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1. Introduction. The main purpose of this paper is to investigate
the asymptotic behavior of solutions of the nonlinear differential equation
on [0, oo).χ Q,

(1) *=f(t,x),

where Q is an open subset of Rn and f(t, x) is continuous on [0, oo) x Q.
Consider the following assumptions with respect to the equation (1):
There exist nonnegative continuous functions V(t, x) and W(x) such that
V(t, x) is locally Lipschitzian with respect to x and Vω(t, x) <; — W(x)
for t ^ 0, x 6 Q. Then it is well known that each bounded solution of (1)
approaches the set E = {x e Q: W{x) — 0} as t —> oo under the assumption
that /(£, x) is bounded when x is bounded [7], [8], [9], [11]. Recently,
LaSalle [4] obtained the same result under the weaker assumption that
f(t, x) satisfies Condition (B) (see Remark 1 below). In this paper, we
analyze the problem posed above under a further relaxed assumption,
Condition (C) below.

As an application, we shall investigate the asymptotic behavior of
solutions of the second order scalar nonlinear differential equation

x + h(t, x, x) I * \ax + f(x) + g(t, x, x) + p(t, x, x) = 0 ,

where a ^ 0. In the case a = 0, Onuchic [7], [8], [9] obtained sufficient
conditions under which every solution, together with its derivative,
tends to zero as t —> oo. Since he applied the invariance principle, one
of his most essential assumptions is the following: h(t, x, y) is bounded
when x2 + y2 is bounded. Many authors discussed the problem of relaxing
the boundedness condition on h. One of these conditions is the growth
condition on h. Thurston and Wong [10], Artstein and Infante [1] and
others discussed this problem under the growth condition.

The author wishes to thank the referees for many useful suggestions
and carefully reading the manuscript.

2. Notation, definition and preparatory lemmas. We denote by
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Rn the ^-dimensional real Euclidean space and by \x\ the Euclidean norm
of x e Rn. If a point x is in Rn and E is a subset of Rn, then we denote
άiat(x,E) = inf{\x — y\:yeE}. We say that the function V{t,x) is
locally Lipschitzian with respect to x if for each (t0, x0) in [0, oo) x Q,
there exist a neighborhood U of (£0, x0) and a constant L(U) > 0 such
that for (£, α), (ί, y) e 17 we have 17(t, a?) - 7(ί, 2/) | ^ L( 17) | a - y |.
Furthermore, we define the derivative of V(t, x) along the solution of
the equation (1) as follows:

V(1)(t, x) = lim sup {V(t + h, x + Λ/(ί, α)) - 7(t,
h0+

Let &(ί) be a solution of (1) on [tQ, oo). We say a(ί) is bounded in
the future when x(t)eK on [t0, oo) for some compact set i£" in Q. In
the case Q = Rn, it is well known that every solution of (1) is bounded
in the future if

Vω(t, x) ^ 0 and α(|a?|) £ V(t, x) ,

where a(r) is a nonnegative continuous function on [0, oo) such that
a(r) —> oo as r —> oo.

Let y(t) be a continuous function on an interval [Γ, oo) with values
in Rn. A point peRn is said to be a positive limit point of y(t) if there
exists a sequence {ίm}, tw—> oo as m—> oo, such that y(tm}-+p as m-> oo.
The set of all positive limit points of y{t) is denoted by Ω and is
called the positive limit set of y(t). It is well known that when y(t) is
bounded and continuous on [T, oo), the positive limit set Ω of y(t) is a
nonempty, compact and connected set and y(t)->Ω as ί—>°o, that is,
dist (i/(t), 0 ) - * 0 as ί-> oo.

LEMMA 1. Let f(t) be a C^function on [tOf oo) satisfying

( 2 ) At)^h{t) for t ^ t Q ,

where \ h(s)ds is uniformly continuous on [tQ, oo), and suppose that
JtQ

there exists a sequence {tn}, tn -> oo as n -» oo, sw/& ί^aί /(<») -» 6 as ^ -^ oo.
Γ/^e^ /or a^i/ number c (c < 6), ίfeβrβ exisέ d > 0 cmcϊ a positive number
n0 such that f(t) > c for all t e [tn — d, tn], n ^ n0.

