EXISTENCE OF SOLUTIONS AND GALERKIN APPROXIMATIONS FOR NONLINEAR FUNCTIONAL EVOLUTION EQUATIONS

Athanassios G. Kartsatos and Mary E. Parrott

(Received December 14, 1981)

1. Introduction-Preliminaries. In this paper we are concerned with existence and approximation results for nonlinear functional evolution equations in Banach spaces. Let X be a Banach space with norm $\|\cdot\|$, and let $C=C([-r, 0], X)$ be the Banach space of continuous functions mapping the interval $[-r, 0]$, for some $r>0$, into X with norm $\|\psi\|_{C}=$ $\sup _{\theta \in[-r, 0]}\|\psi(\theta)\|$. Let $x_{t} \in C$ be defined by $x_{t}(\theta)=x(t+\theta)$ for $\theta \in[-r, 0]$. In [9] we examined the existence of a unique strong solution of the abstract initial value problem

$$
\begin{equation*}
x^{\prime}(t)+A(t) x(t)=G\left(t, x_{t}\right), \quad t \in[0, T], \quad x_{0}=\phi \tag{FDE}
\end{equation*}
$$

where $A(t): D(A(t))=D \subset X \rightarrow X, G$ satisfies a global Lipschitz condition with respect to both variables, and $\phi \in C$ is such that $\phi^{\prime} \in C$ and $\phi(0) \in D$. Furthermore, we required that X^{*}, the dual of X, be uniformly convex and for each $t \in[0, T], A(t)$ be m-accretive (see definition below) and satisfy a Kato time-dependence condition of the form

$$
\begin{equation*}
\|A(t) x-A(s) x\| \leqq|t-s| L(\|x\|)(1+\|A(s) x\|) \tag{*}
\end{equation*}
$$

for all $t, s \in[0, T]$ and $x \in D$, where $L: R_{+}=[0, \infty) \rightarrow R_{+}$is a given increasing function.

By a "strong solution" of (FDE) on [$0, T$] we mean an absolutely continuous X-valued function which, for almost all $t \in[0, T]$, is strongly differentiable and satisfies (FDE). The unique strong solution $x(t)$ of (FDE), whose existence was known from previous results, was shown in [9] to be the uniform limit of strongly continuously differentiable solutions of approximating equations for (FDE) involving the Yosida approximants of $A(t)$. In [10] a method of lines for the approximation of the solution $x(t)$ of (FDE) was developed.

Our purpose in this paper is two-fold. We first establish a local existence result for a more general nonlinear abstract functional problem of the type:

$$
\begin{equation*}
x^{\prime}(t)+A\left(t, x_{t}\right) x(t)=0, \quad t \in[0, T), \quad x_{0}=\phi, \tag{DE}
\end{equation*}
$$

where $A(t, \phi) v$ is m-accretive in v for every $(t, \phi) \in[0, T) \times C_{o}, C_{o}$ a certain closed subset of C, and satisfies a local Lipschitz-type condition in t and ϕ. As an important example of our result, we obtain the local existence of a unique strong solution of (FDE) under the given conditions, but with G satisfying now a local Lipschitz condition. This result is still new if the Lipschitz condition is global, and an application of it is given in Section 4.

Our second goal is to establish a Galerkin method for the approximation of the solutions of (FDE) for the case of a Hilbert space X, under the additional assumptions that $A(t)$ be defined on the whole of X and map bounded subsets of X into bounded sets. Our result, Theorem 2, is an improvement of the corresponding result of Kartsatos [8], and is illustrated in Section 4 by an example involving nonlinear partial elliptic operators of order $2 m$.

For $x \in X, x^{*} \in X^{*}$, let $\left\langle x, x^{*}\right\rangle$ denote the number $x^{*}(x)$. We define the "duality mapping" $J: X \rightarrow 2^{X *}$ as follows:

$$
J x=\left\{x^{*} \in X^{*} ;\left\langle x, x^{*}\right\rangle=\|x\|^{2}=\left\|x^{*}\right\|^{2}\right\}
$$

The set $J x$ is nonempty by the Hahn Banach theorem. However, if X^{*} is uniformly convex, then the duality mapping J is single valued and is uniformly continuous on bounded subsets of X. An operator $B: D(B) \subset X \rightarrow X$ is called "accretive" if

$$
\operatorname{Re}\langle B u-B v, J(u-v)\rangle \geqq 0
$$

for every $u, v \in D(B)$. An accretive operator B is " m-accretive" if $R(I+\lambda B)=X$ for some (equivalently, all) $\lambda>0$. For further properties of m-accretive operators the reader is referred to Kato [11]. We denote by \bar{D} the strong closure of the set $D \subset X$.
2. Existence. In this section we give a local existence result for the initial value problem
(DE)

$$
x^{\prime}(t)+A\left(t, x_{t}\right) x(t)=0, \quad t \in[0, T), \quad x_{0}=\phi
$$

under the following assumptions:
(A.1) X^{*} is uniformly convex.
(A.2) The domain of $A_{1}(\cdot, \cdot, \cdot)$ with $A_{1}(t, \psi, v)=A(t, \psi) v$ is the set $[0, T) \times C_{o} \times D$, where D is a subset of X and C_{0} consists of all $f \in C$ with $f(t) \in \bar{D} \cup M, t \in[-r, 0]$. Here $M=\{\phi(t) ; t \in[-r, 0]\}$.
(A.3) For every $(t, \psi) \in[0, T) \times C_{o}, A(t, \psi) v$ is m-accretive in v.
(A.4) For every $t, s \in[0, T), \psi_{1}, \psi_{2} \in C_{o}, v \in D$,

$$
\begin{aligned}
& \left\|A\left(t, \psi_{r_{1}}\right) v-A\left(s, \psi_{2}\right) v\right\| \\
& \quad \leqq l\left(\left\|\psi_{1}\right\|_{c},\left\|\psi_{2}\right\|_{c},\|v\|\right)\left[|t-s|\left(1+\left\|A\left(s, \dot{\psi}_{2}\right) v\right\|\right)+\left\|\psi_{1}-\dot{\psi}_{2}\right\|_{c}\right]
\end{aligned}
$$

where $l: R_{+}^{3} \rightarrow R_{+}$is increasing in all three variables.
(A.5) $\phi \in C_{0}$ is a given function with $\phi(0) \in D$ satisfying a Lipschitz condition on $[-r, 0]$ with Lipschitz constant K.

Our method in proving the existence of $x(t)$ follows that of Kartsatos [7], where the equation $x^{\prime}(t)+A(t, x(t)) x(t)=0$ was studied. We first ensure the existence of the solution $x_{u}(t)$ of the problem $(\mathrm{DE})_{u}$

$$
x^{\prime}(t)+A\left(t, u_{t}\right) x(t)=0, \quad x_{0}=\phi
$$

on an interval [$0, T_{1}$], where u is taken from a suitable metric space S of continuous functions. We then show that, for T_{1} sufficiently small, the operator $U: u \rightarrow x_{u}$ maps the space S into itself and is a strict contraction. The resulting fixed point of this operator is the desired unique strong solution of (DE).

