
Tδhoku Math. Journ.
34(1982), 525-538.

INFINITESIMAL AUTOMORPHISMS AND SECOND VARIATION
OF THE ENERGY FOR HARMONIC FOLLATIONS*

FRANZ W. KAMBER AND PHILIPPE TONDEUR

(Received December 23, 1981)

Introduction. In [KT2] [KT3] we considered an energy functional for
foliations ^ on a smooth compact oriented manifold, defined with
respect to a Riemannian metric gM on ikf. Harmonic Riemannian foliations
were then characterized as critical foliations for this functional under
an appropriate class of so called special variations (the relevant concepts
are repeated in Section 2 of the present paper). The obvious analogy
with the harmonic map theory of Eells and Sampson [ES] was the guiding
principle.

In this paper we discuss the effect of curvature properties in the
normal bundle of a Riemannian foliation ^ on:

(A) the existence of deformations of &~ through harmonic foliations;
(B) the existence of infinitesimal metric automorphisms of ^ .
The curvature properties in the normal bundle of a Riemannian

foliation (22-foliation) are described as follows. There is a unique metric
and torsionfree connection V in the normal bundle. Thus its curvature
operator Rv is canonically attached to ^ 7 The natural vanishing prop-
erties of R7 allow to view it as a skew-symmetric operator Rp(μ, v) on
sections μ,ve ΓQ with values in the bundle End(Q). If ^ is viewed
as modelled on a Riemannian manifold N by a Haefliger cocycle with
isometric transition functions, then Rv is the curvature of the canonical
connection on N pulled back by the local submersions with target N
defining J^~. The Ricci operator pF: Q —> Q of &~ is then defined in
terms of Rv by the usual formula (see (1.6) or (1.7) below).

We prove the following result.

THEOREM A. Let ^ be a Riemannian foliation on a compact and
oriented manifold M. Let gM be a bundle-like metric on M in the sense
of Reinhart [R], and assume ^~ to be harmonic with respect to gM.
Assume the Ricci operator pF of ^~ to be ^ 0 everywhere, and < 0 for
at least one point xeM. Then:

( i ) there is no special variation of ^~ through harmonic foliations;
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(ii) &~ realizes a local minimum of the energy functional under
special variations.

Next we describe infinitesimal metric automorphisms of an R- foliation.
These are vector fields on M preserving the foliation &~ as well as the
metric gQ on the normal bundle Q. The canonical projection of such a
vector field on M to a section of Q is called a transverse Killing field
of &~ (see Molino [Ml] and (3.6) below).

We prove the following result.

THEOREM B. Let J^ he a Riemannian foliation on a compact and
oriented manifold M. Assume the Ricci operator pΓ of J?~ to he 5̂  0
everywhere, and < 0 for at least one point x e M. Then every transverse
Killing field of J^~ is trivial, or equivalently every infinitesimal metric
automorphism of J?~ is tangential to

The statement is that a flow φt of metric automorphisms of
under the above curvature assumptions maps each leaf of &~ into itself.
Thus the local submersions defining ^ are unaffected by composition
with φt.

Even for the point foliation &~ on M with normal bundle Q = TM
the statement is non-trivial. The assumption on the metric gQ = gM is
then that the usual Ricci curvature operator is <:0 everywhere, and <0
for at least one point. The conclusion is the theorem of Bochner on
the vanishing of Killing vector fields on (M, gM) [BO].

It is interesting to observe that in our context the compactness
assumption is made on M, whereas the curvature assumption is made
on Q, i.e. the model space of the iϊ-foliation.

Theorems A and B are both consequences of the non-existence of
Jacobi fields in the normal bundle of an iϋ-foliation under the specified
conditions on p7% The Jacobi operator JF: ΓQ —> ΓQ of an iϋ-foliation is
defined in (2.3) below. It is the operator occuring in the following
fundamental formula, which will be proved in the appendix.

