples for Theorems 1 and 2. As an appli-
cation of our main theorems we can give another proof of a result in
Coifman-Meyer [3, Theoreme 1] and improve it somewhat.

THEOREM 5.1. Let σ(x, ξ)eC°°(Rn x Rnm) satisfy

ξ e Rnm , x 6 Rn , I a I <: 2nm + 1 , | β \ ̂  n + 1 ,

cmcί define the operator T as follows

, /or α̂ /̂ 2?,- e [1, <χ>] (1 ^ i ^ m), 0 < 1/p = 1 ^ + +
C = C(w, m, py> Cα,j) > 0

\\T(flf •• ,/J| | ί,

where we use temporarily the notation || ||Pj. = || ||^i and assume fjβHoo
if Pi = 1.

Coif man and Meyer have given the above in the case 1 < p3- < oo and
p ^ 1. However they have given the proof only for p > 1. We sketch
our proof briefly. First, we prove the case px = p, p2 = = pm = oo.
This case can be proved in a way quite similar to the proof of Theoreme
34 in Coifman-Meyer [4, pp. 154-157], by using our Theorems 1 and 2
(or Propositions 4.1 and 4.2) and Sobolev's imbedding theorem for 1 <;
p < oo. In the case p = 1 one must be careful. We have used the
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atomic decomposition of H1 functions. When the support of an atom is
small, we treat it as in the case p > 1. Otherwise we merely use the
case p = 2. Next, by the multilinear interpolation theorem of Calderόn
we can establish Theorem 5.1.

REMARK. If σ(x, ξ) does not depend on the variables x, the condition
imposed on σ can be weakened as follows:

σ(ξ)eC-(R™\{0}) and |3?*(f)| £ Cβ |£|- | β | ,
ξ Φ 0 , I a I ̂  2nm + 1 .

In this case p may be oo, where || ||p shall be replaced by the BMO
norm. We do not know whether this is true in the general case.

Another application is concerned with Littlewood-Paley's g-ΐunction.
The following may be known, but we could not find any explicit proof.

PROPOSITION 5.2. It holds for some C > 0 that

PROOF. Since
ί-

dt
and t-

ί=i dx
j = 1, - ,n

satisfy the condition in Theorem 1, we apply Theorem 1 and get

\\gUΎ\\*£C\\f\\\, / e B M O n L 2 .

It is easily seen that for any non-negative valued / e BMO

l l / l l i ^ l l / ll , ( 0 < β < i ) .
Thus we get the desired inequality. Here, Pt(x) denotes the Poisson
kernel for R\+\

We shall next give some examples of φ in Theorem 1 such that
\φ{x)\ <* C(l + \x\)~nw{ljl + \x\) just for some we W2

a in the one dimen-
sional case.

EXAMPLE. Let a > 0 and h be as follows, h is infinitely differenti-
a t e on (-3/4,3/4) and

(0, l f l < l / 4 ,

Let

φ(x) = — fe(a ) = 2 Γ λ(f) sin xξdξ .
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Then, integrating by parts we get

φ{x) = A Γ v(f) cosxξdξ - 2α
X J #

v(f) cosxξdξ Γ ^ l o g dζ .
X Jo # Ji/2 1 — ξ 1 — ξ

The first term is clearly of order O(l/x2). The second integral is smaller
than

[ — - — log"(1+α) —-—dζ = — log- — , for x > 2π .
Ji-2^ 1 — £ 1 — g α 2π

Since fe is integrable, φ is bounded. Thus, summing up, we see that
there exists Cλ > 0 such that

\φ(x)\ ^ 0,(1 + |α |

In a similar way we see that there exists C2 > 0 such that

0(α) ^ C2(x logα 4^/π)-1 , cc = 2jπ , j = 1, 2, - .

Clearly, if a > 5/2, then log~α r 1 6 W? (0 < 6 < α). And if α > 3/2, it
belongs to W% (0 < b < a).

6. BMO and Carleson measures. In this section we investigate
relations between functions of bounded mean oscillation and Carleson
measures. The most important result in this direction is Theorem 3 in
Fefferman-Stein [7, p. 145] and further extensions can be found in Fabes,
Neri and Johnson [6], Ortiz and Torchinsky [8], Stromberg [12] and
Strichartz [11]. Our aim is to extend some results in the last two papers.
Our first result is the following.

PROPOSITION 6.1. Let weW2 and \ψ(x)\ <; (1 + \x\)~nw(l/l + \x\)f

\ ψ{x)dx — 0. Then iψ^xflH^dxdt is a Carleson measure for any a > 0

and f e BMO, and there exists C > 0 such that

^ Cmax(l, α*)

Another extension will be given later (Proposition 6.7). When one
only deals with bounded functions, one gets

PROPOSITION 6.2. Let w e Wz. Let \f{x)\ ^ (1 + \x\)~nw{l + \x\) and

I <f(x)dx = 0. Then \<fat*f\H~1dxdt is a Carleson measure for any a > 0

and f 6 L°°, and there exists C > 0 such that

Vdψattfl^dxdt) ^ Cmax(l, an)| |/| |L .