Theorem 1. Assume that Conditions (A.1)-(A.5) are satisfied. Then there exists $T_{1}<T$ such that the initial value problem (DE) has a unique strong solution $x(t), t \in\left[0, T_{1}\right]$, which is also Lipschitz continuous on $\left[0, T_{1}\right]$.

Proof. Let $N=1+\|A(0, \phi) \phi(0)\|$ and L be a positive constant with $L / N<T$. Let T_{1} be such that $0<T_{1} \leqq L / N$. Consider the set

$$
\begin{aligned}
S= & \left\{u:\left[-r, T_{1}\right] \rightarrow \bar{D} \cup M ; u(t) \text { is continuous, } u(t)=\phi(t) \text { for } t \in[-r, 0]\right. \\
& \text { and } \left.\left\|u\left(t_{1}\right)-u\left(t_{2}\right)\right\| \leqq N\left|t_{1}-t_{2}\right| \text { for } t_{1}, t_{2} \in\left[0, T_{1}\right]\right\}
\end{aligned}
$$

$S \neq \varnothing$ because the function $u(t)$ such that $u(t)=\phi(t)$ for $t \in[-r, 0]$ and $u(t) \equiv \phi(0)$ for $t \in\left[0, T_{1}\right]$ belongs to S. Now, let $u \in S$ be given and consider the problem $(\mathrm{DE})_{u}$ on the interval $\left[0, T_{1}\right]$. Let $N_{1}=\max \{N, K\}$. The operator $B_{u}(t) v \equiv A\left(t, u_{t}\right) v$ is m-accretive in v by Condition (A.3). Also, by Condition (A.4),

$$
\begin{align*}
& \left\|B_{u}(t) v-B_{u}(s) v\right\| \tag{1}\\
& \quad \leqq l\left(\left\|u_{t}\right\|_{C},\left\|u_{s}\right\|_{C},\|v\|\right)\left[|t-s|\left(1+\left\|A\left(s, u_{s}\right) v\right\|\right)+\left\|u_{t}-u_{s}\right\|_{G}\right]
\end{align*}
$$

for every $t \in\left[0, T_{1}\right]$. Now, in order to show that B_{u} satisfies a condition like (*) (in the introduction), we first observe that

$$
\left\|u_{t}-u_{s}\right\|_{C}=\sup _{\theta \in[-r, 0]}\|u(t+\theta)-u(s+\theta)\|
$$

for every $t, s \in\left[0, T_{1}\right]$. Suppose that $t, s \geqq r$. Then, for each $\theta \in[-r, 0]$, $\|u(t+\theta)-u(s+\theta)\| \leqq N|t-s| \leqq N_{1}|t-s|$. Suppose that $t, s<r$. Without loss of generality, assume that $t>s$. If $\theta \in[-r,-t]$, then $t+\theta \in[t-r, 0]$ and $s+\theta \in[s-r, s-t]$. For such $\theta,\|u(t+\theta)-u(s+\theta)\|=$ $\|\phi(t+\theta)-\phi(s+\theta)\| \leqq K|t-s| \leqq N_{1}|t-s|$. If $\theta \in[-t,-s]$, then $t+\theta \in[0, t-s]$
and $s+\theta \in[s-t, 0]$. For such $\theta,\|u(t+\theta)-u(s+\theta)\| \leqq \| u(t+\theta)-$ $u(0)\|+\| u(0)-u(s+\theta) \| \leqq N|t+\theta|+K|s+\theta| \leqq N_{1}|t-s|$. If $\quad \theta \in$ $[-s, 0]$, then $t+\theta \in[t-s, t]$ and $s+\theta \in[0, s]$, which implies again that the above inequality is true. Hence, for all $t, s<r$ and $\theta \in[-r, 0]$, we have $\sup _{\theta \in[-r, 0]}\|u(t+\theta)-u(s+\theta)\| \leqq N_{1}|t-s|$. The same inequality holds if we assume that $t \geqq r$ and $s \leqq r$. The proof of this fact is similar to the above. It is therefore omitted.

In order to obtain a bound for u_{t}, we observe that since $u \in S$, we have $\|u(t+\theta)-u(0)\| \leqq N t \leqq L$ for every $t \in\left[0, T_{1}\right]$ and every $\theta \in[-r, 0]$ such that $t+\theta \geqq 0$. Thus, for such t and $\theta,\|u(t+\theta)\| \leqq\|\phi(0)\|+L \leqq$ $\|\phi\|_{C}+L$. For t and θ such that $t+\theta<0,\|u(t+\theta)-\phi(0)\| \leqq$ $\|\phi(t+\theta)\|+\|\phi(0)\| \leqq 2\|\phi\|_{c}$. It follows that for all $t \in\left[0, T_{1}\right], \theta \in[-r, 0]$ we have the bound:

$$
\left\|u_{t}\right\|_{c}=\sup _{\theta \in[-r, 0]}\|u(t+\theta)\| \leqq 2\|\phi\|_{c}+L
$$

Using these estimates and (1), we obtain

$$
\begin{equation*}
\left\|B_{u}(t) v-B_{u}(s) v\right\| \leqq l_{1}(\|v\|)|t-s|\left(1+\left\|B_{u}(s) v\right\|\right), \tag{2}
\end{equation*}
$$

where $l_{1}(\|v\|)=\left(1+N_{1}\right) l\left(2\|\phi\|_{C}+L, 2\|\phi\|_{C}+L,\|v\|\right)$. Consequently, the conditions of Theorems 1 and 2 of Kato [11] are satisfied. Thus, the problem (DE) $)_{u}$ has a unique strong solution $x_{u}(t)$ on $\left[0, T_{1}\right]$. The function $x_{u}(t)$ is also weakly continuously differentiable on $\left[0, T_{1}\right]$ and such that $A\left(t, u_{t}\right) x_{u}(t)$ is weakly continuous in t. Furthermore, $x_{u}(t)$ satisfies $(\mathrm{DE})_{u}$ everywhere on $\left[0, T_{1}\right]$ if $x^{\prime}(t)$ denotes now the weak derivative of $x(t)$.

We are planning to show that the operator $U: u \rightarrow x_{u}$ is a strict contraction on S if T_{1} is chosen sufficiently small. To this end, fix $u \in S$ and consider the approximating equations

$$
\begin{equation*}
x_{n}^{\prime}(t)+A_{n}(t) x_{n}(t)=0, \quad x_{n_{0}}=\phi, \tag{E}
\end{equation*}
$$

where $A_{n}(t)=A_{n}\left(t, u_{t}\right)=A\left(t, u_{t}\right)\left[I+(1 / n) A\left(t, u_{t}\right)\right]^{-1}, n=1,2, \cdots$, are the Yosida approximants of $A\left(t, u_{t}\right)$. The operators $A_{n}(t)$ are defined and Lipschitz continuous on X with Lipschitz constants $\leqq 2 n$. Moreover, the operators $J_{n}(t)=\left[I+(1 / n) A\left(t, u_{t}\right)\right]^{-1}: X \rightarrow D$ are also Lipschitz continuous on X with Lipschitz constants $\leqq 1$. Since $B_{u}(t)$ is m-accretive for each $t \in\left[0, T_{1}\right]$, so are the operators $A_{n}(t)$ [11, Lemma 2.3]. Also, as in Lemma 4.1 of the same reference, we obtain

$$
\left\|A_{n}(t) v-A_{n}(s) v\right\|=l_{1}\left(\left\|J_{n}(s) v\right\|\right)|t-s|\left(1+\left\|A_{n}(s) v\right\|\right)
$$