SECOND VARIATION FORMULA. Let Mbe a compact oriented manifold,
and J?~ a Riemannian and harmonic foliation with respect to a bundle-
like metric gM. Consider the ^-parameter family ^7,< of special variations
of &~ = ^7,o defined by two sections μ, v of the normal bundle Q. Then
for the second derivative of the energy we have

(8>/dsdt)E(jr,tt)\,=0tt=0 = {{Δ - Pf)μ, v)

To explain the RHS, observe that the canonical connection V in Q
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defines an exterior differential dψ and codifferential d$ on Q-valued forms
on M. Then Δ = d$dv is the Laplacian on the space of sections on Q,
and the scalar product of sections μ,ve ΓQ is given by

= \

in terms of the canonical metric gQ on Q and the volume form vM

associated to the metric gM on M.
The paper is organized as follows: In Section 1 we discuss curvature

properties in directions normal to the leaves of an iϋ-foliation. Section
2 is devoted to the Jacobi operator and its spectrum. In Section 3 we
discuss infinitesimal automorphisms of ϋJ-foliations and show that they
give rise to Jacobi fields. The proof of Theorems A and B is completed
in Section 4. The second variation formula is proved in the appendix.

We expect the spectrum, index and nullity of an ϋί-foliation to be
of significance in future investigations. A hint in this direction is
Hurwitz's 84(g-l) theorem [HU], of which Theorem B generalizes only
the finiteness statement to the context of foliations. One can expect an
index formula equivariant under the action of the foliation automorphisms,
which will involve the characteristic invariants of the normal bundle.

1. Curvature. Let M be a manifold and &~ a foliation given by
an integrable subbundle L c TM. J^ is called Riemannian (or an R-
foliation), if the normal bundle is equipped with a holonomy invariant
fiber metric gQ. This condition can be expressed in terms of the Bott
connection V (cf. Section 3) by FxgQ = 0 for XeΓL. If ^~ is an R-
foliation, there is a unique metric and torsionfree connection V in the
normal bundle Q = TM/L [KT 3, Theorem 1.11]. Its curvature

RF(X, Y) = VXVY - VYVX - F [ x , r ] for X, Ye ΓTM

is a 2-form on M with values in End(Q). RΓ is a basic form in the
sense that

(1.1) i(X)RF = 0 for XeΓL.

The geometric interpretation of this property is that V can be thought
of as the pull-back of the Riemannian connection in the model space via
the local submersions defining J C As a consequence we have the
following fact.

PROPOSITION 1.2. For μ,ve ΓQ the operator RF(μ, v):Q-*Q is a

well-defined endomorphίsm.
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Note that RF is homogeneous with respect to multiplication with
functions on M in all variables.

The usual definitions of geometric quantities arising from a curvature
tensor can now be made for RF. This is in spirit similar to Kulkarni's
introduction of curvature structures [KU], even if technically this does
not quite fit into the same framework. Let xeM and σcQx a 2-plane
in the normal bundle spanned by 2 normal vectors ft, vx. Then the
sectional curvature of {^] gQ) at x in directions of σ is defined by

(1.3) KF(σ) = gQ(RF(μx, ^ X , ftVί^ίft, /Offβfa , ».) - gQ(μm, ^)2} .

Here gQ denotes the holonomy invariant fiber metric on Q.
For the following formulas we introduce at a point x e M an ortho-

normal basis ep+u , en of Qx. Here n = dimikf, q = codim &~ = dim Q
and p = n — q = dim ^ = dim L. The Ricci curvature SF is then the
symmetric bilinear form on Q given at x by

(1.4) SF(μ, v)x = Σ ΰq<βΨ(μ, ea)ea, v)
α=p-t-l

for ft VG ΓQ (only ft, yβ enter into the definition). A basis free for-
mulation is obtained by introducing PF(ft v) e End Q via PF(μ, v)s =
-i2Γ(ft s)v. Then

(1.5) SΓ(ft v) = - Σ ΰqiβa* RΨ(μ, ea)») = Σ ffg(β«ι ^ F ( A »)*«)

= Trace PF(ft v).

The Ricci operator pF: Q —> Q is the corresponding self-ad joint operator
given by

(1.6) SΓ(ft v) = gQ(pFμ, v)

for ftveΓQ. In terms of an orthonormal basis of Qx as above we have
by (1.4)

(1.7) (ρfμ). = Σ Λf(A ea)ea .

The scalar curvature σF finally is given by

(1.8) σF = Trace ρF.