PROOF. Since H(t) = \ h(s)ds is uniformly continuous on [t0, oo),

there exists a positive number d such that | JEΓ(ί) — H(t') \ < (b — c)/2 for
all ί, t' e [ί0, oo), | ί — ί'| ^ d. Moreover, let w0 be a positive integer such
that tn ^ t0 + d and |/(ίn) - b\ < (b - c)/2 for w ̂  n0. Integrating both
sides of (2) over [ί, ί j , ίn - d ^ t ^ tn, we have f(tn) - f(t) ^ H{tn) -
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H{t) < (b - c)/2 for n ^ n0. Thus f(t) > f{tn) - (b - c)/2 >(6 — (6 — c)/2) -
(b - c)/2 = c for t e [tn - d, tn], n ^ ΛQ. q.e.d.

3. Condition (C) and the main theorem. We consider the following
Codition (C) with respect to the function f(t, x) = (f^t, x), ,/n(ί, x)).

Condition (C). The set of the indices {1, , n} is decomposed into a
disjoint union I{JJ with the following properties: (i) For any iel, any
continuous u: [0, oo) -> Q with a compact range and any 7 > 0, there exist
Tt = Γ(7, u,i)>0 and βi = /3(7, u, i) > 0 such that for any a > Tt and

S a+t
fi(s, u(s))ds > 7 implies t > βif and (ii) for any j e J, any

a

compact set K in Q and any continuous u: [0, oo) _> if, we have

/y(ί, u{t))uά(t) 5̂  ftyίt), where I hj{s)ds is uniformly continuous on [0, oo)
Jo

and My(t) represents the j-th component of u{t).
We say that the equation (1) satisfies Condition (C) whenever /(t, α?)

satisfies Condition (C).
REMARK 1. LaSalle [4] imposed the following Condition (B) on

Condition (B). Given any compact set K in Q, any continuous
u: [0, oo) -» K, and any 7 > 0, there exist T = Γ(7, K, u) > 0 and /3 =

/3(7, i£, u) > 0 such that f or a > T and t > 0, f(s, u(s))ds > 7 implies

t > β.

Clearly, Condition (B) implies Condition (C) with J — 0 . For ex-
ample, the equation

Xι = = X2 f $2 = : *HC, ΛJi, X2JX2 J\%i) 9

where h(t, xlf x2) is nonnegative on [0, 00) x R2, satisfies Condition (C).
In this case, we may set / = {1}, J — {2}.

Next, suppose V(t, x) is a nonnegative continuous function on
[0, 00) x Q and locally Lipschitzian with respect to x and that

Vω(t, a?) ̂  - W(x) x 6 Q , t ^ 0 ,

for some nonnegative continuous function W(x). In this case, we call
y(ί, a?) a Liapunov function of (1) on [0, 00) x Q with W(x). For the
function TF(a?), we define the set E = {xeQ: W(x) = 0}. Furthermore,
when /(£, x) satisfies Condition (C), we denote by S(E) the set of all
points z = (zu - , zn) such that zt = xt if ΐ e / and 0 ^ ^ ^ ^ or a?y ^
Zj ^ 0 if i 6 J, for some x = (ajlf ••-,»„) in J5.

THEOREM 1. Suppose that f(t, x) satisfies Condition (C) and that
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V(t, x) is a Liapunov function of (1) on [0, ©o) x Q with W(x). Then
each solution of (1) which is bounded in the future approaches S(E) as

PROOF. Let x(t) be any solution of (1) satisfying x(t) eA, t ^ tQ,
for some compact set A in Q. Clearly,

V(t, x(t)) - 7(ίo, x(Q) ύ - [ W(x(s))ds

for all t ^ £0> and hence we have

( 3 ) I W(x(s))ds < co .

Fix a = (αlf , αn) ί iS(J57 n A ) n 4 = : S and define the sets J o = {j e J:
aά = 0}, J x = {j e J: aά > 0} and J2 = {j e J : α, < 0}. First of all, we shall
prove t h a t there exists a positive number ε such that

( 4 ) {x = (#!, , xn) : I a?c — at | < ε (iel) , #,• > a,- — ε (i e J J

and % < αfc + ε (fee J2)} Π U(S, ε) = 0 ,

where Ϊ7(S, ε) is an ε-neighborhood of S. Suppose this is not the case.
Then there exist a sequence of positive numbers {εj, εn—>0 as w —> co,
and two sequences {xn}, {zn} in Rn such that

( * ) I xnΛ - a, I < εn (i 61) , α?nti ^ α, - εn (i 6 J J ,

ajnιfc ^ ak + εn (fee J2) and \xn — zn\ < εn , zne§ for all n ,

where a?n>< represents the i-th component of xn. Since ε n -»0 as ^—>co,
we may assume xnJ > 0 (je J J , ^n,fc < 0 (keJ2), znJ > 0 (jeJj) and
2n,jk < 0 (A e J2) for a sufficient large number ?̂ . On the other hand, by
the definition of S, we obtain another sequence {zn} in E Γ) A such that

and £n,fc ^ ^n,fc < 0 (keJ2).

