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A MULTILINEARIZATION OF LITTLEWOOD-PALEY’S
g-FUNCTION AND CARLESON MEASURES
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Introduction. Recently Coifman and Meyer [4] introduced a class of
multilinear operators as a multilinearization of Littlewood-Paley’s g-func-
tion. They studied L? estimates of such operators, using the notion of
Carleson measures. In this note we shall develop their study further,
by weakening their assumptions and obtain H!, BMO and L* estimates.
Qur techniques are essentially modifications of theirs, but we need many
devices to make their ideas deeper at many points. Our main results
are Theorems 1 and 2, and stated in Section 2. Notations and definitions
are given in Section 1. There we introduce some classes of weight func-
tions to state our theorems. In Section 3 we shall give preliminary
lemmas and prove the main theorems in Section 4. In these sections
Carleson measures play very important roles, but there we only quote
lemmas giving relations between BMO and Carleson measures. We shall
treat them systematically in Section 6, because we wish to treat many
things related to BMO and Carleson measures. There, for example, we
shall improve some recent results of Strichartz [11]. Some applications
and examples of the main theorems are given in Section 5.

We thank A. Uchiyama and M. Hasumi for very useful conversations
with them.

1. Notations and Definitions. =2 = Z(R") = C7(R") denotes the set
of all infinitely differentiable functions with compact support on R": the
n-dimensional Euclidean space. & = $“(R") is the set of all infinitely
differentiable functions whose derivatives decrease rapidly. Recall that
a locally integrable function f is said to be of bounded mean oscillation
on R" if the mean oscillation of f on any cube @ with sides parallel to
the axes

MO (f, Q) = - | /@) — felda
Q] Je

is uniformly bounded, where f, denotes the mean of f on @

fo= =0\ fads
IRE
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and |Q]| is the Lebesgue measure of Q. The equivalence classes of funec-
tions of bounded mean oscillation modulo functions constant a.e. form a
Banach space with norm | f|, = sup, MO (f, @. We denote by BMO
this Banach space or the space of all functions of bounded mean oscil-
lation. H!'= H'(R") is the Hardy space H' of Stein and Weiss with
norm |||/, and Hg is the space of all fe.&” such that the Fourier
transform f has compact support bounded away from the origin (see [9,

p. 231]).
A positive measure g on R*™ = R" X (0, ) is said to be a Carleson
measure if there exists C > 0 such that

. Ve n=ce

for any ¢ > 0 and ye R*. We denote by v(¢) the infimum of such C.

Next we introduce some classes of weight functions related to the
Dini condition. Let W be the set of all nondecreasing functions w on
(0,1] with 0 = w() =<1 on (0,1]. We set for a >0

W, = {we W S:w(t)ﬁlti < 1} ,
W, = {w e W; Yw(t) log (¢ + 1/t)_di < 1} ,
We = {w e W, S Wt log+ (¢ + 1/t)——- < 1}

We = {w e W; Souﬁ(t) log** (¢ + 1/t)-—t— < 1} ,

W,=UW; (=239,

W, = {we W, there exists C > 0 s.t. dbw(t) < Cw(bt), 0 < b, t <1}.
Then we have essentially W, D W, DO W,D W, In fact, we have W,D W.,.
And if we W,, we get by easy calculation w(¢) log® 1/t < 28 w(t) log 1/t(dt/t).
Hence we get S wi(2) log* (e + 1/8)(dt/t) < 21 + log 2. " If we W,, using
the boundedness :)f w, we get easily w(t)/t € L'(0, 1) by Holder’s inequality.

For a multi-index a = (@, a,, - -+, @,) € Z", 0% is the differential opera-
tor (3/0Er) (9%/06) - -+ (3°/0¢se) and |a| = Iall tlaul+ oo+ laal. (1 fl,
always denotes the usual L? norm of f. Integration of f over the whole
space R" is often written as S f(x)dx. The Fourier transform of f will
be denoted by f;

7o = | f@etas,
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where 2-& = @& + %6 + -+ + 2,6,
The letter C will always denote a constant and does not necessarily

denote the same one. The letters j, k&, m and » will always denote
integers.

2. A class of multilinear operators: Statement of main results.
For %k + 1 functions ¢, ¢, -+, ¢, on R* and a function u(t) € L°(R,) we
define a (k + 1)-linear operator T by

o k
T, @y -+, @2) = Tlao, oy -+, @55 By -+, 30 = | 1] e et}
where ¢, ,(x) = ¢,.(x/t)t™" and (¢xa)(x) = S n¢(x —y)a(y)dy. This is a multi-
linearization of so-called Littlewood-Paley’s g-function (Coifman-Meyer

[4, p. 144]). What we will show in this paper is the following two
theorems which generalize Coifman-Meyer’s theorem 33 in [4, p. 144].

THEOREM 1. Let |¢(x)| < (1 + |z|)w,(1/1 + |x]) for some w; € W, N W,
t=0,1, ---, k). Suppose there exist positive constants K, ,, Co.:, A and
B such that

|0¢6.8)| < Koilel™™™, [e|>B, |la|gsn+1, i=0,1,---k,

|a?$i(5)]§C¢x,i[§|_Ial’ |'S|<A! Ia|§n+1’ i=1)27“'rk7

10534(8)| < Calel™™ ™, Jal< A, |la|=<n+1.
Then there exist C,, C,, C,, > 0 such that

(1) [[T(ao, -+-, @) | = Cil|wllo]l @ols IT5=: l@;]lll@]l.  for a,€ LAR™),
a2, €BMO, a;eL> (j =2, -+, k),

(ii) || T(ao, @y, ==+, @) |4 = Cal| e IT5=1 l@s )|l @6 [l for a e L= N L2
a,€BMO, a;eL” (j =2, ---, k),

(i) [ T(as, @y, « -+, @) |l = Cillu o]l aolly IT%=: [ @; |||l @, [l for a, e Ha,
a,€BMO, a,eL> (j =2, ---, k).

