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1. Introduction. Let G be a compact abelian group whose dual Γ
has a total order. Suppose that M is a von Neumann algebra with a
faithful normal tracial state τ and {ag}geG is a σ-weakly continuous re-
presentation of G as *-automorphisms of M such that τ<>ag = τ, geG.
Put Γ+ = {7 6 Γ: 7 ^ 0} and let H°°(a) be the set of x e M such that
Spa(x) c Γ+. Recently, the structure of H°°(a) has been investigated by
several authors (cf. [7], [8], [9], [10], [12], [13], [15]). It is well-known that
H°°(a) is a finite maximal subdiagonal algebra of M (cf. [8]). However,
H°°(a) is not necessarily maximal as a σ-weakly closed subalgebra of M.
McAsey, Muhly and the author in [9], [10] and [15] studied the maximality
of typical examples of H^ia) which are called nonselfadjoint crossed
products.

Our aim in this paper is to investigate the maximality of H°°(a) as
a σ-weakly closed subalgebra of M. Our method is based on a charac-
terization of spectral subspaces and the invariant subspace structure of
the noncommutative Lebesgue space L\M, τ) associated with M and τ in
the sense of Segal [16], In §2, we give a characterization of spectral
subspaces. For every 7 e Γ, we put Mr = {x e M: ag(x) = (g, Ύ)x, g e G}.
Suppose that the center S(M0) of Mo is contained in the center Q(M) of
M. If Mr Φ {0}, then there is a partial isometry uγ in Mγ and a projection
eγ in ,8(Mo) such that Mγ = Mour and u*ur = uru* = er. In particular, if
MQ is a factor, then we may choose a unitary element ur in Mr such
that Mr = Mour. In §3, we first define the cocycles of canonical left-
invariant subspaces of L\M, τ). If Mo is a factor, then every two-sided
invariant subspace is left-pure and left-full. As the main result in this
paper, we show that, if 3(^0) c S(M) and if there is no nonzero projection
p of 3(MQ) with Mp = Mop, then H°°(a) is a maximal <7-weakly closed
subalgebra of M if and only if Mo is a factor and Spa is a subgroup
(of Γ) with an archimedean order.
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2. A characterization of spectral subspaces Suppose that M is a
finite von Neumann algebra acting on a Hubert space H and that {ag}geG

is a <j-weakly continuous representation of a compact abelian group G as
a group of *-automorphisms of M. For simplicity, such an {ag}geG is
called a compact abelian group action on M in this paper. Following
Arveson [3] and Loebl-Muhly [8], we define a representatin α( ) of L\G)
into the algebra of bounded operators on M by

a{f)x =

where feL\G) and μ is the normalized Haar measure on G. Let Γ be
the dual group of G. The pairing between G and Γ will be written
as <£, 7>, geG,Ί e f , hence the Fourier transform will take this form:

/(?) = ^ <</, 7>f(g)dμ(9), f 6 2/(G). If / e !/((?), we let Z(f) = {7 6 Γ: /(7) =
0}. We let Spa be Π^(/)> where / runs through the set of functions
in L\G) such that a(f) = 0. If x e M, we let Spa(x) = ΠZ(f)9 where
a(f)x = 0, / 6 LXG). If S is a subset of Γ, we denote by Ma(S) the set
oi xeM such that Spa(x)cS. For every 7 e Γ we define a c-weakly
continuous linear map εr on M by the integration

= \
JG

,̂ y)ag{x)dμ(g) , xeM .

Put εr(M) = Jkfr. Then it is clear that

Mr = {xe M: ag(x) = (g, J)X, geG}.

The following lemma is well-known and easy to prove.

LEMMA 2.1 (cf. [12], [4]). Keep the notations as above. Then

(1) Mr =
( 2) MrMλ c Mr+x and M* = M_r for every 7, λ 6 Γ.
(3 ) Let x, yeM. If εr(x) — εr(y) for each 7 e Γ, then x — y.
(4) Spa(x) = {76Γ: er(x) Φ 0} for xeM.
(5) Spa = {76Γ: Mr Φ {0}}.
(6) Let xeMr and let x — v\x\ be the polar decomposition of x.