Since, by (2),

$$
\begin{aligned}
&(1 / n)\left\|A_{n}(s) v\right\| \leqq(1 / n)\left\|A_{n}(s) \phi(0)\right\|+2\|v-\phi(0)\| \\
& \leqq\left\|A_{n}\left(s, u_{s}\right) \phi(0)\right\|+2(\|v\|+\|\phi(0)\|) \\
& \leqq\|A(0, \phi) \phi(0)\|+l_{1}(\|\phi(0)\|)(L / N)(1+\|A(0, \phi) \phi(0)\|) \\
&+2(\|v\|+\|\phi(0)\|) \\
&= K_{1}+2\|v\|
\end{aligned}
$$

and $\left\|J_{n}(s) v\right\| \leqq\|v\|+(1 / n)\left\|A_{n}(s) v\right\|$, we finally arrive at

$$
\begin{align*}
\left\|A_{n}\left(t, u_{t}\right) v-A_{n}\left(s, u_{s}\right) v\right\| & =\left\|A_{n}(t) v-A_{n}(s) v\right\| \tag{3}\\
& \leqq l_{2}(\|v\|)|t-s|\left(1+\left\|A_{n}(s) v\right\|\right)
\end{align*}
$$

where $l_{2}(\|v\|)=l_{1}\left(3\|v\|+K_{1}\right)$. Hence each of the equations $(E)_{n}$ has a unique strongly continuously differentiable solution $x_{n}(t)$ defined on $\left[0, T_{1}\right]$ and such that $\lim _{n \rightarrow \infty} x_{n}(t)=x_{u}(t)$ strongly and uniformly on $\left[0, T_{1}\right]$ (cf. Kato [11]).

We shall show that the sequence $\left\{x_{n}(t)\right\}, n=1,2, \cdots$, is uniformly bounded and uniformly Lipschitz continuous on [$0, T_{1}$] independently of $u \in S$. To this end, using [11, Lemma 1.3], the accretiveness of $A_{n}(t)$ and (3), we get

$$
\begin{aligned}
& 2\left\|x_{n}(t)-\phi(0)\right\|(d / d t)\left\|x_{n}(t)-\phi(0)\right\|=(d / d t)\left\|x_{n}(t)-\phi(0)\right\|^{2} \\
&= 2 \operatorname{Re}\left\langle x_{n}^{\prime}(t), J\left(x_{n}(t)-\phi(0)\right)\right\rangle \\
&=-2 \operatorname{Re}\left\langle A_{n}(t) x_{n}(t)-A_{n}(t) \phi(0), J\left(x_{n}(t)-\phi(0)\right)\right\rangle \\
&-2 \operatorname{Re}\left\langle A_{n}(t) \phi(0), J\left(x_{n}(t)-\phi(0)\right)\right\rangle \\
& \leqq 2\left\|A_{n}(t) \phi(0)\right\|\left\|x_{n}(t)-\phi(0)\right\| \\
& \leqq 2\left[\left\|A_{n}\left(t, u_{t}\right) \phi(0)-A_{n}(0, \phi) \phi(0)\right\|+\left\|A_{n}(0, \phi) \phi(0)\right\|\right]\left\|x_{n}(t)-\phi(0)\right\| \\
& \leqq 2\left[\left\|A_{n}(0, \phi) \phi(0)\right\|+l_{2}(\|\phi(0)\|) T_{1}\left(1+\left\|A_{n}(0, \phi) \phi(0)\right\|\right)\right]\left\|x_{n}(t)-\phi(0)\right\| \\
& \leqq 2\left[\|A(0, \phi) \phi(0)\|+l_{2}(\|\phi(0)\|)(L / N)(1+\|A(0, \phi) \phi(0)\|)\right]\left\|x_{n}(t)-\phi(0)\right\| .
\end{aligned}
$$

This inequality holds a.e. in [0, $\left.T_{1}\right]$. Dividing by $2\left\|x_{n}(t)-\phi(0)\right\|$ and integrating from 0 to $t \leqq T_{1}$, we obtain

$$
\begin{equation*}
\left\|x_{n}(t)-\phi(0)\right\| \leqq K_{2} T_{1} \tag{4}
\end{equation*}
$$

where $\quad K_{2}=\|A(0, \phi) \phi(0)\|+l_{2}(\|\phi(0)\|)(L / N)(1+\|A(0, \phi) \phi(0)\|) \quad$ is independent of T_{1}, n and $u \in S$. In order to find a uniform upper bound for the derivatives $x_{n}^{\prime}(t)$, we consider the function $z_{n}(t) \equiv x_{n}(t+h)-x_{n}(t)$, $0 \leqq t, t+h<T_{1}$. Using again Lemma 1.3 of Kato [11], the accretiveness of $A_{n}(t+h)$, the uniform boundedness of $\left\{x_{n}(t)\right\}$ from (4), and the appraisal (3), we get

$$
\begin{aligned}
& (1 / 2)(d / d t)\left\|z_{n}(t)\right\|^{2}=\operatorname{Re}\left\langle z_{n}^{\prime}(t), J\left(z_{n}(t)\right)\right\rangle \\
& \quad=-\operatorname{Re}\left\langle A_{n}(t+h) x_{n}(t+h)-A_{n}(t) x_{n}(t), J\left(z_{n}(t)\right)\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
&=-\operatorname{Re}\left\langle A_{n}(t+h) x_{n}(t+h)-A_{n}(t+h) x_{n}(t), J\left(z_{n}(t)\right)\right\rangle \\
&-\operatorname{Re}\left\langle A_{n}(t+h) x_{n}(t)-A_{n}(t) x_{n}(t), J\left(z_{n}(t)\right)\right\rangle \\
& \leqq\left\|A_{n}\left(t+h, u_{t+n}\right) x_{n}(t)-A_{n}\left(t, u_{t}\right) x_{n}(t)\right\|\left\|z_{n}(t)\right\| \\
& \leqq|h| l_{2}\left(\left\|x_{n}(t)\right\|\right)\left(1+\left\|A_{n}(t) x_{n}(t)\right\|\right)\left\|z_{n}(t)\right\| \\
& \leqq|h| l_{2}\left(\|\phi(0)\|+K_{2} T_{1}\right)\left(1+\left\|x_{n}^{\prime}(t)\right\|\right)\left\|z_{n}(t)\right\| .
\end{aligned}
$$

Dividing through by $|h|\left\|z_{n}(t)\right\|$, integrating and then passing to the limit as $h \rightarrow 0$, we get

$$
\left\|x_{n}^{\prime}(t)\right\|=\left\|x_{n}^{\prime}(0)\right\|+\int_{0}^{t} l_{2}\left(\|\phi(0)\|+K_{2} T_{1}\right)\left\|x_{n}^{\prime}(s)\right\| d s+l_{2}\left(\|\phi(0)\|+K_{2} T_{1}\right) T_{1}
$$