THEOREM 2. ¢;, w be the same as im Theorem 1. Then there exist
C, C,, C., > 0 such that

(1) [[T(ay, @, -+, @)l = Gl |l @oll, TT%=1 | @5l for ace L?, a;e L
(j: 1y2, "'yk);

(i) [ T(ao @y, =+, @) [l = Coll ||| @o ||« TT5= Haa'”w for a,€ BMO N L,
aie-Lco (j=1,2,"',k),

(i) [ T(ay @y, -+, ap)|li = Cillw el @ollm TT5=1 [| @] for ay € Hy, a; € L™
=12 -, k.

We have as a consequence of Theorems 1 and 2 the following, using
the multilinear interpolation theory of Calderdn [2].
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THEOREM 3. Let ¢;,, w be the same as in Theorem 1 and 1 £ p, £ o
=01, ---,k)and 0< 1/p=1/p, + 1/, + -+ + 1/p, < 1. Then there
exists C = C(p,, k, », C,,;, K, ;) > 0 such that

k
| T(ao @i, - -+, ay) I, = C||u]]°°||a0!|.9(po, ,1;11 l|a’j||7](pj)
for a,e L™ |, q;eLl"™ (j=1,---,k),
where L@ =L19 = HY (q=1), =L 1< q< ), L' =BMO and
L7 = L>, while ||alls, and ||a|,, are the corresponding morms of a.
REMARK 1. In the above three theorems, if | ¢;()dx = 0, then the

assumption a; € L* (or LN L?* can be replaced by a; € BMO (or BMON L?,
respectively).

REMARK 2. In order to prove (i) and (ii) of Theorems 1 and 2 we
do not need w, e W, (i =0,1, ---, k).

REMARK 3. In Theorems 1, 2 and 3, w,c W, can be replaced by
w,eW, 0=1,2,---, k). And w,€ W, can be replaced by w,c W, if we
treat only the case a,e L™ instead of the case a,c BMO.

REMARK 4. In Theorem 1(ii), a,€ LN L* cannot be replaced by
a,€ L. Also in Theorem 2 (ii), a, € BMO N L? cannot be replaced by a,¢€
BMO. One can easily give counterexamples.

3. Fundamental lemmas. We begin with some elementary lemmas.
LEMMA 3.1. Let me{0,1,2,3}. Let w, w,e W, and
I fi@)| =@+ |e) w1/l + [z]) xeR", j=1,2.

Then for any 0, > 0 there exist we W, and C > 0 depending only on n
and 0, such that for all 0 < é < 0,

| fiox ful®)| = CA + [x)w(l/L + |2[) 2eR".

REMARK. The following proof shows that if w,, w, € W,, we can choose
we W, and if a, > a, >0 and w;e Wi (7 =1,2), we Wiz (k= 2,3).

Proor. We have

(1) [fuox fi@)]

= Slx—yl>la;]/2 |15 — 9)foly) dy + S . | fu@ — 9f(y) |dy

lz—yl=|zl

< 2120 + o) w,(20/20 + |]) | (L + [y) 0 U/L + |y)dy

+ 22+ |a) @2 + o) | (@ + [y mw L + JyDdy
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Hence
(2) | frox fo@)| < C(20 + |2])7"w,(20/20 + |2 )

+ CA + |2 "w,(2/2 + |2]) .
Now, if || <1 we have clearly

(3) @l S0 |1 A0 = w0 |A@ 1.

And if |z| > 1 we have (26 + |z|)" = 27"(1 + |z|)", and so, by using the
monotonicity of w,
(4) | fro* fi@)] = Ci(1 + |2])7"w,(20,/20, + |2 ])
+ C(1 + [2)"wy(2/2 + |x]) .
Combining (3) and (4) we obtain the desired result.

LEMMA 8.2. Let ge.&” be such that §(&) =1 (g] < 1/4), =0 (|&| =
1/2) and me{0,1,2,8). Let we W,. Then, if | f@)|<A+|2|)"wd/1+|=|)
and suppt C{l/2 < |&| < 2}, there exist w, € W, and A, B> 0 such that
for any 6 >0
(5) | fixg(@)| = AQ + |x)7"w,(0/0 + |=])

(6) [(fs — fixg)@)| = BO + |z))"w,(0/0 + |x]) .

Proor. (5) follows from Lemma 8.1. (6) is rather easy.

LEMMA 3.3. Let g and w be the same as in Lemma 3.2Aand 0, > 0.
Then for any f with | f(x)| < (1 + |z])™w(1/1 + |z|) and suppf C{|&] < 2},

there exist w, € W,, and A, B > 0 such that for any 0 = 8, the inequalities
(5) and (6) hold.

PROOF. Similar to the above proof.
LEMMA 3.4. Let we W,. Then there exists C > 0 such that for any

é with |¢(x)] < A + |z)"w(@/1 + |x]) and for any Carleson measure p
on R%™ it holds

| 6P, 1) < O £l for fe LR .

Proor. Since (1 + |z|)"w(/1 + |z|) € L'(R") and is radial, the non-
tangential maximal function of f xg¢,(x) is bounded by a constant multiple
of Hardy-Littlewood’s maximal function of f(x) (Stein and Weiss [10,
p. 59]). Hence we have the desired inequality by the Further result 4.4
in Stein [9, p. 236].

LEMMA 3.5. Let w,, w,€ W, and suppose ¢(x) € L'(R") satisfies
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[¢(x) — o(¥)| = w2z —yl) for =z yeR",
lp(@ — ) — g@)| = A + [z wlyl/L + [x]) Sfor 2y|=lx].
Then for any « > 0 there exists C > 0 such that

[, sup |F+6.@)lde SCl Sl for feH'.

R" |z—y|<at

This lemma was originally obtained by Fefferman-Stein [7, p. 152].
Our modification is due to M. Kaneko.