Then veMr and \x\eMo.

By a result of Connes [4, Theoreme 2.2.4], if Mo is a factor, then
Spa is a subgroup of Γ. Thus we have the following analogue of
Stormer [17, Theorem 3.2].

LEMMA 2.2. Keep the notations as above. If Mo is a factor, then
the dual (Spay of Spa is canonically isomorphic to GjN, where N is
the kernel ker a of a in G.
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Our goal in this section is the following theorem whose proof is

inspired by Araki [1].

THEOREM 2.3. In the notations above, suppose that the center Q(M0)
of Mo is contained in the center &(M) of M. Then for every 7 e Spa,
there exist a partial isometry ur in Mr and a projection eγ in $(M0) such
that Mr = Mour and u*ur = uru* = er.

PROOF. Let ye Spa. By Lemma 2.1 (2), it is clear that the linear
span S of M?Mr is a two-sided ideal of MQ. Then there exists a nonzero
projection er in 3(MQ) such that the σ-weak closure S of S equals MQer.
Further, since £y*x = (x + y)*(x + y) — (x — y)*(x — y) + i(x + ίy)*(x + iy) —
i(x — iy)*{x — iy), x, yeM, we have

S = JΣ anx*xn: xn e M, an e c\ ,

where C is the complex field. Hence there exists a sequence {yλ}λeΛ in
S such that er = σ-weak limit yλ. Put p = sup{u*u: u is a partial isometry
of Mr}. By Lemma 2.1 (6), er — p = (er — p)βr = σ-weak limit (er — p ) ^ = 0
and so er = p. Since er is a central projection of M, we have uu* ^ er

for every partial isometry u in Mr. Thus we similarly have e r=sup{uu*: u
is a partial isometry of Mr}.

Next we show that there is a partial isometry ur of Jlfr such that
u*ur = %^* = βr Consider a maximal family {uλ}χeΛ of partial isometries
of Mr such that u^u* are mutually orthogonal and u*uλ are mutually
orthogonal. Put ur — ΣιλeΛuλ. Then ur is a partial isometry of Mr.
Suppose that er — u*ur Φ 0. Since er = sup {u*u: u is a partial isometry
of Mr}, there exists a partial isometry v in Λfr such that v*v(er — u*ur) Φ
0. By the comparability theorem, there are a central projection z in Mo

and partial isometries uγ and u2 in Mo such that u f^ = z(er — u*%),
l̂W* ^ 2t;*ι;, u2*u2 = (1 — z)v*v and u2u2* ^ (1 — z)(er — ̂ *u r ) . Then we

have either ux Φ 0 or u2 Φ 0. If nx Φ 0, then we set vx = zvu±. Thus
v*vx — uΐzv^vUi = utu^utu^ — u*ux — z(er — u*) ^ er — u*ur and vx is a non-
zero partial isometry in M7. If ^ 2 ̂  0, then we set vx = (1 — ^)vu2*. Thus
t i* !̂ = ^2u2* ^ βr — t6*^r and Vx is a nonzero partial isometry in Mτ. Let T
(resp. Γo) be the center valued trace of M (resp. Mo). Since
the restriction of T to ikf0 equals To. Hence we have

T0(er — UγUγ) = Γ(e r — %u*) = Γ(β r — u*u7)

By [18, p. 314, Corollary 2.8], v&ϊ ^ er — %^r*
 τ l l u s there is a partial

isometry u in ikf0 such that u*u = v^f and uu* ̂  er — u ru*. Put v2 —
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uvλ. Then

and

Since v2 is a nonzero partial isometry in Mr, this contradicts the max-
imality of {uλ}XeΛ. It is clear that Mr = Mour. Hence we are done.

COROLLARY 2.4. If Mo is a factor, then there exists a unitary
element ur of Mγ such that Mr = Mour for every 7 e Spa.