Applying Gronwall's inequality, we find

$$
\begin{equation*}
\left\|x_{n}^{\prime}(t)\right\| \leqq\left(K_{3} T_{1}+K_{4}\right) e^{K_{3} T_{1}} \tag{5}
\end{equation*}
$$

where $K_{3}=l_{2}\left(\|\phi(0)\|+K_{2}(L / N)\right)$ is independent of T_{1}, n and $u \in S$, and $K_{4}=\|A(0, \phi) \phi(0)\|$. From (4) and (5) we conclude that

$$
\left\|x_{u}(t)\right\| \leqq\|\phi(0)\|+K_{2} T_{1}, \quad\left\|x_{u}\left(t_{1}\right)-x_{u}\left(t_{2}\right)\right\| \leqq K_{5}\left|t_{1}-t_{2}\right|
$$

for every $t_{1}, t_{2} \in\left[0, T_{1}\right]$, where K_{5} is the right hand side of (5).
Now, let $u_{1}, u_{2} \in S$ be given and let x_{1}, x_{2} be the corresponding solutions of $(\mathrm{DE})_{u_{i}}, i=1,2$. Then we have

$$
\begin{align*}
& (1 / 2)(d / d t)\left\|x_{1}(t)-x_{2}(t)\right\|^{2} \tag{6}\\
& \quad=-\operatorname{Re}\left\langle A\left(t, u_{1_{t}}\right) x_{1}(t)-A\left(t, u_{2_{t}}\right) x_{2}(t), J\left(x_{1}(t)-x_{2}(t)\right)\right\rangle \\
& \quad \leqq-\operatorname{Re}\left\langle A\left(t, u_{1_{t}}\right) x_{2}(t)-A\left(t, u_{2_{t}}\right) x_{2}(t), J\left(x_{1}(t)-x_{2}(t)\right)\right\rangle \\
& \quad \leqq l\left(\left\|u_{1_{t}}\right\|_{C},\left\|u_{2_{t}}\right\|_{C},\left\|x_{2}(t)\right\|\right)\left\|u_{1_{t}}-u_{2_{t}}\right\|_{C}\left\|x_{1}(t)-x_{2}(t)\right\|
\end{align*}
$$

from which, dividing by $\left\|x_{1}(t)-x_{2}(t)\right\|$ and then integrating, we arrive at

$$
\left\|x_{1}(t)-x_{2}(t)\right\| \leqq K_{6} \sup _{t \in\left[0, T_{1}\right]}\left\|u_{1_{t}}-u_{2_{t}}\right\|_{c},
$$

where $K_{6}=T_{1} l\left(2\|\phi\|_{C}+L, 2\|\phi\|_{C}+L,\|\phi(0)\|+K_{2}(L / N)\right)$. Since $\sup _{t \in\left[0, T_{1}\right]}$ $\left\|u_{1_{t}}-u_{2_{t}}\right\|_{c}=\sup _{t \in\left[0, T_{1}\right]}\left\|u_{1}(t)-u_{2}(t)\right\|$, we conclude that

$$
\sup _{t \in\left[0, T_{1}\right]}\left\|x_{1}(t)-x_{2}(t)\right\| \leqq K_{\delta_{\theta}} \sup _{t \in\left[0, T_{1}\right]}\left\|u_{1}(t)-u_{2}(t)\right\| .
$$

Now, we choose T_{1} so small that $K_{5} \leqq N$ and $K_{6}<1$. Then the operator $U: u \rightarrow x_{u}$ is a strict contraction on a complete metric space. Let $x(t)$, $t \in\left[0, T_{1}\right]$ be the unique fixed point of U. Then $x(t)$ is the desired solution of the problem (DE). Its uniqueness follows from (6) by replacing u_{1}, u_{2} by x_{1}, x_{2}, respectively.

The above result can be extended to include the infinite (unbounded)
delay version of (DE). In fact, in that case we let C equal the space of all bounded and uniformly continuous functions $f:(-\infty, 0] \rightarrow X$ with the sup-norm. Moreover, we let C_{0} be now the space of all $f \in C$ such that $f(t) \in \bar{D} \cup M, t \in(-\infty, 0]$, where $M=\{\phi(t) ; t \in(-\infty, 0]\}$. The proof of this result follows as above and is therefore omitted.
3. Galerkin approximations. In this section we consider a Galerkin approximation scheme for the solution of the abstract initial value problem
(FDE)

$$
x^{\prime}(t)+A(t) x(t)=G\left(t, x_{t}\right), \quad t \in[0, T]
$$

with $X=H$, a real Hilbert space, $\phi \in C$ such that $\phi^{\prime} \in C$ and the operators $A(t)$ and G satisfying the following conditions:
(C.1) For each $t \in[0, T], A(t): H \rightarrow H$ is m-accretive.
(C.2) There exists a nondecreasing function $L_{1}: R_{+} \rightarrow R_{+}$such that

$$
\|A(t) x-A(s) x\| \leqq|t-s| L_{1}(\|x\|)(1+\|A(s) x\|) .
$$

(C.3) $A(0)$ maps bounded sets into bounded sets.
(C.4) There exists a constant $b>0$ such that for every $\phi, \psi \in C, t \in[0, T]$, $\|G(t, \phi)-G(t, \psi)\| \leqq b\|\phi-\psi\|_{C}$.
(C.5) There exists $L_{2}: R_{+} \rightarrow R_{+}$, nondecreasing and such that for every $s, t \in[0, T], \phi \in C,\|G(t, \phi)-G(s, \phi)\| \leqq L_{2}\left(\|\phi\|_{C}\right)|t-s|$.

Under the assumptions (C.1), (C.2), (C.4) and (C.5) we have the existence of a unique strong solution of (FDE) on [$0, T$], for example, by [9, Theorem 2.1]. In what follows, the space H is separable. Let e_{1}, e_{2}, \cdots be a basis of H and let H_{n} be the subspace of H spanned by the vectors $e_{1}, e_{2}, \cdots, e_{n}$. Let $P_{n}: H \rightarrow H_{n}$ be the projection on H_{n}. We consider the (finite dimensional) approximating problems

$$
\begin{array}{ll}
x_{n}^{\prime}(t)+P_{n} A(t) x_{n}(t)=P_{n} G\left(t, x_{n_{t}}\right), & t \in[0, T], \tag{FDE}\\
x_{n}(t)=P_{n} \phi(t), \quad t \in[-r, 0] . &
\end{array}
$$

The Galerkin method has been already used by other authors to obtain the existence and/or approximation of solutions of nonlinear evolution equations. We should mention here the paper of Browder [3], where the Galerkin method was used to obtain the existence of the unique solution of the problem

$$
\begin{aligned}
& x^{\prime}(t)+A(t) x(t)=0, \quad t \in R_{+}, \\
& x(0)=x_{0} .
\end{aligned}
$$

Here, $A(t)$ is a continuous m-accretive (thus maximal monotone) operator defined on the whole of H and mapping bounded sets into bounded sets.

Gajewski and Zacharias established in [5] the convergence of the Galerkin approximants for the unique strong solution of the perturbed evolution equation

$$
\begin{aligned}
& x^{\prime}(t)+A(t) x(t)=G(t, x(t)), \quad t \in[0, T], \\
& x(0)=x_{0} .
\end{aligned}
$$

Their results where extended by Kartsatos [8] to operators $A(t)$ defined on a proper subset of H. Abstract semigroup theory has been the setting for applying the Galerkin method in Banks [1], [2], Kappel and Schappacher [6] and Webb [13]. These authors have considered equations that fall into the type:

$$
x^{\prime}(t)=f\left(t, x_{t}\right)+g(t), \quad t \in[0, T]
$$

Their approach in these papers is to consider an abstract equation in the space of initial functions involving an operator which generates a nonlinear semigroup on that space. The Galerkin approximations are then given for that equation.