Since the sequences {xn}, {zn} and {̂ n} are bounded, we may suppose
that xn —> χ0, zn —> ô and zn->zQ as w —> co, taking a subsequence if
necessary. Letting n-+°° in (*) and (**), we have χQ = z0, xQ,t — ai
(i e I ) , x0)j ^ ay (j e JΊ), ίco,fc ^ ak (ke J2), 5Oι< = zOii (i 6 / ) , ϊ O i i ^ ^0,i ^ 0
(j1 e J J and ô,ifc ^ ô,fc ^ 0 (A; 6 / 2 ) . Consequently, αt = zQti (i e / ) , 0 ^ α̂  ^
«o.i or ?0,i ^ «i ^ 0 (jeJ). Since z o e 2 £ n A , this means α e S ( S f i A ) .
This contradicts aίS. Therefore we can choose a positive number ε
which satisfies (4).

Now, we shall prove that Ω<zS, where Ω is the positive limit set of
x(t). Suppose that this is not the case. Then there exist a point a =
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{au " ,αn) and a sequence {tn}, ίn-> oo as w->oo, such that a$S and
#(ίn) —> α as w —> oo. For this point α, choose a positive number ε so
that (4) holds, where we may assume that e is sufficiently small. More-
over choose two numbers T and β such that T > Tiy β < βt for all i e I
and 0 < β < 1, where T€ and βi are the numbers corresponding to x(t),
7 = e/2 and /< in the definition of Condition (C). Furthermore, choose a
positive integer n0 so that if w ^ w0, then | flc/ίj — at \ < e/2 for all ΐ e /
and tn > T + 1. Then we have

<ε/2

for t e [tn — β, tn + β], n^ n0, and therefore

(5) \Xi(t) - α, |< e for t e [tn - β, tn + β] , n^n0.

On the other hand, for jeJt there exists a function hAt) such that

S t
hAs)ds is uniformly continuous on [0, oo) and {dldt)xAtf —

0

2/}(£, x(t))xά{t) ^ hj(t). Since x3-(tn) —> αy as ^—> oo, Lemma 1 implies that
there exist positive numbers d and ^ such that
( 6) χs(t) > a5 - ε (j e J,) and xk(t) < ak + ε (A; e J2)

for t e [tn - d, tJ , n^n,.

Put δ0 = min (/3, d) and w2 = max (w0> nt). Taking a subsequence of
{tn} if necessary, we may assume that the intervals [tn — δ09 tn], n ^ n2,
are mutually disjoint. From (4), (5) and (6), it follows that x(t) & U(S, ε)
and hence dist (x(t)9 E) ^ ε for all te[tn — δ0, tn], n ^ n2. Therefore
there exists a c > 0 such that W(x(t)) > c for £ e [tn — <?0, tn], n ^ n2.
Consequently,

n=n2Jtn-δ

This contradicts (3). Thus we have ΩaScz S(E). Since x(t) -> β as
t - * oo, we conclude that x{t)-+S(E) as t-» <*>. q.e.d.

The following corollary is immediate. This is a result given in [4].

COROLLARY 1. Suppose f(t, x) satisfies Condition (B), that is, J — 0
in Condition (C). Moreover suppose V(t, x) is a Liapunov function of
(1) on [0, oo)χQ with W(x). Then each solution of (1) which is bounded
in the future approaches the set E as t-+ °°.

COROLLARY 2. Suppose fit, x) satisfies Condition (C) and f(t, 0) = 0
for t^Q. Moreover suppose that there exists a continuous function
V(t9 x) on [0, oo) x Q such that
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(a) V(t, x) is locally Lipschitzian with respect to x, and V(t, 0) = 0,
t ^ 0 ,

(b) a(\x\) ̂  V(t, x) for t ^ 0, xeQ, where air) is a continuous and
positive definite function, and

(c) Vω(t, x) ^ — c(\x\), t ^ 0, xeQ, where c(r) is continuous and
positive definite.
Then the zero solution of (1) is asymptotically stable.

PROOF. Define W(x) = c(\x\). Then V(t, x) is a Liapunov function
of (1) with W(x) and S(E) = E = {the origin}. Thus we have Corollary
2 by the standard argument and Theorem 1. q.e.d.

REMARK 2. Corollary 2 is a generalization of a theorem given by
Marachkov [11, Theorem 7.10], where it was assumed that fit, x) is
bounded when x is bounded.