3. Invariant subspaces and maximality of H°°(a). Let M be a
von Neumann algebra with a faithful normal tracial state τ. Let
{ag}geG be a compact abelian group action on M such that τ<>ag — τ,
geG. We suppose that the dual group Γ of G has a total order. Set
Γ+ = {7 e Γ: 7 ^ 0} and Γ+o = {7 e Γ: 7 > 0}, respectively. Let L2(M, τ)
be the noncommutative Lebesgue space associated with M and τ (cf.
[16]). For every x e M, we define operators Lx and ϋ^ on L\M, τ) by
the formulae Lxy = ajy and jBxi/ = J/OJ, 7/ € L2(ikf, τ). For a subset S of
M, we write L(S) = {Lx: xeS} and Λ(S) = {Rx: xeS}, respectively.
For a subset S of L\M, τ), we denote by [S]2 the closed linear span
of S in L\M, τ). Further, we define H°°(a) = Ma(Γ+), which is called
the noncommutative Hardy space with respect to {ag}geG- We also define
f β (α) = M"(Γ+0), H\ά) = [H"(a)]2 and H0\a) = [ίίo00(α)]2. Since τoag = τ,
there is a unitary group {TΓ^eβ on L\M, τ) such that WgLxW* = Lag(x)

and WgRxW* = Rag{x), geG,xeM. By Lemma 2.1 and [8], we have the
following:

PROPOSITION 3.1. (1) H°°(a) is a finite maximal subdiagonal algebra
of M with respect to ε0 and τ.

(2 ) H~(a) = {xeM: εr(x) = 0, 7 e Γ, 7 < 0}.
( 3 ) Hr(α) = {z 6 H°°(a): εo(x) = 0}.

We first define invariant subspaces of L2(M, τ) according to [9], [10]
and [15].

DEFINITION 3.2. Let SK be a closed subspace of L2(M, τ). We say
that Wl is left-invariant, if L{H°°(aW c 2TC; left-reducing, if L(ikf)2« c SK;
left-pure, if 3K contains no left-reducing subspace; and left-full, if the
smallest left-reducing subspace containing SK is all of L2(M, τ). The
right-hand versions of these concepts are defined similarly. A closed
subspace which is both left- and right- invariant will be called two-sided
invariant.
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Throughout this section, we suppose that Mo is a factor. By Corol-
lary 2.4, there exists a family {%}re5l,α of unitary operators in M such
that Mr = Mour, 7 e Spa.

PROPOSITION 3.3 (cf. [15, Proposition 3.2]). Let Wlbe a left-invariant
subspace of L\M, τ). Then we have the following:

(1) 3ft is left-reducing if and only if urWl c 3ft for every 7 e Spa.
(2) 3ft is left-pure if and only if Λre*pα%3ft = {0}.
( 3 ) 3ft is left-full if and only if VresP« uγWt = L\M, τ).

Throughout this section, suppose that Spa has an Archimedean
order, that is, Spa may be regarded as a subgroup of J2 with the
discrete topology ([19, Theorem 8.1.2]). Thus Spa is order isomorphic
onto Z or a dense subgroup of R with the discrete topology.

Let 3ft be a left-invariant subspace of L\M, τ). Put 3ftr = uffi, 7 6
Spa. The family of subspaces 3ftr decreases as 7 increases in Spa. If
Spa is a dense subgroup of R with the discrete topology, then we have

2ft (+) = Λ {3ft_r: 7 e Spa n Γ+o} and 2K{_> = V {2Kr:7eSpαΓl Γ+o}

DEFINITION 3.4. Let 3K be a left-invariant subspace of L\M, τ). If
Spa is a dense subgroup of J? with the discrete topology, then 2ft is
said to be left- (resp. right-) normalized in case 3R = 3ft (+) (resp. 2ft =
2ft(_,). If Sft is both left- and right-normalized, then 3ft is said to be
completely normalized. Further, if Spa is a dense subgroup of R (resp.
Spa is order-isomorphic onto Z), then a left-invariant subspace 3ft of
L2(M, τ) is said to be canonical in case 3ft is left-pure, left-full and left-
normalized (resp. left-pure and left-full).