We note that, in our case, since $A(t)$ is defined on the whole space, it is demicontinuous, i.e., it is continuous from the strong topology of H to the weak topology of H [12, p. 107].

In what follows the symbol $\langle\cdot, \cdot\rangle$ denotes the inner product of H. We should also remark that $P_{n} y(t) \rightarrow y(t)$ strongly and uniformly as $n \rightarrow \infty$ for any continuous function $y:[a, b] \subset[-r, T] \rightarrow H$.

Theorem 2. Assume that Conditions (C.1)-(C.5) are satisfied. Then the sequence $\left\{x_{n}(t)\right\}$ of the Galerkin approximants satisfying (FDE) ${ }_{n}$ exists and converges strongly and uniformly to the unique solution $x(t)$ of (FDE).

Proof. As we mentioned above, the unique strong solution $x(t)$ of (FDE) exists by [9, Theorem 2.1]. We note that in (FDE) ${ }_{n}$ the operator $P_{n} A(t)$ is accretive on H_{n}. Since it is also demicontinuous on H, it is continuous on H_{n}. Thus, by a well known result, $P_{n} A(t)$ is m-accretive on H_{n}. It is also easy to see that $P_{n} A(t)$ is Lipschitz continuous in t, satisfying a condition similar, but not identical, to (C.3). Since the projection P_{n} has norm 1, the function $P_{n} G(t, \phi)$ satisfies the Lipschitz conditions (C.4) and (C.5). With these facts established, the existence of the unique strong solution of (FDE) ${ }_{n}$ is guaranteed by the following argument. Consider the equations
$(\mathrm{FDE})_{m_{n}} \quad u_{m_{n}}^{\prime}(t)+P_{n} A_{m}(t) u_{m_{n}}(t)=P_{n} G\left(t, u_{m_{n}}\right), \quad t \in[0, T]$,

$$
u_{m n_{0}}=x_{n_{0}}
$$

where $x_{n_{0}}(\theta)=x_{n}(\theta)=P_{n} \phi(\theta), \theta \in[-r, 0]$, and $A_{m}(t)$ are the Yoshida approximants of $A(t)$. Following the proof of Lemma 2.3 of [9], we can show that, for a fixed n, the (unique) solutions $u_{m n}(t)\left(u_{m n}(t) \in H_{n}\right.$, $m=1,2, \cdots, t \in[0, T]$) of the problems (FDE) $)_{m n}$ are uniformly bounded. On the other hand, since $P_{n} A(t) x$ is continuous on the set $[0, T] \times H_{n}$, it maps bounded subsets of it into bounded subsets of H_{n}. Using this fact, we can easily see that there exists a constant $K_{n}>0$ such that $\left\|P_{n} A_{m}(t) u_{m n}(t)\right\| \leqq K_{n}$ for every $m=1,2, \cdots$ and every $t \in[0, T]$. This in turn implies that there exists a constant $L_{n}>0$ such that the functions $u_{m_{n}}^{\prime}(t)$, given by (FDE) m_{n}, satisfy: $\left\|u_{m_{n}}^{\prime}(t)\right\| \leqq L_{n}$ for every $m=1,2, \cdots$ and every $t \in[0, T]$. The uniform convergence of $u_{m_{n}}(t)$ and $u_{m_{n}}^{\prime}(t)$ to $x_{n}(t)$ and $x_{n}^{\prime}(t)$, for $m \rightarrow \infty$, respectively, follows now almost exactly as in [9]. Its proof is therefore omitted.

In order to show that the sequence $\left\{x_{n}(t)\right\}$ is uniformly bounded, we start with the inequality

$$
\begin{aligned}
&(1 / 2)(d / d t)\left\|x_{n}(t)-P_{n} \phi(0)\right\|^{2}=\left\langle x_{n}^{\prime}(t), x_{n}(t)-P_{n} \phi(0)\right\rangle \\
&=-\left\langle P_{n} A(t) x_{n}(t), x_{n}(t)-P_{n} \phi(0)\right\rangle+\left\langle P_{n} G\left(t, x_{n_{t}}\right), x_{n}(t)-P_{n} \phi(0)\right\rangle \\
&=-\left\langle A(t) x_{n}(t), x_{n}(t)-P_{n} \phi(0)\right\rangle+\left\langle G\left(t, x_{n_{t}}\right), x_{n}(t)-P_{n} \phi(0)\right\rangle \\
&=-\left\langle A(t) x_{n}(t)-A(t) P_{n} \phi(0), x_{n}(t)-P_{n} \phi(0)\right\rangle \\
&-\left\langle A(t) P_{n} \phi(0), x_{n}(t)-P_{n} \phi(0)\right\rangle+\left\langle G\left(t, x_{n_{t}}\right), x_{n}(t)-P_{n} \phi(0)\right\rangle \\
& \leqq\left\|A(t) P_{n} \phi(0)\right\|\left\|x_{n}(t)-P_{n} \phi(0)\right\|+\left\|G\left(t, x_{n_{t}}\right)-G\left(t, x_{n_{0}}\right)\right\|\left\|x_{n}(t)-P_{n} \phi(0)\right\| \\
&+\left\|G\left(t, x_{n_{0}}\right)\right\|\left\|x_{n}(t)-P_{n} \phi(0)\right\| \\
& \leqq\left\|A(0) P_{n} \phi(0)\right\|\left\|x_{n}(t)-P_{n} \phi(0)\right\| \\
&+T L_{1}\left(\left\|P_{n} \phi(0)\right\|\right)\left(1+\left\|A(0) P_{n} \phi(0)\right\|\right)\left\|x_{n}(t)-P_{n} \phi(0)\right\| \\
&+b\left\|x_{n_{t}}-x_{n_{0}}\right\|_{C}\left\|x_{n}(t)-P_{n} \phi(0)\right\|+\left\|G\left(t, x_{n_{0}}\right)\right\|\left\|x_{n}(t)-P_{n} \phi(0)\right\|
\end{aligned}
$$

which implies

$$
\begin{aligned}
& (d / d t)\left\|x_{n}(t)-P_{n} \phi(0)\right\| \\
& \quad \leqq\left\|A(0) P_{n} \phi(0)\right\|+T L_{1}\left(\left\|P_{n} \phi(0)\right\|\right)\left(1+\left\|A(0) P_{n} \phi(0)\right\|\right)+\left\|G\left(t, x_{n_{0}}\right)\right\|+b\left\|x_{n_{t}}-x_{n_{0}}\right\|_{C} \\
& \quad \leqq K+b\left\|x_{n_{t}}-x_{n_{0}}\right\|_{C},
\end{aligned}
$$

a.e. in $[0, T]$, where K is a positive constant. Here we have used the boundedness of $A(0)$ and $G\left(t, x_{n_{0}}\right)$ on [0,T]. Integrating, we obtain

$$
\left\|x_{n}(t)-P_{n} \phi(0)\right\| \leqq K T+b \int_{0}^{t}\left\|x_{n_{s}}-x_{n_{0}}\right\|_{C} d s
$$