LEMMA 3.6. Let woe W,N W, and |¢)| < A+ |z|)"w@/1+ |x]) and
supp ¢ C{|&] < 1}. Then there exists C > 0 such that for any Carleson
measure ¢ on R it holds

|, s 7 #00ldpso, &) < Y £l f € H

PROOF. Let he.% be such that 2(¢) = 1 on {|£] < 1}. Since supp ¢ C
{le] < 1}, we have then ¢ = ¢xh. Hence 0¢/0x; = ¢*(0h/ox;). Thus by
Lemma 3.1 we have for =1, ---, n

{§_¢(x>} < C,(1 + |2 w1/l + |z|) for some w,e W, W,.
T;

We get |¢(x + y) — é(x)| < C,|y| for some C, > 0. There also exists C, > 0,
by virtue of the mean value theorem and the monotonicity of w,, such
that

[¢(x + 9) — ¢(@)| = Cly|A + [2)"wu(2/2 + |2]), 2|y| <|=].
Hence if |y| < 1 and 2|y| < |z|, we get, because of w,e W,,
[6(x + y) — ¢@)| = C(L + [)w(|y|/1 + [=]),

for another C,>0. If |y|=1 and 2|y| < |x|, using we W, and its
monotonicity, we get

lg(x + ) — o(@)| = 1 + [=))"(w(2/2 + |2]) + w@/1 + |2])
=GO+ a)w(yl/1 + [x]) .
Thus we can find w, € W, W, and C > 0 such that
lg(x + y) — ¢(@)| = CQA + [z))"w,(|y|/1 + |x]), 2ly|<|x].

Therefore ¢ satisfies the assumption in Lemma 8.5, and hence by that
lemma and the Further result 4.4 in Stein [9, p. 236] we obtain the
desired result.

In the sequel, we shall use propositions, which will be proved in
Section 6.
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LEMMA 38.7. Let w,€ Woand w, € W, and |y;(x)| £ 1 + |z])™"w,;(1/1 +
[2]) (7 =1,2) with supp 4, C{1/2 < |£] < 2} and ,(0) = 0. Then there
exists C > 0 such that

11,1 oo @ s @ota, t-dtda| < Cllallelvlol b
for all ke Hiy(R"), ve L*(R:") and a e BMO(R").

Proor. Let he Hj(R™) and I be the above integral. Then since
supp v, C {1/2 < |&] < 2}, there exists g € .&” such that

¥1(8) = —[£le71G(E)n(8)

Let u = g*4r. Then by Lemma 3.1 there exist C, > 0 and w,e W, such
that

lu@)| = C1 + [2)™"wy(1/1 + [x]) .

Iiet P,(x) = ¢,t(t* + |z|*)~ """ be the Poisson kernel for R%*. Then, since
P,(g) = e "', we have « , = (tdP,/ot)*u,. Hence we have

N

ot
< ol |, {76288 g, fa s Dt dtde

where ¢(x) = u(—2x) and h(zx, t) is the Poisson integral of A. Now let
F = (h, hy, -+, h,) be the generalized Cauchy-Riemann system for % (Stein-
Weiss [10, p. 231]). Then as is known (Stein [9, p. 217])

IPF[*< (n+ DIF|4F].

Hence we get by Cauchy-Schwarz’s inequality

hxt

*[uJ)!a*%,,[t“dtdw x [|v]|

1/2

(1) 1= ol(], [T Fiada) ([ § 171080 5las v, 0t dtdo)
Since h € Hj, we have
SM S“’ t4| F | dtde = SMIF(x, 0)|dz < C|| Al -
Next, as is easily seen,
(el *laxp, ) = (9l ge] *|@x s, [*) -

Since a € BMO, [()| < 1 + |z])w,(1/1 + |x|) and S Jr(x)dr = 0, we see
by Proposition 6.1 that dg¢ = |ax*n,[*t"'dtdx is a Carleson measure with
Y(¢t) < Clla]l,. By the lemma below, which we shall soon prove, we have
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that |¢,|+*dy is also a Carleson measure with v(|¢,|xdp) < C,v(p). There-
fore by the Further result 4.4 in Stein [9, p. 236] the second term in
(7) is smaller than GC,||a||]|2]||;. Thus we obtain the desired result.

REMARK. If a € L*(R"), then w,€ W, can be replaced by w,c W,.
One can use Proposition 6.2 in this case instead of Proposition 6.1.

LEMMA 3.8. Let w be a mnondecreasing function on (0,1) with
S w@t)t™dt < 1. Then there exists C > 0 such that if ¢(x) is a nonnega-

tive valued Fumction with |¢@)| < (L + |2)"wd/l + |2]), gexdpt is a
Carleson measure for any Carleson measure ¢ on RY™ and

V(g xdp) = CY(p) ,
where the convolution is taken with respect to r€ R,.

PrOOF (Suggested by A. Uchiyama). Let s > 0 and x2,€ R*. Then
L@y =\ | s —pduw, oo
le—zgl<s Jo JR?

< 0 e — vl + |2 — yDerddp, 1

Dividing R" into the meshes with side length s and center sk, ke Z",
and using the monotonicity of w we have

SN “auy, 9) | @+ le) e + |a)da

ly—zg—skl<s SO

+ 2.0,V e, o) @Nk)w0Es + k)

)
= Cowe | |+ o)W/ + o) -
Since the last integral is equal to a constant multiple of Slw(t)t“dt, we
0
have established the lemma.

4. Proof of Theorems 1 and 2. First we shall give propositions
fundamental to prove our main theorems. For 6 = (6, 6, ---, 0,) We
denote

Tao, ayy - -+, @) = S: ,11) (¢j,a,~t *aj)u(t)itt— ’

where u(t) € L*(R,) and a;, ¢; are appropriate functions.

PROPOSITION 4.1. Let w;e W, (j =0,1, ---, m), w,€ W, and |4;(x)| <
@+ [z)"w;(1/1 + |z|) with suppg; C{l/2< (&1 <2} (7=0,1,---,7),
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SuPD&:C{|5|<2} G=r+1,---,m). Let Detny =7y 7]m>0 Then for
any 60; >0 (j=0,---,r)and any 6;=n; (J=r+1, ---, m) we have
I TS @y =+, @) llaimy = CpllullooaLIl laslle II 11asllall £ 1o
for a,---,2,¢BMO, a,, - --,a,eL”
and felLf?,

where
(i) if p=2, alp) = BD =2,
(ii) if p = oo, a(p) = B(P) = * and L stands for BMO N L?,
(i) if p =1, a(p) =1, L*? stands for Hy and B(p) for H.
Here C,, C., C, do mot depend on 6 = (1,0, -, 0,)-

PROOF. Let ve.%” be such that #(¢) =1 on |&| < 1/8m, =0 (|&| >
1/4m) and 0; = ¢; 5,40, ¥; = ¢;,5; — 0; (4 = 1,2, .-+, m). Then by Lemmas
3.2 and 3.3 we get for some wj;e W,

(8) [, 10,(x)| = C(0; + |2 |)"wj(0,/0; + |x]) .
We have furthermore

(9) [vide =0 G =12, m) and

[0 =0 G=1,2 .
Hence we get by Lemma 6.4

10)  [[a*bs.lle @*piille = Cillalls ¢>0, aeBMO (j=1,.--,7),
l@*0;illey l@*yjille = Cllalle ©>0, ael” (G=7r+1,---,m),
and by Proposition 6.1 '
(11)  Y(lexyy,(@) [t dtdz) < Cf e |i max (1, 83)
V(@ * a0 @) Pt dtda) =< Cillal%, a€BMO (j=1,---,m).