All these geometric quantities should be thought of as the correspond-
ing curvature properties of a Riemannian manifold serving as model space
for ^ 7 In the present paper we are only concerned with the Ricci
operator ρF.

We would like to contrast this point of view with the frequently
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adopted point of view where curvature assumptions are made in the
directions tangential to the leaves of a foliation. Here we are concerned
with curvature properties in normal directions.

2. Jacobi operator. For an i2-foliation &~ with metric gQ and
canonical connection y on Q the usual calculus for Q-valued forms on M
applies. In particular there are exterior differentials and codifferentials

dF: Ωr(M, Q) -> Ωr+1(M, Q) , r ^ 0 dΓ*: Ωr(M, Q) - * Ωr~\M, Q) , r > 0

and the Laplacian A = dFd* + d*dF.
In the following let M be compact and oriented. With respect to a

metric gM on M the energy of &~ is defined by [KT2] [KT3]

= (1/2)|| π ||2 = (l/2)( gQ(π A *ττ)

where π: TM-^Q is viewed as a Q-valued 1-form. Now assume gM to
be bundle-like. A section veΓQ defines then a special variation ^ t of
J^l = ^~ through Riemannian foliations by patching the local data

(2.1) Φ?(x) = exp/α(x)(^α(^)) .

Here fa is a local submersion defining ^ in an open set Ua. Φ? is then
the local submersion defining ^ for |{| ^ ε, where the RHS in (2.1)
denotes the endpoint of the geodesic segment starting at fa(x) and
determined by tva(x). One finds that (d/dt)\t=0E(^t) — (v, τ> where τ is
the tension field of ^~ [KT3], and it follows that ^ is critical for E
under all such variations iff τ = 0, which is the harmonicity condition
on J T For details we refer to [KT3].

If μ, ve ΓQ, then a 2-parameter special variation &~tΛ of , ^ f β = ^
through Riemannian foliations is defined by patching the local definitions

(2.2) ΦUx) = exvfa{x)(sμa(x) + tv\x)) .

Calculating the second derivative of E(J?~8yt) at s = 0, t = 0 in case of a
harmonic foliation <#7 one finds the formula stated in the introduction.
Details will be given in the appendix. This leads to the following
concept.

DEFINITION 2.3. The Jacobi operator of an i2-foliation ^~ is given by

J7v = {Δ - pv)v for veΓQ ,

where Δ = d*dΓ on sections of Q.

With respect to the natural scalar product on ΓQ the operator
JΓ: ΓQ —• ΓQ is self-ad joint and strongly elliptic of second order. It
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follows that Jv has an eigenspace decomposition with real eigenvalues

\ < λ2 < < λi < > + °° for i —> oo .

The dimension of each eigenspace is finite (see [BR] [S]).
The spectrum of JF is attached to any R-ίoliation &~ and furnishes

an important set of invariants. The index (the sum of the dimensions
of the eigenspaces corresponding to negative eigenvalues) is discussed
for a special case in [KT4].

DEFINITION 2.4. veker Jv is called a Jacobi field of J*\

Note that if &\ is a special variation of ^ J = ^ ~ through harmonic
foliations, then the generating v e ΓQ is a Jacobi field of &*m Thus the
statement in part (i) of Theorem A is implied by the non-existence of
Jacobi fields under the stated curvature assumptions. We prove this
in Section 4.

3. Infinitesimal automorphisms. A vector field Y on M is an infini-
tesimal automorphism of a foliation *gr if [Y, Z]eΓL for every ZeΓL.
This means that the flow generated by Y is a flow of automorphisms of

i.e., maps leaves into leaves.
The exact sequence

(3.1) 0 - > L -

defines for every YeΓTM a section v = π(Y)eΓQ. Molino [Ml] [M2]
calls an infinitesimal automorphism Y a foliated vector field and its
projection v = π(Y) the associated transverse field.

Recall that Q is equipped with the partial Bott connection given by

(3.2) Fxv = π[X,Y] for XeΓL.

LEMMA 3.3. (i) If YeΓTM is an infinitesimal automorphism, then
its associated transverse field v = π(Y) satisfies

( * ) Vxv = 0 for every Xe ΓL .

(ii) // veΓQ conversely satisfies (*), then every YeΓTM with
π(Y) — v is an infinitesimal automorphism.