To prove these propositions we follow the proof-method in [7]. We
begin with the following lemma.
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LEMMA 6.3. Let w e Wx. Then there exists C > 0 such that

+ \χ - v\))dχ ^ C||/ιu

/or αŵ / cuδe ζ>(?/, s) of side length s and center y.

PROOF. Since the BMO norm is invariant under dilation and trans-
lation, we may assume s = 1 and y = 0. As w(t) is nondecreasing, by
the arguments in Fefferman-Stein [7, p. 142] we see that

ί I f(χ) - Λ(o,8) 1(1 + I x I T W / i + I x \)dχ

3£ Σ ( l + 2"(fc + l))w(l/l + 2*)||/|

1 log (e + l/t)dt + w(l)

Using this one gets easily the first part of the following lemma.
The second part is easy.

LEMMA 6.4. ( i ) Let w eWx. Then there exists C > 0 such that

for any t > 0, / e B M O and g with \g(x)\ ^ (1 + |α?|)~nw(l/l + \x\).
(ii) Let w e WQ. Then there exists C > 0 such that

/or αwi/ ί > 0, feL°° and g with \g(x)\ ^ (1 + |α?|)"nw(l/l + |a?|).

Our next lemma is as follows.

LEMMA 6.5. Let we W3. Then there exists C > 0 such that

for any ξeRn and g with \g(x)\ ί* (1 + \x\)~nw(l/l + \x\) and \g(x)dx = 0.

In particular, if w e W2, the conclusion follows.

PROOF. Note first, essentially W0i)WsZ)W2f as noted in Section 1.

Hence g e L1. Now, since I g(x)dx = 0, we have g(ξ) = I (e~ίx'ζ — l)g(x)dx.

Hence we get

19(ξ) \^\ I β-'"' - 111 g(x) \dx + 2\ I g(x) \dx .

Thus by easy calculation we get
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(23) I g(ξ) I ̂  I ξ I [ w(t)t~2dt + 2 Γ' w^r'
Jlίl/2 JO

(a) Case f = (6, 0, , 0). In this case we have

i = Γ I^ί)l2-τ- = Γ l$((t, o,.. , 0) ) | 2 ^ = Γ
Jo t Jo t Jo

271

Γ
Ji

, say .

= Ix + I2, say .

Using (23) we have

I, ^ 2Γ ?([ w(s)s-*ds)2*t + 4 f (Γ ̂ (s)il)24^ =
Jθ \Jί/2 / t Jθ \Jθ S / t

By easy calculation we get

I3 ^ 4f J1 w(8)8-1d8)[l [ w(s)s~2dsdt .
\Jθ /Jo Jt/2

Interchanging the order of integrations in the last integral we have

73 ^

Next since w e WZ9 Γ w\t) Iog2+α(e + l/tyt^dt < + °o for some a > 0. Now
Jo

by Cauchy-Schwarz's inequality

Hence we have

I4 ^ C Π V ( S ) l o g ( e + )
Jo Jo \ s / s t

= C [ w\s) log1+α f e + -1) log JL i l ^ c .
Jo \ S ' 8 8

) g
S ' 8 8

For J2 we get, using ParsevaFs identity and the monotonicity of w,

^ j \9(ξ» 0, ,

^ Γ (t (1 + |»Ί)- ι(l + l ^ i r ^ l / l + laj

These show the desired inequality in the case (a).
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(b) General case. Let ξ e Rn and U e SO(n) satisfy U~^=(\ ζ |, 0, - , 0).
Then we get easily

Since the assumption for g is invariant under rotation, we can reduce
this case to the case (a). This completes the proof.

LEMMA 6.6. Let w e Wd. Then there exists C > 0 such that

Π \^fn-ιdxdt^c\\f\\\
Jo JRn

for any f elf and g with \g(x)\ 5* (1 + \x\)~nw(l/l + \x\) and I g{x)dx = 0.

PROOF. Since gt(ζ) = g(tξ), we obtain the conclusion by Lemma 6.5
and ParsevaΓs identity.

PROOF OF PROPOSITION 6.1. It is easily seen that it suffices to prove
the proposition only in the case a = 1. Let Q be the cube whose sides
have length 4s, with center {0}. Put

/ = / « + ( / - / Λ + (/ - U)^ = /i + Λ + Λ , say ,

where XQ is the characteristic function of the set Q. Then, since

I ψ(x)dx = 0, we have ψt*Λ = 0. Now by Lemma 6.6 we get

Π \ft*f2\
2t-1dxdt ^ Γ ( iφ^frft-'dxdt ^ C\\f2\\t ^ C^WfWl .