We note, if §; = 16m, then 4; = 0, since supp ; C supp q?,.,,,j Nsupp (1 —
5) C{1/20; < & < 28} n{lg] > 1/8m} = @.
Now T4 f, ay, --+, a,) can be written in the following form

(12) T, = S: (f *o,0) ,-I1 (@ 0’.")%2{%

+ 2 (7 ) I @203 1T @i o du® 2

Proof of (i). The first term in (12) can be written in the form
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%) o@) = e[ (7600 [T (@205 Jutty &

for some radial function + €.%” with supp+ < {1/4 < |&| < 4}. Then for
any he L*(R") we have via Fubini’s theorem

a9 L= m@e@ds={"| 0erF 8.0 [T @505t

dxdt
T

Hence by Cauchy-Schwarz’s inequality and by (10) and Lemma 6.6
L= o]\ iveyrtatan) ([ (7170600 dedo)”
x llulle 1T llall. IT f1aslle
< ClR L1 TT el Tl ol

=1

To estimate the second term, put
r+re

15 S =" 600 [ @500 TT @) TT (@502

m

X I (ap*app,Ju(t)t™dt ,

r+ro+l

where r, + 7, <m — 1. In the following for the sake of simplicity we
denote the integrand in S(f) by A(t, x)t™*. Without loss of generality
we may assume 16m =4, ., = --- =4, and 16m = 9,,,,,, = -+ = 0,. Let
7 = min (d,, 0,,). Assume first 7 = §,. Then the spectrum of the integrand
is contained in {|&| < 32m(m + 1)/9t}. Let ¢e.&” be radial and ¢(¢) =1
(l&] < 32m(m + 1)), =0 (|&] > 64m*). Then we get

S(f) = S b x AL, x)% :

For any hel® we put I, =§ hS(f)dx. Then we have via Fubini’s
R™

theorem
I, =S SR (hx ) A(t, @)t~ ddt .
o n

By (11) and Cauchy-Schwarz’s inequality we have
il T * 1/2
16)  |LI = Cllul.TI llall, 1T ||a,,1|w(§ g F # i dode)
k=1 r+1 0 R®
® 1/2
X(SMSO Ih*¢vt]21ar*'\h,tlzt_ldtda}> ,

The last term equals (SMSjlh*@lzl ar*qlrr,mlzt"dtdxyn. By (11) and
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Lemma 3.4 this is bounded by C||%|.]e,|x- By Lemma 6.6 the first
integral on the right hand side of (16) is bounded by C|| f|.. Next the
case §,, = min (d,, 0,,) can be treated in a quite similar way. Hence we
have

|, 7 @ -+, a@h@da| < Clulle T laglls 1T llaullel £ 111 A

for all h e L?, which implies the desired result.

Proof of (ii). Let fe€BMON L% ,€BMO (k=1,---,7) and a,€L>
k=r+1,---,m). Let he Hy,, We use the notation in (i). We have
by (10), (11) and Lemma 3.7

L= Ollulle T laslle IF 1 aslell Al £ 11 -

In the other terms there are three typical ones

Type 1. 1,22 and 6r<(1/2m) min (6r1+1’ ] 57‘1, 61-+'r2+1r ] BM)ZB'
or 9, < (1/2m) min (d,,41, **+, s Orirgrry ** ", Omr) = 0.

Type 2. », + 7, =2 and 6, = ¢’ or 4, = o".

Type 3. 7, + 7, = 1.
We treat first the case of type 1 and §, < ¢’. Let radial « € & be such
that (&) = 1on {1/4 < |&| < 4}, =0o0on {|&] < 1/8} and {|&| > 8}. Then we
get

S(f) = Sm e At, D)t dE .
Thus we have for any h e H}
L=\ m@sh@de =" @.cnae, o dedt
= S: SM (W * W A(E/5,, 2)t~dwdt .
Using (10) and (11) we obtain by Lemma 3.7
(L1 < Cllulle T llalls T lasllellen LAl 1L -

The case §,, < 0" can be treated in a quite similar way.

For type 2, let ¢ €. be radial and ¢ = 1 (|&] < 2m), = 0 (|&] > 4m).
We treat first the case 2mé’ = 6,_, and 6, = 6’. The other cases can be
treated in the same way. We have then

S() = | e Att, -t

For any h e Hy, we get
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I, = SM h(@)S(f)(@)da = S” SM (h 6y VA, @)t dadt
_ S“ S (h*g)A(t)5,, @)t~ dudt .
Hence from (10) we have
LI < Cllwllell £ e T eyl 1T leyle

X SR'” S: I(h * ¢t)(ar-1 * "l"»r——l,t/&r)(a"r * '\b"r,t/b,,) lt—ldtdx .

Since 6,_, = 6, = 0,_,/2m, we have from (8)

s, (@) < C(0,/0,)"A + 8,|/0,)"w, (L + &,[2]/8,-)7)
= G + [z )"w L (1/1 + |=])

for some w,_, € W,. Since clearly SM Vr_1,15,(X)dx = 0, we have by Prop-
osition 6.1
V(@ x Yy, [t dad?) < Gyl @[5
Hence by (11) and Cauchy-Schwarz’s inequality
7(|ar—1*’\1fr—1,t/ar| lar*%,m,lt“‘dﬂcdt) = Clla,ll«lla. |l -

Therefore by Lemma 3.6 we have

|1 = Clwle IT lale JT laslioll £ 1lble

Next we treat the case of type 3. Let ¢’ =4, o0rd,. If 6’ <1/2m, one
can proceed as in type 1. If 2m = 6’ = 1/2m, one can proceed as in type
2. If ¢’ > 2m, as for the first term in (12). Thus we have the desired
result.