4. Applications. Consider the following second order scalar dif-
ferential equation

(7) x + h(t, x, x)\x\ax + f(x) + g(t, x, x) + p(tf x, x) = 0 ,

where a ^ 0, and the system equivalent to (7),

(8) ώ==V

y = -h(t, x, y)\y\ay - f{x) - g(t, x, y) - p(t, x, y) .
An equation of this type was discussed also by Ballieu and Peiffer [3].
Throughout this section, we suppose that the following hypotheses are
satisfied:

(HI) h(t, x, y), g{t, x, y) and p(t, x, y) are continuous on [0, <χ>) x R2

and h{t, x, y) ^ k(x, y)^0, y- g(t, x, y) ^ 0 and \p(t, x, y)\ ^ β(t) for

S CX3

β(s)ds < co.
0

(H2) f(x) is continuous on R and there exists a p > 0 such that
ff /(#) > 0 f or 0 < I x I <i p and

F{x) = \ fiu)du -> oo as I a? I -* oo .
Jo

Define

(9 ) V(t, x, y) = (i/2 + 2F(») + M)1/2 +

where M is chosen so that 2Fix) + M > 0. An easy computation shows
that
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(10) Vm(t, x, y) ^ ~h(t, x,y)\y\a+\y* + 2F(x) + M)^

where W(x, y) = k(x, y)\y\a+2(y2 + 2F(x) + M)~ι/\
From (H2) and (9), V(t, x,y)->°° as |a?| + \y\ —> oo uniformly for t.

Therefore, it follows from (10) that every solution of (8) is bounded in
the future. Furthermore, from (HI), it is obvious that the system (8)
satisfies Condition (C) with I = {1}. For the above W(x, y), we obtain
E = {(x, y): y k(x, y) = 0} a n d S ( E ) = {(x, z):0^z^y o r y ^ z ^ 0 f o r
some (x, y) e E). Then by Theorem 1, we have:

THEOREM 2. Every solution of (8) is bounded in the future and
approaches S(E) as t—>°°.

Furthermore, by Corollary 1, we have:

COROLLARY 3. Suppose that h(t, x, y) satisfies Condition (B) and
that

S 8 + t

g(uf x(u), y{u))du —> 0 as s —> °o uniformly on [0,1] for any

bounded continuous function (x(t), y(t)).

Then every solution of (8) approaches E as ί —> ©o.

Now we give sufficient conditions under which every solution of (8)
approaches the x-axis, i.e., Rx = {(x, 0): — oo < x < oo}.

COROLLARY 4. In addition to all the assumptions of Corollary 3,
suppose that

(H4) Rt = {(x9 0): x > 0} and R~ = {(x, 0): x < 0} are connected com-
ponents of E - {(0, 0)}.

Then every solution of (8) approaches Rx as t —> ©o.

PROOF. Let (x(t), y(t)) be any solution of (8). Then Corollary 3
implies ΩaE, where Ω is the positive limit set of (x(t), y(t)). In order
to prove y(t)—>0 as <—•©©, we shall employ the argument used in [7].
We must have Ω^\RXΦ 0 . Indeed, if this is not the case, it would
follow that I x(t) | -> oo as ί -> oo. This contradicts Theorem 2.

Consider the two possibilities:
(a) (0, 0) 0 Ω and hence Ω c E - {(0, 0)}, and

(b) (0,0)6 0.
Case (a) implies ΩaRx, since we have (H4) and ΩΓ\RxΦ0, and hence

y(t)-*O as έ-»oo. Consider the case (b). Since (0, 0) eΩ, there exists a
sequence {tn}, ίn->oo as w-*oo, such that (kx(tn)fy(tn))-+(OfO) as n-+°°.
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Consider the function

U(t, x, y) = (y2 + 2F(x))1/2 + j J β(s)ds

defined f o r t ^ 0 a n d \x\ + \y\ <± p. T h e n b y a n e a s y c o m p u t a t i o n , w e

h a v e U{B)(t, x,y)^0 a n d Un = U(tn, x(tn), y(tn)) - > 0 a s n -+ oo. T h e r e f o r e

as long as | x(t) \ + | y{t) \ ^ p, t^tnf we have

(11) I y(t) I ^ (2/(ί)2 + 2F(x(t)))1/2 + [° β(s)ds ^ Un .

Since Un —> 0 as w —> ©o, if we choose a sufficient large number nQ9 then
we conclude that (11) holds for all t^tn, n^ nQ. Hence y(t) -> 0 as
ί —> oo. q.e.d.