Thus, for any $t_{1} \in[0, t]$, we have

$$
\left\|x_{n}\left(t_{1}\right)-P_{n} \phi(0)\right\| \leqq K T+b \int_{0}^{t_{1}}\left\|x_{n_{s}}-x_{n_{0}}\right\|_{c} d s
$$

$$
\leqq K T+b \int_{0}^{t}\left\|x_{n_{s}}-x_{n_{0}}\right\|_{C} d s
$$

If $t_{1} \in[-r, 0]$, then $\left\|x_{n}\left(t_{1}\right)-P_{n} \phi(0)\right\| \leqq\left\|P_{n} \phi\left(t_{1}\right)\right\|+\left\|P_{n} \phi(0)\right\| \leqq 2\|\phi\|_{C}$. Hence

$$
\sup _{\theta \in[-r, 0]}\left\|x_{n}(t+\theta)-P_{n} \phi(0)\right\| \leqq K T+2\|\phi\|_{C}+b \int_{0}^{t}\left\|x_{n_{s}}-x_{n_{0}}\right\|_{c} d s
$$

which implies

$$
\begin{aligned}
\left\|x_{n_{t}}-x_{n_{0}}\right\|_{C} & =\sup _{\theta \in[-r, 0]}\left\|x_{n}(t+\theta)-x_{n_{0}}(\theta)\right\| \\
& \leqq \sup _{\theta \in[-r, 0]}\left\|x_{n}(t+\theta)-P_{n} \phi(0)\right\|+\sup _{\theta \in[-r, 0]}\left\|P_{n} \phi(0)-x_{n_{0}}\right\| \\
& \leqq K T+4\|\phi\|_{C}+b \int_{0}^{t}\left\|x_{n_{s}}-x_{n_{0}}\right\|_{C} d s .
\end{aligned}
$$

Applying Gronwall's inequality above, we obtain the boundedness of $\left\{x_{n_{t}}-x_{n_{0}}\right\}$, which implies the boundedness of $\left\{x_{n}(t)\right\}$. We are now ready to show the convergence of $x_{n}(t)$ to $x(t)$ uniformly on [0, T]. We first observe that

$$
\begin{align*}
\left\langle x_{n}^{\prime}(t), x_{n}(t)-x(t)\right\rangle+\left\langle P_{n} A(t) x_{n}(t)\right. & \left., x_{n}(t)-x(t)\right\rangle \tag{7}\\
& =\left\langle P_{n} G\left(t, x_{n_{t}}\right), x_{n}(t)-x(t)\right\rangle
\end{align*}
$$

$$
\begin{align*}
\left\langle x^{\prime}(t), x_{n}(t)-x(t)\right\rangle+\left\langle A(t) x(t), x_{n}(t)\right. & -x(t)\rangle \tag{8}\\
& =\left\langle G\left(t, x_{t}\right), x_{n}(t)-x(t)\right\rangle
\end{align*}
$$

Subtracting (8) from (7), we find

$$
\begin{aligned}
\left\langle x_{n}^{\prime}(t)-\right. & \left.x^{\prime}(t), x_{n}(t)-x(t)\right\rangle \\
= & -\left\langle A(t) x_{n}(t), x_{n}(t)-P_{n} x(t)\right\rangle+\left\langle A(t) x(t), x_{n}(t)-x(t)\right\rangle \\
& +\left\langle G\left(t, x_{n_{t}}\right), x_{n}(t)-P_{n} x(t)\right\rangle-\left\langle G\left(t, x_{t}\right), x_{n}(t)-x(t)\right\rangle \\
= & -\left\langle A(t) x_{n}(t)-A(t) x(t), x_{n}(t)-x(t)\right\rangle-\left\langle A(t) x_{n}(t), x(t)-P_{n} x(t)\right\rangle \\
& +\left\langle G\left(t, x_{n_{t}}\right)-G\left(t, x_{t}\right), x_{n}(t)-x(t)\right\rangle+\left\langle G\left(t, x_{n_{t}}\right), x(t)-P_{n} x(t)\right\rangle,
\end{aligned}
$$

which implies

$$
\begin{aligned}
& (1 / 2)(d / d t)\left\|x_{n}(t)-x(t)\right\|^{2} \\
& \quad \leqq\left\|A(t) x_{n}(t)\right\|\left\|x(t)-P_{n} x(t)\right\|+b\left\|x_{n_{t}}-x_{t}\right\|_{C}^{2}+\left\|G\left(t, x_{n_{t}}\right)\right\|\left\|x(t)-P_{n} x(t)\right\|
\end{aligned}
$$

Integrating this inequality, we arrive at

$$
\begin{equation*}
\left\|x_{n}(t)-x(t)\right\|^{2} \leqq\left\|x_{n}(0)-x(0)\right\|^{2}+\int_{0}^{T} h(t) d t+2 b \int_{0}^{t}\left\|x_{n_{s}}-x_{s}\right\|_{0}^{2} d s \tag{9}
\end{equation*}
$$

where $h(t)=2\left\|A(t) x_{n}(t)\right\|\left\|x(t)-P_{n} x(t)\right\|+2\left\|G\left(t, x_{n_{t}}\right)\right\|\left\|x(t)-P_{n} x(t)\right\|$.

Since the above inequality holds for any $t_{1} \in[0, t]$, and since, for $t_{1} \in[-r, 0]$,

$$
\left\|x_{n}\left(t_{1}\right)-x\left(t_{1}\right)\right\|=\left\|P_{n} \phi\left(t_{1}\right)-\phi\left(t_{1}\right)\right\| \leqq \sup _{\theta \in[-r, 0]}\left\|P_{n} \phi(\theta)-\phi(\theta)\right\|,
$$

we actually have

$$
\begin{aligned}
\left\|x_{n}(t)-x(t)\right\|^{2} \leqq & \left\|x_{n}(0)-x(0)\right\|^{2}+\sup _{\theta \in[-r, 0]}\left\|P_{n} \phi(\theta)-\phi(\theta)\right\|^{2} \\
& +\int_{0}^{T} h(t) d t+2 b \int_{0}^{t}\left\|x_{n_{s}}-x_{s}\right\|_{c}^{2} d s, \quad t \in[-r, T] .
\end{aligned}
$$

Consequently, by Gronwall's inequality, we get

$$
\begin{aligned}
\sup _{\theta \in[-r, 0]} \| x_{n_{t}}(& \theta)-x_{t}(\theta) \| \\
& \leqq\left[\left\|x_{n}(0)-x(0)\right\|^{2}+\sup _{\theta \in[-r, 0]}\left\|P_{n} \phi(\theta)-\phi(\theta)\right\|^{2}+\int_{0}^{T} h(t) d t\right] e^{2 b t} .
\end{aligned}
$$