PROOF. This is obvious from (3.2). •

Next we define for an infinitesimal automorphism YeΓTM

(3.4) Θ{Y)v = π[Y, ΓJ for veΓQ, YveΓTM with π(Yy) = v .

The RHS is independent of the choice of the representative Yu of v.
Note that for XeΓL this definition coincides with (3.2). Thus it is
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appropriate to denote by ΓQL = Γ{QL) the sections of Q satisfying (*) in (3.3)
(L-invariant sections). We have then an exact sequence of Lie algebras

(3.5) 0 -> ΓL -> V(jr) -+ΓQL-*O

where the middle term denotes the infinitesimal automorphisms. The
bracket in ΓQL is induced from the bracket in F(_^~). If the elements
of ΓL are viewed as interior infinitesimal automorphisms of J^~, then
the elements of ΓQL are to be viewed as outer infinitesimal automor-
phisms of ^ 7

From now on let &~ be an ϋJ-foliation with metric gQ on Q (its
o

holonomy in variance is the condition VxgQ = 0 for XeΓL).
DEFINITION 3.6. Ye FCJΠ is metric, if Θ(Y)gQ = 0. If this holds,

then π(Y)eΓQL is called a transverse Killing field of _̂ ~ (Molino [Ml]
[M2]).

The explicit meaning of this condition is given by (3.4) and the
identity

(Θ(Y)gQ)(s, t) = YgQ(s, t) - gQ(θ(Y)s, t) - gQ(s, Θ(Y)t)

for s,teΓQ. The RHS is well defined for Ye V(J^) (not for arbitrary
vector fields on Λf). If K(^~) denotes the metric infinitesimal automor-
phisms, and K(^~) the transverse Killing fields, then together with (3.5)
we have the following diagram displaying the relationship

ΓQL -> 0

> 0
(3.7) 0-+ΓL< U _U

REMARK 3.8. For the point foliation ^ given by L = 0, Q = TM
and gQ = gM any Riemannian metric on M, (3.6) is the definition of a
Killing vector field on (M, gM). Thus it might be appropriate to call
the infinitesimal metric automorphisms of a Riemannian foliation simply
Killing fields for ^ T We avoid this terminology, because in view of the
following remark it might be confusing.

REMARK 3.9. If gM is a bundle-like metric on (Λf, J?~) (inducing gQ

on Q), and YeΓTM a Killing vector field for (Λf, gM)f then Y is metric
for gQ. But the converse is not necessarily true: Ye V{^) may satisfy
Θ(Y)gQ = 0 without satisfying Θ(Γ)^ = 0.

In the next definition we make again use of the unique metric and
torsionfree connection V defined in Q. It is an adapted connection, i.e.,
extends the partial Bott connection V given by (3.2) to a genuine connec-
tion [KT3, 1.11]. We define then for Ye V(JT),seΓQ



532 F. W. KAMBER AND P. TONDEUR

(3.10) AF(Y)s = θ(Y)s - FYs .

Let Y,eΓTM with π(Y8) = s. Then by (3.4) and the torsionfreeness of
V [KT3, 1.5]

(3.11) AF(Y)s = π[Y, Y8] - Fγπ(Y8) = -Vγπ{Y) .

This formula shows two things: (i) AF{Y) depends in fact only ony =
π(Y); (ii) AF(v) is a linear operator Q->Q. Thus (3.10) defines

(3.12) AF(y):Q-*Q for veΓQL.

We define AF(v)/=0 for feΩ°(M). Then AF(v) extends in an obvious
way to tensors of any type on Q.

PROPOSITION 3.13. Let ^ be an R-foliation, Ye V{^) with π(Y) =
v 6 ΓQL. Then the following conditions are equivalent:

( i ) YeK(jr);
(ii) AF(v)gQ = 0;
(iii) gQ(AF(v)s, t) + gQ(s, Av(v)t) = 0 for s,te ΓQ.

PROOF. Since V is a metric connection in Q, FγgQ = 0. Thus θ{ Y)gQ —
0 <=> AF(v)gQ = 0. F u r t h e r

(AF(v)gQ)(s, t) = AF(v)gQ(s, t) - gQ(AF{v)s, t) - gQ(s, AF(v)t)

This proves the equivalence of (i), (ii) and (iii). •

COROLLARY 3.14. The property of an infinitesimal automorphism
Y of J^~ to be metric depends only on the transverse field v = π(Y)e ΓQL.