JO J\x\<8 Jθ JRn

For fz we get

I ft * Mx) I = I ( Ψt(χ - y)fz(y) dy
I JQC

^ \ 1/(2/) -fn\(t+\x- y\rnw(t/(t +\x- y\))dy .\

Now if y eQc, \x\ < s and 0 < t < s, then we have

+ i^zUi ^ i + ^ (i + JfLV 1 + •) .
4ί

Let b = 4/5. Then, since w is nondecreasing, we have easily

w(t/(t +\x-y\))£ w\5s/(5s + ly^w^UHU + s)) .

Hence it follows that

I^•/,(»)I ^ C^-6(4ί/(4ί + β))β-" \ \f(y) - fQ\(l + -MΛ
J \ s /

x wδ(5s/(5s + I y\))dy .
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Therefore by Lemma 6.3 we get

τM + s)) .

Thus we have

(24) [ \ iφ^MxWt-'dxdt ^ C2s
n\\f\\* [ w2a-b\U/(U + 8))fιdt .

Jo J 1*1 <β Jo

Since w e W2, w e W2 for some a > 0. Hence by Cauchy-Schwarz's
inequality we get

(25) (? wv\t)^fΐ ^ [ w^\t) log1+* (e + i - ) ^ - Γ log-<1+°> (e + 1 Ά .
\Jo ί / Jo \ ί / ί J o \ ί / ί

Therefore the last integral in (24) is finite. Thus we obtain the desired
inequality.

PROOF OF PROPOSITION 6.2. One can prove Proposition 6.2 in a way
similar to the above proof. In this case we take 6 = 2/3. Then as in
(25) we have wvz e Wo. We use this and Lemma 6.4 instead of (25) and
Lemma 6.3, respectively.

Modifying our arguments above, we can extend a recent result in
Strichartz [11, Theorem 2.1] as follows. We leave the detailed proof to
the reader.

PROPOSITION 6.7. Let w e W2 and wx be a nonincreasing function

S oo

w\(t)t~ιdt < +oo. Let a > 0. Then there exists
C = C(a) > 0 such that

for any /eBMO and f e L 1 satisfying \\ψ\\x ^ 1, I ψ(x)dx = 0 and

( i ) liKaOl ^ (1 + \x\)'nw(l/l + \x\) for \x\ > a
( i i ) | f ( f ) | ^ ^ ( | f I ) for \ξ\>l.

A similar result corresponding to Proposition 6.2 can also be formu-
lated. And we can modify Proposition 6.7 so that it contains Proposi-
tion 6.1. However, we think that Proposition 6.7 itself has its meaning,
because it contains no assumption on the Fourier transform.

As for the results converse to Propositions 6.1 and 6.7, we obtain a
result similar to Theorem 2.5 in Strichartz [11], by modifying his argu-
ments.

PROPOSITION 6.8. Let w e W2. Let ψά satisfy the assumptions in
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Propositions 6.1 or 6.7 (j = lf2, •••,&). Suppose furthermore $,•(£)£
C°°(Rn\{0}) and for each ξφQ there exists j such that fά{tξ)Φ0 for some

t > 0. Then,if[\f(x)\(l + |a?|)"nw(l/l + \x\)dx < +oo and\<fiit*f\2t-ιdxdt

is a Carleson measure for each j = 1,2, •••,&, it follows that f eBMO.

Finally in this section we give two examples which show that the
numbers 4/5 and 2 are best possible in Propositions 6.1 and 6.2, respec-
tively.

EXAMPLES. Let gόe6^ with supp^ c{|αj| < 1/2} and \gs(x)dx =

\ (1 + |α|)-nlog-α;(2 + \x\)dx (j = 1, 2), where a, = 5/2 and a2 = 3/2.

L e t ψ,.(x) = - g ά ( x ) f o r | x \ < 1 , = ( 1 + \x\)~n l o g " α i ( 2 + \x\) f o r \x\ ^ 1 .
Let f{x) = log+ |OJ| and fix) = Z{,.,^,. Then l ^ . , , * / ^ ) ! ^ " 1 ^ ^ is not a
Carleson measure (j = 1, 2). In fact, for |a?| < 1/2 and 0 < t < 1 we have
by elementary calculations and estimates

Ψi.t*fi(x) ^ Clogl-log-3 / 2(2 + 2/f) ^ C.log1/2^ ,

where Cλ is independent of t, x\ 0 < t < 1 and | a? | < 1/2. Hence, near & = 0,

S i ri

l^i,**/!^)! 2 *" 1 ^ = + ° ° . Similarly we get I \ψ2>t*f2(%)\2t~1dt =
0 JO

+ co, near a? = 0. These imply our assertion.
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