Now, $x_{n}(0)-x(0)=P_{n} \phi(0)-\phi(0) \rightarrow 0 \quad$ as $n \rightarrow \infty \quad$ and $\quad P_{n} \phi(\theta)-\phi(\theta) \rightarrow 0$ uniformly on $[-r, 0]$. In addition, for the three normed expressions in $h(t)$ we have the following properties. From the boundedness of $A(0)$ and the inequality $\left\|A(t) x_{n}(t)\right\| \leqq\left\|A(0) x_{n}(t)\right\|+T L_{1}\left(\left\|x_{n}(t)\right\|\right)\left(1+\left\|A(0) x_{n}(t)\right\|\right)$ we obtain the uniform boundedness of $\left\{A(t) x_{n}(t)\right\}$. The uniform boundedness of $\left\{x_{n_{t}}\right\}$ implies the same property for $\left\{G\left(t, x_{n_{t}}\right)\right\}$. Finally, $P_{n} x(t) \rightarrow$ $x(t)$ uniformly on $[0, T]$. Thus, an application of Lebesgue's bounded convergence theorem shows that

$$
\sup _{\theta \in[-r, 0]}\left\|x_{n_{t}}(\theta)-x_{t}(\theta)\right\| \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty,
$$

which in turn shows that $x_{n}(t) \rightarrow x(t)$ uniformly on $[0, T]$.
It should be noted here that we do not assume that $A(t) P_{n} x \rightarrow A(t) x$ for every $x \in H$. This assumption is actually included in the result of Kartsatos [8] if the domain of $A(t)$ there is the whole of H. Also, the constant b in (C.5) can be replaced by a Lebesgue integrable function $b:[0, T] \rightarrow R_{+}$.
4. Applications. As an example to which we can apply our result of Section 3, we cite the nonlinear initial-boundary value problem:
(E) $\quad(\partial / \partial t) u(x, t)+A(t, x, u(x, t))=f(t, x, u(x, t-r)), \quad t \in(0, T), \quad x \in \Omega$,
$u(x, \theta)=\phi(x, \theta), \quad x \in \Omega, \quad \theta \in[-r, 0]$,
$D^{a} u(x, t)=0, \quad x \in \partial \Omega, \quad t \in(0, T], \quad|\alpha|<m$,
where u is a real valued function, r is a positive constant, Ω is a bounded open subset of $R^{n}(R=(-\infty, \infty), n \geqq 2)$ with sufficiently smooth
boundary, $A(t, x, u), f(t, x, u)$ are nonlinear elliptic partial differential operators in divergence form:

$$
\begin{aligned}
& A(t, x, u)=\sum_{|\alpha| \leq m}(-1)^{|\alpha|} b_{\alpha}(t) D^{\alpha} A_{\alpha}(x, \xi(u)) \\
& f(t, x, u)=\sum_{|\alpha| \leqq m}(-1)^{|\alpha|} D^{\alpha} f_{\alpha}(t, x, \xi(u))
\end{aligned}
$$

and $\phi: \Omega \times[-r, 0] \rightarrow R$ is a given function. For a multi-index $\alpha=$ ($\alpha_{1}, \cdots, \alpha_{n}$) of nonnegative integers we adopt the notation

$$
|\alpha|=\alpha_{1}+\cdots+\alpha_{n}, \quad D_{i}=\left(\partial / \partial x_{i}\right), \quad D^{\alpha}=D_{1}^{\alpha_{1}} \cdots D_{n}^{\alpha_{n}}
$$

By $R^{n_{m}}$ we denote the space of all real vectors of the form $\xi=$ $\left\{\xi_{\alpha} ;|\alpha| \leqq m\right\}$. Thus, $\xi(u)=\left\{D^{\alpha} u ;|\alpha| \leqq m\right\}$.

For the results concerning such partial differential operators the reader is referred, for example, to Browder [4] and Pascali and Sburlan [12].

Now, let $W^{m, 2}(\Omega)$ be the Sobolev space of all real valued functions u such that $D^{\alpha} u \in L^{2}(\Omega)$ for every α with $|\alpha| \leqq m . \quad W^{m, 2}(\Omega)$ is a separable Hilbert space with inner product

$$
\langle u, v\rangle_{m}=\sum_{|\alpha| \leqq m}\left\langle D^{\alpha} u, D^{\alpha} v\right\rangle_{L^{2}(\Omega)} .
$$

Let $C_{C}^{\infty}(\Omega)$ be the space of all $f \in C^{\infty}(\Omega)$ with compact support. We denote by $W_{o}^{m, 2}(\Omega)$ the closure of the space $C_{C}^{\infty}(\Omega)$ in $W^{m, 2}(\Omega)$. The space $W_{o}^{m, 2}(\Omega)$ is thus another separable Hilbert space. We let H denote this space and we make the following additional assumptions:
(i) for each $\alpha, A_{\alpha}: \Omega \times R^{n_{m}} \rightarrow R$ satisfies the Caratheodory conditions and there exists a function $g \in L^{2}(\Omega)$ and a constant $c>0$ such that

$$
\left|A_{\alpha}(x, \xi)\right| \leqq c|\xi|+g(x), \quad(x, \xi) \in \Omega \times R^{n_{m}}
$$

where $|\xi|=\left(\sum_{|\alpha| \leq m} \xi_{\alpha}^{2}\right)^{1 / 2}$.
(ii) For $x \in \Omega$ and $\xi, \xi^{\prime} \in R^{n_{m}}$ we have

$$
\sum_{|\alpha| \leqq m}\left[A_{\alpha}(x, \xi)-A_{\alpha}\left(x, \xi^{\prime}\right)\right]\left(\xi_{\alpha}-\xi_{\alpha}^{\prime}\right) \geqq 0
$$

(iii) Each $b_{\alpha}:[0, T] \rightarrow R_{+}$is Lipschitz continuous on $[0, T], \phi(\cdot, \theta) \in$ $W_{o}^{m, 2}(\Omega)$ for every $\theta \in[-r, 0], \phi(x, \theta)$ is continuous and satisfies a Lipschitz condition with respect to θ uniformly in $x \in \Omega$.
(iv) The functions $f_{\alpha}:[0, T] \times \Omega \times R^{n_{m}} \rightarrow R$ are continuous and such that: there exists a nonnegative function $h \in L^{2}(\Omega)$ and a constant $L>0$ with

$$
\left|f_{\alpha}(t, x, \xi)-f_{\alpha}\left(t^{\prime}, x, \xi^{\prime}\right)\right| \leqq h(x)\left|t-t^{\prime}\right|+L\left|\xi-\xi^{\prime}\right|
$$

for every $t, t^{\prime} \in[0, T], x \in \Omega$, and $\xi, \xi^{\prime} \in R^{n_{m}}$.