The Killing property of the transverse field v is characterized by
the skew-symmetry of AF(v) with respect to gQ. This gives a direct
definition of K(^~) in (3.7).

We further note that (3.7) is a diagram of Lie algebras and Lie
homomorphisms. It suffices to verify that K(^~) is a subalgebra of
F ( J H with the usual bracket. But for the bracket of X,Ye V(Jf)
one finds the formula

(β[X, Y])gQ = θ(X)θ(Y)gQ - Θ(Y)Θ(X)gQ .

Thus for X, Γe JRΓCJH the RHS vanishes, and therefore so does the LHS,

The relationship of this concept with the ideas discussed in the first
two sections is given by the following result.

PROPOSITION 3.15. Let _F~ be an R-foliation on a manifold M. If
v 6 ΓQL is a transverse Killing field of &\ then v is a Jacobi field of
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The proof will proceed by showing that an infinitesimal metric
automorphism preserves the connection F in Q, and that such an infini-
tesimal automorphism projects necessarily to a Jacobi field.

We begin by introducing the following concept.

DEFINITION 3.16. Ye FC^H preserves the connection V in Q if
Θ(Y)F = 0, where

{Θ{Y)Fx)s = Θ{Y)Vxs - FxΘ{Y)s - FίY,ns

for XeΓTM, seΓQ.
For XeΓL, it follows from (3.4) that the RHS of this identity

equals

π[Y, [X, ΓJ] - π[X, [Y, Y8]] - π[[Y, X], Y.]

and thus vanishes by the Jacobi identity. It follows that the vanishing
of (θ(Y)Fx)s has only to be tested for X = Yμ = Ya[μ) e ΓσQ, μ e ΓQ. Here

σ: Q —> TM denotes the splitting of the exact sequence 0 —• L -» TM -̂>
Q—>0 given by the orthogonal decomposition TM = L φ L ^ .

PROPOSITION 3.17. Le£ ^ * δe αu R-foliation, Ye V{^) with π(Y) =
v e ΓQL. Then the following conditions are equivalent:

( i ) Y preserves F;
(ii) VYμAv{v) = RF(v, μ) for all μ e ΓQ.

For the case of the point foliation given by L = 0, Q = TM this is
Proposition 2.2 in [KO].

PROOF. From (3.16) we get by subtraction of identical terms on
both sides

{Θ{Y)VYμ)s - [Fτ, FYμ]s = (β(Y) - Fγ)FYμs - FYμ{Θ{Y) - Fγ)s - FίYtYμls .

By the definition of the curvature Rv and (3.10) therefore

Θ(Y)FYμ = JBf(Γ, Γ.) + A f(DFF / l - FYμAv{Y) = i2Γ(v, JM) - ΓΓ#ιAf(v) .

which proves the desired result. •

COROLLARY 3.18. The property of an infinitesimal automorphism
Y of ^ to be connection preserving depends only on the transverse field

v is then appropriately called a transverse affine field.

LEMMA 3.19. Let J?" be a R-foliation. A metric infinitesimal
automorphism preserves the connection F (equivalently: a transverse
Killing field is affine).
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PROOF. First let Ye ΓTM be an arbitrary infinitesimal automorphism
of ^ . The (local) flow φt generated by Y maps leaves into leaves. Let
Φt be the induced flow on TM. Then Φt maps L into itself, and thus
induces a (local) flow Φt of bundle maps of Q over φt, i.e., making the
diagram

QQ

commutative. Now assume Y to be metric. Then Φt is a flow of isometric
bundle maps, i.e., ΦfgQ = gQ for all t. By the uniqueness theorem for
the metric and torsion free connection of a Riemannian foliation [KT3,
1.11], the connections associated to gQ and Φ*gQ are the same. This
proves that Y is connection preserving. •

PROOF OF PROPOSITION 3.15. Let gM be a bundle-like metric and
Eu * , En an orthonormal local frame of TM on a neighborhood of
xeM, s u c h t h a t Eu , Ep e ΓL, Ep+l9 '--,Ene ΓσQ, a n d l e t (Et)Λ = et.