We remark here that the assumption f€BMO N L* is used only to
apply Fubini’s theorem in I, I, and I,. So the conclusion is valid if
f, a, +++,a,€¢BMO, a,,, ---, a,€ L~ and at least one of them is in L%

Proof of (iii). We shall use notations in the proof of (ii). However
we take here he LN L?, feH, in place of he H}, feBMON L* (re-
spectively). For I, we have by (10) and Lemma 3.7

LI = Clulle TT ol FT lasllall£ Ll Al -
For I, we have by (10)

L= Cllulle T laslly 1T llaslle |, |7 100,00 5 g0a, <40 6 dtde
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As before we get

Y(|h* s, [t dEde) < Cmax (1, 67)|| A ||, ,
(@, * ... [t 'dtde) < Cmax (1, 67)| @, |4 .
Furthermore we may assume 4§, < 16m. Since ||k, < C||h|l., we have
thus
V(| (h* s )@, *,) [t dEdx) < Cf b ||l @, ||« -

Hence by Lemma 3.6 we have

L1 S Clulle IT Nasle T e lalla ol el £l -

For I, we have, using §; < 16m,
lhxgsille < Cllhlle,  Y(aj*4y [t dtde) < Cllallx (G =7r—17).

Hence also for I, we have the same inequality as for I,.

For type 3 we proceed as for I,, I, and I, if 6, > 2m, 2m = 6, = 1/2m
and 0, < 1/2m, respectively. The other cases can be treated in the same
way. Hence we have the desired inequality.

REMARKS. (1) If $,(0) =0 for some j =~ 4+ 1, ---, m, then in the
conclusion || a;l||. can be replaced by || a;||.. (2) If forsomej=1, ---,m
one has a; € L? then in (ii) BMO N L* can be replaced by BMO.

Next we give one more proposition similar to the former.

PROPOSITION 4.2. Let w;e W, (7 =0,1, ---, m) and w, € W,. Assume
|6,@)] = (L + la) ™0,/ + |z]), suppd;c{le] <2} G=0,7+1, -, m)
and supp ¢; C{1/2<[&| <2} (=1, ---,7). Let ;>0 (=12, ---,7).
Then for any 0<6; =%; (1 =1,2, .-+, 7) we have

1TiF, @ -y @) o < Collulle TL llaslle T s lell £ i for £ €2

where
(i) if p=2, alp) =B =2,
(i) of p = oo, a(p) = *, B(P) = = and L*? stands for LN L7,
(iii) of »p =1, alp) =1, L*? stands for Hj and B(p) for H'.
Hered=@1,06,---,0, 1,--+,1) and C,, C,, C, do not depend on é, a; and f.
PrROOF. We mayassume 7, =%, = -+ =9, =nand 6, <6, -+ <0,
without loss of generality. Let {(x) be a radial function in % such that
8@ =1 on {|¢]| < 1/8ym}, =0 on {|&] > 1/4pm} and 0, = Cxg;s; 45 =
$i0; — 0; (=0,2,8, .-+, m). Then by Lemmas 3.2 and 3.3 we have

am [ @), 10;()| < Co7"(L + [2]/05)"wi((X + [21/6,)7)
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for some wj;e W, and
S«;»,-(xmw:o G=0,2-m, [o@dz=0 (G=2-.

Hence we get by Lemma 6.4 for any ¢t > 0
(18) la;*0s¢lle, |@;* sl = Cllajlle (G =2, -+, 7)
= CHa’j”w (.7 = 0,"' + 1; ) m) ’

and by Proposition 6.1
(19) V(| @y * ¢y,5 [t dtdx) < Cmax (1, 07| a, |l ,

Y(la; x4, [t7'dtds) = Cmax (1, 67)|a; |k (G =2,---,7),

V(aj*y;, [t dtde) < Clla;ll. (G=0,7+1,---,m).
Using 0; and +;, Ty f, a, -+, a,) can be written in the form

CONN VRS | (CRTIRIOLY
| 2 00@ 00 [T (@005 eyt dt

+ 57 000610 TT (@5, 405,0 T (@29, 0utdt

The first term can be treated by Proposition 4.1. The second term can
be written in the following form

0@ = | vor| 2 00@ 56,00 TL (@05, Juort-at

where €% is radial and supp 4 C{1/4 < |¢| < 4}. For any he L’ we
have

L= [ n@g@ids = (| ) (720005600 T (@ 05 0uctyt~dt

Hence by (18) and Cauchy-Schwarz’s inequality

L1 = Ol TLas o T sl (], 100 e Pt dtda)”

% (S §°° | f*00_t]2|a1*¢1,,|2t“dtdx>1/2 .

R

By Lemmas 6.6 and 3.4 the last two terms are smaller than C||%|, and
C| . max (1, p™)||a, ||« (respectively), since o, < 7. This implies

gl = Cllullo T llas s IT llas 111
Now, if ¢ € & is radial and (&) = 1 on {|&] < 2(m + 1)max (1, 7)}, =0 on
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{l£] > 4m max (1, n)}, then any term in the last terms in (20) has the form
S@) = [ e (00007600 11 (@5, 505,0 T (@555, 7t
Hence for any \heL2 we have

I = Sh(x)S(x)dx

=\, b 800(F #0002 610) 1L (@5, 505,) T (@0, Julttdtds

Thus we get by (18) and Cauchy-Schwarz’s inequality

r m L 1/2
L= Clulle T1 lala TT Naslo(] 0 100 uslan gyt dtdo)
k=2 k '1:1-;1 R™ Jo

k#5p, k+

* <SR” S:o lf*ﬁ"'t|2|ajm*“l’jm,tPt_‘dtdx)l/z .

Hence by Lemma 3.4 and (19) the last two terms in the above are
smaller than

Cmax (1, 7", |l ||k]l. and Cmax 1, 7" a;, |l fll. (respectively),
which implies

S|l < Cllu].. H laslla T 1@y el £1 -

We thus obtain the inequality (i).