COROLLARY 5. Suppose that

(H5) h(t, x, y) ^ k(x, y) > 0 (» Φ 0).

TΛe^ ever]/ solution of (8) approaches Rx as t -> ©o.

PROOF. Since # = Λ ,̂ it follows that S(E) = Rx. Therefore, Theo-
rem 2 implies Corollary 5. q.e.d.

COROLLARY 6. Suppose that (H4) holds and

(H6) yky(x,y) ^ 0, aj,»eΛ,

where ky(x, y) denotes the partial derivative of k(x, y) with respect to y.

Then every solution of (8) approaches Rx as ί —> °°.

PROOF. Let (x(t), y{t)) be any solution of (8). Since we have S(E) = E
by (H6), Theorem 2 implies that (x(t), y(t))-+Es.& t-+oo. The remainder
can be proved by the same argument as in the proof of Corollary 4.

q.e.d.

To obtain more precise information on the asymptotic behavior of
solution of (8) as t -> oo, we need the following lemma which is a gen-
eralization of the result obtained by Thurston and Wong [10] in the case
p = q = 2.

LEMMA 2. Let H(s) and u(s) be nonnegative real-valued functions on

[0, oo) such that for positive constants p and q which satisfy 1/p + 1/q — 1,

( i ) \ H{s)u{s)qds < oo, and
Jo

(ii) there exist a sequence of positive numbers {sn} and a positive
constant d such that sn+1 — sn ^ d and that

(a) H(s) = 0 on [sn, sn + d] for all n, or

Q sn+d "Ί-g/p

H(S)dsj = co.
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Then there exists a subsequence {tn} of {sn} such that

S tn+d
H(s)u(s)ds —> 0 as n —• °°.

*»
PROOF. If (a) holds, then we can set {£„} = {sn}. We assume that

(b) holds. Suppose that the assertion in the lemma does not hold. Then
there exist δ > 0 and a positive integer n0 such that

S sn+d
H(s)u(s)ds , n ^ n0 .

By Holder's inequality, we have

Thus

Σ

ΓC8n + d ΊVpΓf sn+d ~\l/q

£\\ H(s)ds\ I) H(s)u(s)qds\ .

* » + d ~Ί-Q/P °° Γ f 8 w+ d Ί

ms)ds ^ δ-« Σ H(β)u(β) dβ
β Λ J n = n 0 L J β ^ J

This contradicts (b). Hence the assertion in the lemma holds. q.e.d.

THEOREM 3. Suppose that in addition to (HI) and (H3), the condition

(H2)' x-f(x) > 0 (a Φ 0)

is satisfied. Moreover suppose that the following condition (H7) holds:

(H7) For any pair (x(t), y(t)) of bounded continuous functions on
[0, oo), there exist a sequence of positive numbers {sn} and a positive
constant d such that sn+1 — sn^ d and that h(s, x(β)f y(s)) = 0 on [sn, sn + d]
for all n or

00 Γΐ8n+d ""|-l/(a+U

Σ \ Hs, x(s), y(s))ds = 00 .
n=lLJsn J

Furthermore let (x(t), y(t)) be any solution of (8) which approaches Rx

as ί -> 00. Then (x(t), y{t)) -> (0, 0) as t -> <*>.

PROOF. By Theorem 2, the solution (x(t), y(f)) is bounded on a half
interval [t0, 00), that is, there exists a compact set A in R2 such that
(x(t), y(t))eA for t ^ ί0. Consider the Liapunov function defined by (9).
Then for t :> t0,

Wt)V(t,x{t)fy(t))

^ -h(t, x{t), y{t))\y{t)r\y{tf + 2F(x(t)) + M}~^

^ -h(t,x(t),y(t))\y(t)\a+2/L,
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where L = sup(a?,y)e4 [y* + 2F(x) + M]m. Since V(t, x(t), y{t)) is non-
negative and nonincreasing, we conclude that

(12) \

and that V(t, x(t), y(t)) —> k as t —• °o for some A\ Since the positive
limit set of (x(t),y(t)) is connected and y(ί)->0 as t—•©o, it follows
from (H2)' that #(£) —> c as £ —> oo for some constant c. Applying Lemma
2 to u(s) = I »(8) |α + 1, H(s) = h(8, x(s), y(s)), p = a + 2 and ? = (α + 2)/(α + 1),
it follows from (12) that there exists a sequence {tn}, tn—• oo as n - * ©<>,
such that

( , ( ) , 2 / ( ) ) I y ( ) | α + 1 d s —> 0 a s τι —• oo
tn

and hence

h(s, x(s), y(s)) 12/(s) \"y(s)ds -^0 as ^ -> oo

uniformly for t e [0, d]. Integrating the second equation of (8) over
[tn, tn + d], we obtain for t e [0, d]f

V(fin + t)- y(fn) = - Γ " + * Λ(β, Φ), y(s))\y(s)\«y(s)ds - Γ/(a?(ίn + s))ds
Jt J

g(s, x(s), y(s))ds - I p(s, x(s), y(s))ds .