Then for any veΓQ

{Δv)x = (dϊdFv)x = - Σ {Vei{dvv)){et) = - Σ (VeίVEv - ΓfMBiv) .

In the last expression VM refers to the canonical Riemannian connection
attached to gM.

On the other hand we have by (3.11) for any infinitesimal auto-
morphism Y of ^ with π(Y) = v, AF(v)Ei = —VEiv. It follows that

This implies in a neighborhood of x, Δv = Σ?=i ( ^ Ά Γ M ) ^ ) - If ^ is a
transverse Killing field, it is transverse affine by Lemma 3.19. Using
Proposition 3.17 we get then Δv = Σ?=i R?(v9 E^Et. But these terms
vanish by (1.1) for i = 1, . , p, so that Δv = Σ2 = p + 1 i?Γ(v, Ea)Ea. By (1.7)
this shows that Δv = ρFv, and v is indeed a Jacobi field of the foliation.

•
4. Proof of Theorems A and B. We are now ready to complete the

argument leading to these statements. We suppose that pv ^ 0. Since
always Δ ^ 0, it follows that

(4.1) J Γ ^ 0

for the Jacobi operator (2.3). We will show that for a compact and
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oriented M the additional assumption pv < 0 for at least some point x e
M implies that ker Jv = 0, i.e. that in fact J7 > 0. If J?~ is Riemannian
and harmonic, this will imply Theorem A by the second variation formula
for the energy stated in the introduction. If &~ is Riemannian, this
will imply Theorem B by Proposition 3.15. Thus it remains to show that
every Jacobi field v e ΓQ is trivial.

Let veΓQ be any section. First we verify the classical identity

(4.2) ~(l/2)J<7,(v, v) = gΩ(Vv, Vv) - gQ(Δv, v) .

The Laplacian on the LHS is the ordinary Laplacian d*d of the function
gQ(v, v) on M. The first term on the RHS is the induced norm square
on Vv e Ω\M, Q).

Let x e M and el9 — , ene TXM an orthonormal frame. Let Elf , En

be an extension of elt , en to an orthonormal frame of TM in a neigh-
borhood of x, and satisfying Ff.Ed = 0, i.e. the value at x of VM

xEά equals
0 for any vector field X such that Xx = et (no particular relation of this
frame to the foliation is needed). With these notations

y, v)m = -(l/2)(d*dgQ(v, v))x = Σ ( F

= Σ [ ^ ( ^ β ( v , v)(β*)) - dgQ(v,

= Σ r%EM»,y))/2 = Σ β^β

Eivf v) +

The first sum equals — gQ(jv, v). This is the calculation at the beginning
of the proof of Proposition 3.15, taking into account that the terms
Ff.Ei vanish. Note that for that portion of the proof the properties
El9 - - -, Ep e ΓL and Ep+1, -- ,Ene ΓσQ were not yet relevant. The second
sum equals the point wise square of the norm of Vv in the space Ω\M, Q).
This establishes (4.2).

For a Jacobi field v we have Δv = pFv, so that (4.2) reads

(4.3) -(XI2)-ΔgQ(v, v) = gΩ(Fι>9 Vv) - gQ(pFv, v) .

With the assumption pF ^ 0, the RHS is ^0, and so is therefore the LHS.
Thus — gQ(v, v) is a subharmonic function. Its integral over the compact
and oriented manifold M vanishes by Green's theorem. Therefore gQ(v, v)
must be harmonic and hence constant: gQ(y, v) — c.

On the RHS of (4.3) we have gΩ(Vv, Vv) ^ 0 and -gQ(pvv9 v) ^ 0,
hence both terms vanish. This shows in particular that for a Jacobi
field v
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(4.4) gQ(pFv, v) = 0 .