If for each $t \in[0, T], u, v \in W_{o}^{m, 2}(\Omega)$ we let

$$
a^{t}(u, v)=\sum_{|\alpha| \equiv m} b_{\alpha}(t) \int_{\Omega} A_{\alpha}(x, \xi(u(x))) D^{\alpha} v(x) d x
$$

then $a^{t}(u, v)$ is a bounded linear functional in v. By the Riesz representation theorem, there exists a nonlinear operator $T(t): H \rightarrow H$ such that

$$
\langle T(t) u, v\rangle_{m}=a^{t}(u, v), \quad(u, v) \in H \times H
$$

The operator $T(t)$ is continuous, m-accretive, and maps bounded subsets of H into bounded sets for each $t \in[0, T]$. The proof of this fact follows as in [12, p. 275]. It is also easy to see that T satisfies the condition (C.2). Similarly, we can obtain an operator $F(t): H \rightarrow H$ such that

$$
\langle F(t) u, v\rangle_{m}=\sum_{\mid \alpha \leqq m} \int_{\Omega} f_{\alpha}(t, x, \xi(u(x))) D^{\alpha} v(x) d x
$$

for every $t \in[0, T], u, v \in W_{o}^{m, 2}(\Omega)$. In order to show that $F(t) u$ satisfies a global Lipschitz condition on $[0, T] \times W_{o}^{m, 2}(\Omega)$, we observe that

$$
\begin{aligned}
\mid \int_{\Omega} & {\left[f_{\alpha}(t, x, \xi(u(x)))-f_{\alpha}\left(t^{\prime}, x, \xi(v(x))\right)\right] D^{\alpha} v(x) d x \mid } \\
& \leqq\left(\int_{\Omega}\left[f_{\alpha}(t, x, \xi(u(x)))-f_{\alpha}\left(t^{\prime}, x, \xi(v(x))\right)\right]^{2} d x\right)^{1 / 2} \cdot\|v\|_{m, 2} \\
& \leqq\left(\int_{\Omega}\left[h(x)\left|t-t^{\prime}\right|+L|\xi(u(x))-\xi(v(x))|\right]^{2} d x\right)^{1 / 2} \cdot\|v\|_{m, 2} \\
& \leqq\left(\left(\int_{\Omega} h^{2}(x) d x\right)^{1 / 2}\left|t-t^{\prime}\right|+L\|u-v\|_{m, 2}\right)\|v\|_{m, 2} \\
& =\left(K\left|t-t^{\prime}\right|+L\|u-v\|_{m, 2}\right)\|v\|_{m, 2}
\end{aligned}
$$

where $\|\cdot\|_{m, 2}$ is the norm of $W_{o}^{m, 2}(\Omega)$ and K is an obvious constant. Adding these inequalities, we obtain our assertion.

Now, we consider the abstract problem

$$
\begin{align*}
& u^{\prime}(t)+T(t) u(t)=G\left(t, u_{t}\right), \quad t \in[0, T] \tag{AE}\\
& u_{0}=\phi
\end{align*}
$$

where $G(t, \psi)=F(t) \psi(-r)$, for any $\psi \in C$, and $u^{\prime}(t)$ denotes the weak derivative of $u(t)$. Since the conditions (C.1)-(C.5) are satisfied, the unique strong solution of (AE) can be approximated by the Galerkin method.

As an application of Theorem 1, we consider the initial-boundary value problem consisting of the equation

$$
(\partial / \partial) u(x, t)+A(t, x, u(x, t-r), u(x, t))=0, \quad t \in(0, T), \quad x \in \Omega
$$

and the initial and boundary conditions in (E). We assume that the initial and boundary conditions satisfy the hypotheses made above, and we let the elliptic differential operator A have the form

$$
A(t, x, u, v)=\sum_{|\alpha| \leq m}(-1)^{|\alpha|} D^{\alpha} b_{\alpha}(t, x, \xi(u)) A_{\alpha}(x, \xi(v)) .
$$

We assume, further, that the following conditions hold:
(1) Each A_{α} satisfies (i) and (ii) above with $g(x)$ constant and $c=0$.
(2) Each b_{α} is defined and continuous on $[0, T) \times \Omega \times R^{n_{m}}$, it has values in R_{+}and, for some constants $K>0, L>0$,

$$
\left|b_{\alpha}(t, x, \xi)-b_{\alpha}\left(t^{\prime}, x, \xi^{\prime}\right)\right| \leqq K\left|t-t^{\prime}\right|+L\left|\xi-\xi^{\prime}\right|
$$

for every $t, t^{\prime} \in[0, T), x \in \Omega, \xi, \xi^{\prime} \in R^{n_{m}}$.
Now, let $T(t, u) v$ be defined on $W_{o}^{m, 2}(\Omega)$ from the equation

$$
\langle T(t, u) v, w\rangle_{m}=\sum_{|\alpha| \leq m} \int_{\Omega} b_{\alpha}(t, x, \xi(u(x))) A_{\alpha}(x, \xi(v(x))) D^{\alpha} w(x) d x .
$$

It is easy to see that $T(t, u) v$ is continuous, monotone and bounded in v and satisfies the following Lipschitz condition:

$$
\left\|T(t, u) v-T\left(t^{\prime}, u^{\prime}\right) v\right\|_{m, 2} \leqq K_{1}\left|t-t^{\prime}\right|+L_{1}\left\|u-u^{\prime}\right\|_{m, 2}
$$

for all $t, t^{\prime} \in[0, T), u, u^{\prime}, v \in W_{o}^{m, 2}$, where K_{1}, L_{1} are positive constants. Setting $T(t, \phi) v=T(t, \phi(-r)) v$ for $(t, \phi, v) \in[0, T) \times C \times W_{o}^{m, 2}$, we see that all the conditions of Theorem 1 are satisfied for the abstract problem

$$
\begin{aligned}
& u^{\prime}(t)+T\left(t, u_{t}\right) u(t)=0, \quad t \in[0, T), \\
& u_{0}=\phi .
\end{aligned}
$$

References

[1] T. Banks, Identification of nonlinear delay systems using spline methods, Proc. Int. Conf. Nonl. Phenomena Math. Sci., Univ. Texas at Arlington, 1980, to appear.
[2] T. Banks, Approximation of nonlinear functional differential equation control systems, J. Optim. Theory Appl. 29 (1979), 383-408.
[3] F. E. Browder, Nonlinear equations of evolution, Ann. Math. 80 (1964), 485-523.
[4] F. E. Browder, Existence theorems for nonlinear partial differential equations, Proc. Symp. Pure Math. 16 (1970), 1-62.
[5] H. Gajewski and K. Zacharias, Zur Konvergenz des Galerkin-Verfahrens bei einer Klasse nichtlinearer Differentialgleichungen im Hilbert-Raum, Math. Nachr. 51 (1971), 269-278.
[6] F. Kappel and W. Schappacher, Non-linear functional differential equations and abstract integral equations, Proc. Roy. Soc. Edinburgh 84A (1979), 71-91.
[7] A. G. Kartsatos, Perturbations of m-accretive operators and quasi-linear evolution equations, J. Math. Soc. Japan 30 (1978), 75-84.
[8] A. G. Kartsatos, Perturbed evolution equations and Galerkin's method, Math. Nachr. 91 (1979), 337-346.
[9] A. G. Kartsatos and M. E. Parrott, Convergence of the Kato approximants for evolution equations involving functional perturbations, J. Diff. Equations, to appear.
[10] A. G. Kartsatos and M. E. Parrott, A method of lines for a non-linear functional evolution equation, to appear.
[11] T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19 (1967), 508-520.
[12] D. Pascali and S. Sburlan, Nonlinear Mappings of Monotone Type, Sijthoff and Noordhoff, Bucharest, 1978.
[13] G. F. Webb, Autonomous nonlinear functional differential equations and nonlinear semigroups, J. Math. Anal. Appl. 46 (1974), 1-12.
Center for Applied Mathematics
Department of Mathematics
University of South Florida
Tampa, Florida 33620
U.S.A.