Letting n->oo9 we have [* f(c)ds = 0 for ίe[0, d]. Therefore, (H2)f

Jo
implies c = 0. q.e.d.

REMARK 3. To obtain a result similar to Theorem 3, Artstein and
Infante [1] considered the following condition in the case where a — 0:

(H8) For any pair (x(t), y(t)) of bounded continuous functions on
[0, oo), there exists a positive constant B such that for all T > 1,

T- ( α + 2 ) Γ λ(β, &(β), »(β))dβ ^ £ .
Jo

This is somewhat easily checked in applications. However (H8) implies
(H7). In fact, suppose that (H8) holds. Then we have n~pΣk=i ak ^ -B,

h(s, x(s), y(s))ds and p — a + 2. Here we may assume
π - l

that an Φ 0 for all sufficiently large n. Put tf = (a + 2)/(a + 1). By
Holder's inequality, for n > N, we have



ASYMPTOTIC BEHAVIOR OF SOLUTIONS 569

Thus,

y i vQ-fc ) Ξ= x i y i an ^ ΪS y, ^J. — Δ JΔ ) = oo #

Put sn — n and d = 1. Then (H7) holds for such a choice of {sn} and d.
Further, for the function h(t) = (t + 2) log (ί + 2) and for a = 0, we
easily see that (H8) does not hold but (H7) does. Therefore in the case
a = 0, (H7) is strictly weaker than (H8). Furthermore, if we can certify
(12), then (H8) implies the condition considered by Artstein and Infante

h(s, x(έ), y{s)) I y{s) \ads <; Bx for some constant Bλ.
0

Indeed, suppose that (12) and (H8) hold. Then for some constants M
and Bf we have Σn=i K ^ M and ΣίΓ=1 cn ^ BN«+2 for all N, where 6n =

h(s, x(s), y(s))\y(s)\a+2ds and cn = I h(s, x(s), y(s))ds. By Holder's
7i—l Jπ-1

inequality, for all iV, we have
\Nh(8, x(s), y(s))\y(s)\ads ^ Σ (δ^ / ( α + 2 )4 / ( α + 2 ))

<s 2/(α+2)Γ iV Ία/(α+2)

[ Σ J
Therefore we can p u t Bλ = B2/{a+2)Ma/{a+2) .

We immediately obtain the following corollary which is a generali-
zation of a result given in [1] and [7].

COROLLARY 7. Let (HI), (H2)', (H3) and (H7) hold, and suppose that
all the assumptions in Corollary 5 or 6 are satisfied. Then every solu-
tion of (8) tends to the origin as t —-> oo.

If all the assumptions of Corollary 3 are satisfied, then (H8) obviously
holds. Therefore we have:

COROLLARY 8. Let (HI), (H2)', (H3) and (H4) hold, and suppose that
h(t, xf y) satisfies Condition (B). Then every solution of (8) tends to the
origin as t —» oo.

Ballieu and Peiffer [3] investigated the equation (8) in the case
k(x, y) = ψ(x) and g = p = 0, under (HI), (H2)' and the following as-
sumptions:

( i ) 0 ̂  ψ(x) ̂  h(t, x, y) 5̂  b(t)φ(x, y), b, φ, ψ being continuous, b(t) > 0,
φ(x, y) ^ 0,

(ii) \ ψ(x)dx = m(η) > 0 for all η > 0,

Soo

dt/b(t) = oo, b(t) nondecreasing.
0

Now we show that (i) and (iii) imply (H7). Since b(t) is nondecreasing,
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(iii) is equivalent to Σ~=1 l/b(n) = oo. Put {sn} = {n} and d = 1 and
choose α0 > 0 satisfying aob(t) ;> 1 for all t. Then for any pair (x(t), y(t))
of bounded continuous functions on [0, oo), we have

0 0 ΓC*n+d ~l-l/(α+l) 00 Γfn+1 Π-l/(α+l)

n=l LJβw J n = l LJn J

where M is a positive constant satisfying M > sup φ(x(t), y(t)). Therefore
(H7) holds for such a choice of {sn} and d.

Thus the following is a generalization of Ballieu and Peiffer's result.