Proof of (ii). We may assume 6 = (1/6,, 1, 0,/0,, - -+, 0,/0,, 1/0,, -+, 1/6,)
without loss of generality. Since 1/6, = 1/,, by Proposition 4.1 (ii) and
its remark we get the inequality (ii).

Proof of (iii). One can prove (iii) in a way similar to the proof of
(i), by using Lemmas 3.6 and 3.7 instead of Lemmas 3.4 and 6.6. Thus
the proof of our proposition is complete.

To complete the proof of Theorems 1 and 2 we need one more step.
We introduce the following decomposition of functions and operators as
in Coifman and Meyer [4, p. 152]. Let p(¢) be a radial function in &
such that supp p © {2/3 < |&| < 2}, 2% p(27€) =1 (£ # 0) and 37 p(27¢) = 1
(0 < |g] <1). For a function ¢ € L'(R") we introduce }, 4%, ¥}, R; and
&, as follows

FHO) = 29@7pE) , U = 27O, IO = 242w,
R = (3 pe-o)iee,  ae=(1-Ep@a)io.

Then we have by Lemma 3.1 and easy calculation:



266 K. YABUTA

LEMMA 4.3. Let |¢@@)| < A + |x))""w(1/1 + |z]) for a we W; (or W)
(¢ > 0). Then we have the following.

(i) If 10°6®)||e|" < Cuy |&] < A4, |lal=m + 1, then there exist
w, € Wi (or W3) and C = C, > 0 such that ’

[¥3@)], | Bi@)| = CQA + |z)"wy(1/1 + |2) zeR", jeN.

(i) If [9°¢@)||e]"™ < Culél, 161 < A, |@| =mn + 1, then there exist
w, € Wy (or Wg) and C = C, > 0 such that

l[¥i@)| = CA + [x)™"w,(1/1 + |x]) zeR", jeN.

(iii) If 0% ||| < C,, || > B, |a| = n + 1, then there exist
wy € Wi (or W) and C = Cyz > 0 such that

[yi@)] = CA + |x) w1/l + |x|) zeR", jeN.
(iv) There exist w,€ Wy (or W¥) and C > 0 such that
[g(@)| = CA + |2)"w,(1/1 + |x]) xeR".

Now for our operator T(a,, a,, - -, @ 6o, 61, - +, 6:) We get the follow-
ing formulas. If suppé;,c{l&| <1} (j=0,1, ---, k), then

(21) T(aO’ Ay 0y Qis Poy Byy * 0 0, ¢k)
oo k N N
= NZ=‘0 2—N Z Z Z e iZ=‘0 T(aO; a’jp ) a‘ik;

=0 §;<Gg<--+<gp 1;=0
’1//‘3,1\', "//‘3'1,1'1, tt "I"_?i,,i,,, Rj,,+1,1v; Sty Rjk,zv) .
Here +},, is 4 for ¢ = ¢;, and so on. In general we have
(22) T(am ceey Qs Boy ¢k)

o o

= 2 Z coe Z 2‘(":0+"'+ir)T(aj y t e, (s
0Sjg< < sk fg=0 ip=0 0 k

3
"l’\?o,ior ) @b'fwi,-r ¢ir+1,01 ) ¢.1'k,0) .

Now we can prove our main theorems.

PROOF OF THEOREM 1. (i) The case when suppg,C{|&| <1} (j =
0,1, ---, k). We use the formula (21). Then we get

”T(am Qi * 0ty Qg5 ’\l"é,N; "F?‘l,ily tt "I"?',.,i,.; Rj,.+1,N, Tty RJ'/,,N) ”a(p)

k
= ClluIIWII%ILk’I=J'i [l @; lleol] @[50
for p =2, o, 1 in the notation of Proposition 4.2, by Lemma 4.3 and

Proposition 4.1 if 1€{j, ---4,}, and by Lemma 4.8 and Proposition 4.2
if 1€{j, 41, +--, 5} Hence we get
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” T(aO; cecy Qg ¢07 Ty ¢Ic) ”a(p)
k ) k k
< Olulllanl T las -l ol 5, (35 () )2

N=0

= C'Hun”ao”*j]jz @[l @1 [l5cp0 -
(ii) The general case. We use the formula (22). Then we get
[T @50+ Cipr Cipis * "5 Gy Viosier = Vit B * s Bie0) llaim
= Cllull-liasll JT lasll-lla
by the case (i) if {j,, -, 5.} = @, by Lemma 4.3 and Proposition 4.1 if

1e{j, -+, 5.}, and by Lemma 4.3 and Proposition 4.2 if 1€{j,,,, - -, Ji}-
This implies the desired inequality as above.

PROOF OF THEOREM 2. Similar to the above proof.

5. Applications and Examples for Theorems 1 and 2. As an appli-
cation of our main theorems we can give another proof of a result in
Coifman-Meyer [3, Théoréme 1] and improve it somewhat.

THEOREM 5.1. Let o(x, &) € C*(R™ X R™) satisfy

|0f0to(, &)| = Co (L + [E)7'™,
geR™, zeR", |a|=2nm+1, [B=En+1,

and define the operator T as follows

T(fyy ++ ) fu) = g et temg(p, £)f1(8) + -+ fulEwdE - - dE, .

RZM

Then, for any p;e[l, ] A=j=m), 0<1lp=1/p,+ -+ +1/p, =1
there exists C = C(n, m, p;, C,p) > 0 such that

”T(fl, "'1fm)”p éC“fl”pl Hfm”pm (fjey’ .7: 1; R m) ’

where we use temporarily the notation || |,; = || |m and assume f;e Hy

Coifman and Meyer have given the above in the case 1 < p; < « and
p = 1. However they have given the proof only for » > 1. We sketch
our proof briefly. First, we prove the case p, =p, p, = --- = p,, = oo.
This case can be proved in a way quite similar to the proof of Théoréme
34 in Coifman-Meyer [4, pp. 1564-157], by using our Theorems 1 and 2
(or Propositions 4.1 and 4.2) and Sobolev’s imbedding theorem for 1 <
p < c. In the case p =1 one must be careful. We have used the
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atomic decomposition of H' functions. When the support of an atom is
small, we treat it as in the case p > 1. Otherwise we merely use the
case p = 2. Next, by the multilinear interpolation theorem of Calderén
we can establish Theorem 5.1.