By assumption there is at least one xeM for which pF(x): Qx —> Qx is a
a strictly negative operator. This is compatible with (4.4) only if vx = 0
for that xeM. Since gQ(v, v) — constant, it follows that gQ(v, v) = 0.
Hence v — 0. •

Appendix. Second variation formula. We need the concept of a
special variation of a Riemannian foliation &~ on M through Riemannian
foliations, with fixed normal bundle, and defined by a section veΓQ
[KT 2, 3]. M is assumed compact, 11 = (Ua) an open covering, fa:Ua-+
VaaNare submersions onto open submanifolds Va of a model Riemannian
manifold N, related on Uaβ = UaΓίUβ by fa = y^of? with local isometries
Ύaβ of N. The data {Ua, fa, Tβ) are a Haefliger cocycle for J C On ί7α,
Q = (/«)*ΓjV and srρ = {fTgN.

For veΓQ, va = v/Z7Λ, one obtains locally a variation Φ? of / α = Φ?
by setting [KT 3, 4.9]

(A.I) Φf(x) = exϊ>f«[x)(tva(x)) f o r ΛJ6 C7α, | « | ^ ε

where ε > 0 is sufficiently small. The RHS is the endpoint of the geodesic
segment in Va(zN starting at fa(x) and determined by tva(x)eTfa{x)N.
Clearly

(A.2) va{x) = 4τ
at

Next we prove the formula

(A.3) Γdm((Φΐ)*(X)) = Fx(Φ;(3/3t)) s Fz((β/dt)Φf)

for a vector field XeΓTM. For this purpose we evaluate the torsion

τv(Φ%(d/dt), Φ%X) = F9/9t((Φ?

This expression vanishes, since V is torsionfree. But [d/dt, X] = 0, so
(A.3) follows.

Using (A.2) we obtain in particular

(A.4) F3/9ίU=0(ΦO*(X) = VZV .

In the present context we need a 2-parameter special variation
of ^ = &lΛ defined for μ,ve ΓQ by the local formula on Ua

(A.5) ΦUx) = exvf«{x)(sμ«(x) + tv«(x))

Exactly as before we obtain the formulas
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where now we use [X, d/ds] = 0 and [X, d/dt] = 0.
We further need the formula (for s = 0, t = 0)

(A.7) Fs/3t(P)/3tΦ%(X)) = rz(r,,,y) + R,{μ, Φ%{X))v"

where Rv is the curvature of the canonical metric and torsionfree
connection in Q (Section 1). Proof of (A.7): By (A.6) we have for s =
0, t = 0 F3/3s(F9/atΦ«(X)) = Vd/ds{Vxv

α). By the definition of RF and (1.1)
we have

R,(Φ%(d/ds), Φ%X)v« = Vm8ψxv«) - Vx(Vd/dsv«) - FWd8fX^

But [djds, X] = 0, so that the resulting formula for Vd/d8(Vxv
α) yields

precisely the RHS of A.7.
The projection π of the foliation J^sΛ is given locally by π8it = (Φ«,<)*.

For the energy we have then

E(jTs,t) = <π, π>/2 = (1/2) \ π Λ * π .

We obtain then

(d*/dsdt)E(jr8,t)\8=0,t=0 = (l/2)O/3β)(O/3t)<π, π » = (3/9s) < Fd/dtπ, π>

where F denotes the induced connection in Ωι(M, Q). Using (A.6) we get

(dψsdt)(E(jr8,t)\s=o,t=o = {djds){Vv} π) - ((d/ds)Fv, π) + <Fv, F^> .

By (A.7) the first term can be replaced by

<V{Vd/d8v\ π) + (RΓ(μ, π ( - ) > , π(-)> = <Γ a / a Λ d*ττ> + <RF(μ, π(-))v, π(-)>

If we now assume &~ to be harmonic, then d*π — 0 [KT3]. The
other term is a scalar product in Ω\M, Q). Its integrand is therefore
evaluated at xeM, and for an orthonormal frame eα of Qx (α = p + 1,
• m

fri) by the formula

Σ
+

This is by (1.4) and (1.6) equal to -SF(μ, v) = -gq(p?μ, v) in terms of
the Ricci curvature SΓ and Ricci operator ρΓ of F. Collecting these
results, we obtain therefore

r8tt) |8=0,t=0 =
= < ( J - |9F)JK£, V> .

This completes the proof of the second variation formula for a Riemannian
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and harmonic foliation on a compact manifold.
For the calculation of the second variation for harmonic maps on

compact manifolds, see [ES] and [MA].
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