COROLLARY 9. Let (HI), (H2)' and (H7) hold. Moreover suppose
that g = p = 0 αwcϊ ίfeαί (i) 0 ̂  ψ(α ) <; /ι(ί, α;, y) and ψ(x) is continuous,

ψ(x)dx = m(η) > 0 for any f] > 0. Tftew et;erτ/ solution of
-V

(8) ίβwcίs ίo ίfce origin as f - * 00.

PROOF. On account of Theorem 3, it suffices to prove that y(t) —> 0
as ί-^00 for any solution (a?(ί), »(ί)) of (8). Define Ϊ7(a5,2/) = 2/2/2 + F(x).
Then we have ϋm(x, y) = -λ(ί, a?, 2/)lί/lα+2 ^ -f(^)l2/la+2 ^ 0. Define the
set E = {(«, 2/): 2/ ψ (a ) = 0}. Then we have S{E) = £? and hence i2 c E,
where β is the positive limit set of (x(fi)f y(t)). Furthermore, there
exists a constant c such that ΩaΓ: = {(», y): F(ίc) + y2/2 = c}, and hence

Suppose that j/(t) -^ 0 as t —• ©o. Then there exists an (α?0> y0) e Ω
such that 2/0 ̂  0, and consequently F(x0) < c. We shall derive a con-
tradiction. Consider the case £ 0 >0. By (ii), we can choose ζ satisfying
I ξ I < x09 F(ξ) < c and ψ(ζ) > 0. Thus flcΛU Γ2f where Γx =
{(x, y) e Γ: x > ς} and Γ2 = {(x, y)eΓ:x < f}. Since ,0 is connected and
(̂ 0, Vo) 6 β Π A, we have β c Γlβ Then for a sufficiently large number
T, we have

(13) x(t) > ξ and I7(aj(ί), y(t)) ^ c for all t > T .

Furthermore, since x(t) is bounded, we have Ω Π Rx Φ 0 . Choose a
point (&!, 0) 6 Ω. Then F(aj0) < F(a?i) = c, ξ < xλ and consequently, by
(H2)', α0 < α?!. Therefore it follows from (13) and the fact (x0, yQ),
(a?!, 0)ei2 that there exists a number Tlf Γ, > T, such that #0 < x(Tx) < xi9

y0 x(Ti) ^ 0 and that y0 ^(ΓJ > 0, which yields a contradiction, since
*(*) = y(t) I n t ^ e c a s e 0̂ ̂  0> almost the same argument will lead us
to a contradiction. q.e.d.

REMARK 4. In order to guarantee that every solution of (8) is
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bounded in the future, the assumption (H2)' is too strong. In fact, this
assumption may be replaced by the following weaker one [10]:

(H2)" (i) xf(x) > 0 (χφθ) and (ii) for any constant B > 0, there

S ±oo

(u(x) +
o

f(x))dx = ±oo and max(u(αθ — rBtU(x), 0)eL 1 (— oo, oo), where

(u(x) if \f(x) I > B u(x) or x = 0 ,
B>" (inf {k(x, y): | f(x) \/u(x) ̂  y sgn x ^ B) .

y

Therefore, replacing (H2)' by (H2)", we obtain results similar to those
in the above Theorem 3 and Corollaries 7, 8 and 9. Furthermore, we
note that in the case a = 0, (H7) is identical with the assumption (A5)
in [10].

Finally, as another application of Theorem 1, we consider the follow-
ing system on [0, oo) x Rn+2

f

x = —cobQ(t)y - Σ ctbi{t)zt

(14) y = bQ(t)f(x) + φ)

zt = -fc,(t, x, y, z)\zi\«% + biφfix) + eS)

(i = 1, 2, , n), where at ^ 0, ct > 0 are constants and z = (zl9 , zn).
A system of this type was discussed by Levin and Nohel [5] and Miller
[6] and others. Consider the following:

(Al) &„ eu hi and / are continuous, 6*6 jyo, oo) and each 6t is
bounded on [0, oo),

(A2) x-f(x) > 0 (x Φ 0) and F(x) = Γ/O)ds-> «> as |x| -* oo,
Jo

(A3) there exists a continuous function &(#, ι/, z) such that
Λi(ί, *, V, s) ^ *(*, », «) > ° (« ^ 0) f o r a 1 1 h

(A4) there exists at least one index i0 for which hίo satisfies (H7)
with a = aio,

(A5) for an index i0 in (A4), liminft_oo |6<0(t)| Φ 0,
and

(A6) liminf^oolδoίOI^O.