REMARK. If o(x, &) does not depend on the variables z, the condition
imposed on ¢ can be weakened as follows:

0(8) e C=(R™\{0}) and [3i0(8)| = Cul|™™,
E#0, |la|=2nmm + 1.

In this case p may be <, where || |, shall be replaced by the BMO
norm. We do not know whether this is true in the general case.

Another application is concerned with Littlewood-Paley’s g-function.
The following may be known, but we could not find any explicit proof.

PROPOSITION 5.2. It holds for some C > 0 that
oAl =Cllfll«, feBMONL.
ProOF. Since

t op, and t—aP‘

= ’ j—‘:ly""ln’
ot li=1 ox; li=1

satisfy the condition in Theorem 1, we apply Theorem 1 and get
lg(f 2l <CllFIE, feBMONL®.
It is easily seen that for any non-negative valued f e BMO

Il =11, 0<s<1).

Thus we get the desired inequality. Here, P,x) denotes the Poisson
kernel for R%*.

We shall next give some examples of ¢ in Theorem 1 such that
[¢@)| < CA + |z "w(l/1 + |z|) just for some we Wy in the one dimen-
sional case.

EXAMPLE. Let @ > 0 and % be as follows. & is infinitely differenti-
able on (—38/4, 3/4) and

i(sgn &) log™ (1 — gD, 1/2< &<

h@:{o, el<14, lgl=1.

Let
s(@) = —hx) = 2 S: h(e) sin w&de .
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Then, integrating by parts we get

_ 2y, _ 2a (' cosuxt —a4a 1
#@) = 2 S W(©) cos gdg — 22 Sm [ log e 2 ds

The first term is clearly of order O(1/x?). The second integral is smaller
than

1 1 B 1 1 B x
1 (1+a) ___d — ___1 a f or .
Sl—u/x 1—¢ 0g 1—: 3 g o, for o > 27

Since h is integrable, ¢ is bounded. Thus, summing up, we see that
there exists C, > 0 such that

[g(@)| = C,(1 + [=))" log™ (/1 + |x]) .
In a similar way we see that there exists C, > 0 such that
é(x) = Cy(x log* da/)™, x=2j7r, =12, ---.
Clearly, if a > 5/2, then log™t™e W} (0<b<a). And if a > 3/2, it
belongs to W! (0 < b < a).

6. BMO and Carleson measures. In this section we investigate
relations between functions of bounded mean oscillation and Carleson
measures. The most important result in this direction is Theorem 8 in
Fefferman-Stein [7, p. 145] and further extensions can be found in Fabes,
Neri and Johnson [6], Ortiz and Torchinsky [8], Stromberg [12] and
Strichartz [11]. Our aim is to extend some results in the last two papers.
Our first result is the following.

PROPOSITION 6.1. Let we W, and |4(@)| = 1 + |z|)"w@/1 + |2|),
S«.p(x)dx = 0. Then |y, f|*t7'dadt is a Carleson measure for any a > 0
and f €BMO, and there exists C > 0 such that

V(| 4o * f [t dwdt) < Cmax (1, a™)|| £ 1% .

Another extension will be given later (Proposition 6.7). When one
only deals with bounded functions, one gets

PROPOSITION 6.2. Let we W,. Let |y®)| <A + |z)"wl + |2|) and
S y@)dx = 0. Then |y, * f 't 'dedt is a Carleson measure for any a > 0
and fe€L”, and there exists C > 0 such that
V(| o * f [T7'dxdt) < Cmax (1, a”)|| f[[% -

To prove these propositions we follow the proof-method in [7]. We
begin with the following lemma.
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LEMMA 6.3. Let we W,. Then there exists C > 0 such that
|| /@ = fawol(s™ + & = y1")"w(s/(s + |2 — y)ds < Cllf ]l (f <BMO)

for any cube Q(y, s) of side length s and center y.

PRrROOF. Since the BMO norm is invariant under dilation and trans-
lation, we may assume s =1 and y = 0. As w(¢) is nondecreasing, by
the arguments in Fefferman-Stein [7, p. 142] we see that

[, 17@) = foonl@ + 21D 0(U/L + @ ds

A

S50+ 206 + D)L+ 291 F e + w2 5

= ¢(|, wie10g (¢ + o)t + w)I £ . -

Using this one gets easily the first part of the following lemma.
The second part is easy. ‘

LEMMA 6.4. (i) Let we W,. Then there exists C > 0 such that

g% flle = Cllf [l

for any t >0, f€BMO and g with |g(x)| = A + |z|)"w@/1 + |z]).
(ii) Let we W,. Then there exists C > 0 such that

lg:xflle < Cll f |l
for any t >0, feL” and g with |gx)| < (1 + |z])""w@/1 + |z]).
Our next lemma is as follows.

LEMMA 6.5. Let we W,. Then there exists C > 0 such that
|Naeorear < c
for any £€ R" and g with |gz)| < (1 + |z])""w(l/1 + |z]|) and Sg(x)dx =0.
In particular, if we W,, the conclusion follows.

PrROOF. Note first, essentially W,o> W,D> W,, as noted in Section 1.
Hence ge L. Now, since S g(@)dz = 0, we have §(g) = S (e~ — 1)g(a)da.
Hence we get

EGIEY

Thus by easy calculation we get

e =gl 42| L@l

lz1<1/1¢€1 [E
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1 1€1
(23) 16(8)] = |¢] SM w(t)t~*dt + 2 S: wt)tdt .
(a) Case £=(b,0, ---,0). In this case we have
- ® a 2 dt — ® a 2 dt o ' LY ® o o 0
I={"1aeort = [Tace, o, -, oppdt = oo+ |

=1+ 1, say.
Using (23) we have

(0, w@eds) G+ 4] (| w
nggot(t w(s)s ds) +4 ( w(s) ) L - L+1L, say.
By easy calculation we get
I, < 4(81 @u(s)s‘ld.s-)Sl Sl w(s)s~dsdt .
0 0 Jt/2
Interchanging the order of integrations in the last integral we have
1 2
I < 16(8 'w(s)s‘lds) < 4o,
0

Next since we W,, Sl wi(t) log**(e + 1/t)t™'dt < + « for some @ > 0. Now
0
by Cauchy-Schwarz’s inequality

(o) = ([wtoog (e + L)) g oe(e + L))
Hence we have

LsC| | welogr(c+2)de

= CS w(s) log'*® (e + 1>log 1 ds <C.
0 8
For I, we get, using Parseval’s identity and the monotonicity of w,

L= 10,0 - 0rds = | |7 (], o, a0’ )em0am, |z,

-1

< S: (Snn_la 12 )+ o )L + |x’|)dx’)2dm1

S g(x,, x')dx' |2de
RM—1L

=C({,.+ 12wt + 1o} < ([ wonar)

These show the desired inequality in the case (a).