THEOREM 4. // the above hypotheses (Al) through (A6) are satisfied,
then every solution of (14) is bounded in the future and tends to the
origin as t —> oo.

PROOF. Define

(15) V(t, x, y, z) = exp (-E(t))[c0y
2/2 + Σ β<«i/2 + F(x) + 1] ,
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where E(t) = Σ?=o \ \c\/2ei(s)\ds. Then an easy computation shows that
Jo

(16) VM)(t, x, V, z) ^ - e x p (-£?(-)) Σ eA(«, x, y, z) \zt |««+2

i=l

^ -exp (-E(°o))k(x, y, z) Σ βJ^I^+ ^ 0 .
ΐ = l

From (Al), (A2), (15) and (16), it follows that every solution of (14) is
bounded in the future. Clearly, the equation (14) satisfies Condition (C)
with I = {1, 2}. Therefore, Theorem 1 implies that every solution (x(t),
y(t), z(t)) of (14) t e n d s t o t h e s e t S(E) = E = {(x, y,0):x,ye R} a n d h e n c e

(17) z(t) -> 0 as t -> oo .

Furthermore, from (16), it follows that

Σ Γ Us, x(8), y(s), z(s)) I s,(8) \a*+2ds < oo

and hence, by (A4) and Lemma 2, we conclude that there exists a
sequence {tm}, tΛ—> <*> as m - ^ ©o, such that

(18) Γ m + ' k ^ β , x(β), »(8) f β(8)) I ^ ( 8 ) |β<o+1d8 -> 0 as m - oo .

Taking a subsequence if necessary, without loss of generality, we may
assume (x(tm), y(tm)) —> (p, g) as m -> oo for a point (p, q). We shall show
(j>, 9) = (0, 0) Consider the functions flcm(t) = x(t + tm)9 ym(t) = j/(t + tj»
m = 1, 2, , defined for t e [0, d]. Since (#(£), y(ί)) is bounded, the func-
tions {xm(t)} and {yjt)} are uniformly bounded and equicontinuous on [0, d].
By Ascoli's theorem, taking a subsequence if necessary, we have xm(t) —>
^(t) and yw(ί) -* ψ(t) as m —• oo uniformly on [0, d] for some continuous
functions φ(t), ψ(t). Integrating the equation of i i o in (14) over [tm + dlt

tm + d2] for any dlf d2e[0, d], d, < d2, and letting m-> oo, by (17), (18)
and (Al), we conclude

bto(8 + tu)f(xm(8))d8-+O as m-^oo

and consequently

\ bίo(s + tm)f(φ(s))ds -> 0 as m —> oo for any dt, d2 6 [0, d] ,

since biQ(t) is bounded on [0, oo) and xm(t)-+φ(t) a s m ^ o o uniformly on
[0, d]. Therefore, by (A5), we have f{φ(t)) = 0 on [0, d] and hence, by
(A2), φ(t) = 0 on [0, d]. Furthermore, integrating the equation of * in
(14) over [tm + dl9 tm + d2] for any dlf d2e[0, d], d1<d2, and letting
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m-> oo, we have I bo(s + tm)ym(s)ds —> 0 a s m - ^ o o by (Al), (17) and the

fact that &(t + tm) -> #(ί) = 0 as m -> oo uniformly for t e [0, d]. Then by
(A6) and the same argument as in the case φ(t)9 we conclude ψ(f) = 0
on [0, d]. Hence p = 0(0) = 0, q = ψ<°) = 0. Thus we have

(19) (a?(ί J , »(«•), «(O) -* (0, 0, 0) as m -> - .

Now, we shall prove that (x(t), y(t), z(t)) -> (0, 0, 0) as ί -> oo. Define

[ n ~]l/2 n

< = 1 J i=0

Then an easy computation shows Uai)(t, x, y, z) ^ 0. Then for t ^ tm9

we have

(20) 0 ^ U(t, x(t\ y(t), z(t)) £ U(tUf x(tm), y(tm), z(tj) .

Since U(tm, x(tm)9 y(tm), z(tm)) -> 0 as m -» oo by (19) and (Al), it follows,
from (20), that U(t, x(t), y(t), z{t)) -> 0 as ί->oo and hence by (A2), we
conclude that (a(t), y(t), z{t)) -> (0, 0, 0) as t-><*>. q.e.d.

REMARK 5. One of the most essential assumptions given in [5], [6]
is the following: All ht(ffxfyfz) are bounded when x2 + yz + \z\2 is
bounded. Therefore Theorem 4 is a generalization of the results obtained
in [5], [6].
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