272 K. YABUTA
(b) Generalcase. Letze R"and U € SO(n)satisfy U~¢=(|¢, 0, ---, 0).
Then we get easily
g(et) = S g(Ux)e b0 0y |
R™
Since the assumption for g is invariant under rotation, we can reduce
this case to the case (a). This completes the proof.

LEMMA 6.6. Let we W,. Then there exists C > 0 such that
|\ lgoxritdade < C) 718
for any f € L* and g with |gx)] £ A + |x])™wl/1 + |2|) and S g(x)dx = 0.
PRrROOF. Since §,(&) = §(t&), we obtain the conclusion by Lemma 6.5

and Parseval’s identity.

PROOF OF PROPOSITION 6.1. It is easily seen that it suffices to prove
the proposition only in the case a = 1. Let @ be the cube whose sides
have length 4s, with center {0}. Put

f=fot+t(f —fke+ (f —fdhee =fi+ fo + S5, say,
where X, is the characteristic function of the set @. Then, since
Sw(x)dx =0, we have +,+f; = 0. Now by Lemma 6.6 we get
So S|m|<a ]Ilh*szt_ldxdt —S_ So Snn [“/"e*f;|2t—ldxdt é C”f2“2 ——<— CISan“%k .
For f, we get

o fie)| = || wta — wf@ay|

= | 1£@) = fal(t + 1 — yDrwit/e + 1o — y D)y
Now if ye@Q°, |z| < s and 0 < ¢t < s, then we have

14+ 12—l - vl _2_1+—W‘4:'8 z<1+—|5ys—|)<1+:—t>.
Let b = 4/5. Then, since w is nondecreasing, we have easily

w(t/(t + & — y])) < w(5s/(5s + [y )w'~*(4t/(4t + s)) .
Hence it follows that

[ * fo(®)| = Cw'~*(4t/(4t + 5))s™" S | f(y) — fQ|(1 + _l’!/_l>"‘

s
x w'(5s/(5s + |y |))dy .
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Therefore by Lemma 6.3 we get
[ f(@)| < Cil| f || «w'™*(42/(48 + 8)) .

Thus we have
(24) S S. I fi@) e dadt < Cs”) £ s S WD AE/(4E + 8))tdE .
0 zl<s 0

Since we W,, we Wy for some a > 0. Hence by Cauchy-Schwarz’s
inequality we get

(25) (Sl 'uf/"’(t)—dL)2 = Sl w*(t) log'*® (e + —1—->—d£- Sl log—tta (e + l>£—t— .

0 t 0 t/ t Jo t/ t
Therefore the last integral in (24) is finite. Thus we obtain the desired
inequality.

PROOF OF PROPOSITION 6.2. One can prove Proposition 6.2 in a way
similar to the above proof. In this case we take b = 2/3. Then as in
(25) we have w**e W,. We use this and Lemma 6.4 instead of (25) and
Lemma 6.3, respectively.

Modifying our arguments above, we can extend a recent result in
Strichartz [11, Theorem 2.1] as follows. We leave the detailed proof to
the reader.

PROPOSITION 6.7. Let we W, and w, be a monincreasing function

on [1, =), satisfying S w7 dt < + oo, Let a > 0. Then there exists
1
C = C(a) > 0 such that

V(lpex f [t dedt) < C| £ II%

for any feBMO and + € L' satisfying |||, <1, Sq;r(x)dx =0 and
(i) [y@)| =@+ [z))"w@/1 + (=) for [x]|>a
(i) |98 = wi(l€]) for |&] > 1.

A similar result corresponding to Proposition 6.2 can also be formu-
lated. And we can modify Proposition 6.7 so that it contains Proposi-
tion 6.1. However, we think that Proposition 6.7 itself has its meaning,
because it contains no assumption on the Fourier transform.

As for the results converse to Propositions 6.1 and 6.7, we obtain a
result similar to Theorem 2.5 in Strichartz [11], by modifying his argu-
ments.

PROPOSITION 6.8. Let we W,. Let +; satisfy the assumptions in
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Propositions 6.1 or 6.7 (=1,2, ---, k). Suppose furthermore ;&) €
C=(R"\{0}) and for each &+0 there exists j such that ;(t&) # 0 for some

t>0. Then, ifS 1F@IQ + [2)"w(l/L + |o)de < + oo and |4, * f [*t-dwdt
is a Carleson measure for each j=1,2, ---, k, it follows that f eBMO.

Finally in this section we give two examples which show that the
numbers 4/5 and 2 are best possible in Propositions 6.1 and 6.2, respec-
tively.

EXAMPLES. Mt%ey’mmswmwjmwdﬂ}mdSmmm=
S. (@ +e) " log (2 + |alde (j =1, 2), where a,=5/2 and a, = 3/2.

Let +j(x) = —g;(x) for |2] <1, =1 + [z])""log (2 + |z|) for [z| =1
Let fi(x) = log* |z| and fy(x) = X5;2y. Then [+, fi(x)|*t'dxdt is not a
Carleson measure (5 = 1,2). In fact, for || < 1/2and 0 < £ < 1 we have
by elementary calculations and estimates

i fi@) = Clog -1— log=(2 + 2/t%) = C, logm% ,

where C, is independent of ¢, z; 0 < ¢ < 1and |z| < 1/2. Hence, near x = 0,

we have S [ * fi(@) Pt7'dt = + 0. Similarly we get S afrg, ¢ * fol) £~ dt =
0

+ o, near ® = 0. These imply our assertion.
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