Next we define cocycles of canonical left-invariant subspaces of
L\M, τ). We now fix such a subspace 3ft of L2(M, τ). For 7 e Spa9 we
denote by Pr tne projection of L\M, τ) onto 3ftr. As 7 increases in Spa,
Pr decreases from the identity 1 to 0, by Proposition 3.3. For each real
number λ not in Spa, we define Pλ so that the family {Pλ}λeR is continuous
from the left. Then 1 — Pλ is a resolution of the identity in L2(M, r),
to which by Stone's theorem is associated the unitary group {Vt}teR

defined by

(3.1) Vt = - Γ emdPλ.
J-oo

Since L(M0)Ttx c 3ftλ, it is clear that Pt and Vt are in L(M0)' for t e R.
Hence we have Pλ+r = LUγPλLu* and
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Lu*VtLUr = -\" eMd(Lu.PxLUr) == - Γ β' ' d P ^

PROPOSITION 3.5 (cf. [15, Theorem 4.1]). Keep the notations and the
assumptions as above. The families {Pt}teR and {Vt}teR associated with
a canonical left-invariant subspace 2ft satisfy

(3.2)

Pχ+r = LUrPλLu*,

P t , VteL(Moy , t,xeR , 7 e

Conversely, every left-continuous family {Pt}teR of projections and every
continuous unitary group {Vt}teR satisfying (3.2) are obtained from a
unique, canonical left-invariant subspace of L\M9τ).

Put N = ker a. Since Spa is a subgroup of Γ, the dual (Spay of
Spa is canonically isomorphic to G/N by Lemma 2.2. Since Spa is also
a subgroup of R, let e, for each real number t be the element of G/N
defined by et(X) = eίtλ, λ 6 Spa. It is easy to verify that the mapping ω
defined by ω(t) = et is a continuous homomorphism of R into G/JV and
the image ω{R) is a dense subgroup of G/N. Now {ag}geG (resp. {W,}αβG)
induces a σ-weakly continuous representation of {όcιa]}ιg-\eG/N (resp.
{Wigύtguσ/N) of *-automorphisms of M (resp. unitary operators on L\M, τ)),
where α[ff] = ag (resp. ^ [ α ] = Wff), with the coset [g] of g in G/JV. It is
clear that L^x) = ̂ L . ^ , [#] e G/iSΓ. Put S, = Wω{t), t e R. Then
{SJί6Λ is a continuous unitary group on L2(M, τ) and we have the following:

THEOREM 3.6. Keep the notations and the assumptions as above.
Then each continuous unitary group {Vt}teR on L\M, τ) satisfying (3.2)
has the form Vt — RatStt where {at}tQR is a continuous unitary family
of M such that

(3.3) at+u = άω{t)(au)at , t,ueR.

Conversely, if {at}teR is any such unitary family of M, then Vt = Raβt
defines a continuous unitary group on L2(M, τ) which satisfies (3.2).

PROOF. Put At = VtSf. Since (Spa)" is canonically isomorphic to
G/N, Spa is the annihilator of N, that is, Spa = {Ύ e Γ: (g, 7> = 1 for
all geN}. Thus we have

= {g, 7>LBr = (ω{t\

where teR,Ύe Spa and g e ω(t). Thus
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AfL»At = (VtSn*LUr(VtSn = StVt*LuVtSf =

Since F t and S* are elements in L(M0)' and L(ilί) is generated by L(M0)
and {Lu }r65pα, we have At e L(M)r — R(M). Thus there is a unitary-
family {at}teR of ilf such that At = Rar Further, we have

At+U = vt+usr+u = vtststv,β:sr = Λ S ^ Λ *

Thus α ί+w = α^^αjα*.
Conversely, put F t = JR«tjSt. By (3.3), {FJ i e* is a continuous unitary

group of L(M0)'. By Stone's Theorem, there is a left-continuous family

{PJt6Λ of projections of L(Λf0)' such that Vt = - \ e iUdP ;. Now, for 7e
J_oo

Sί?α and teR, we have
= Lu.RatStLur = RatStS*LUγStLtγ

Therefore {PJi6« and {FJίe/ι satisfy (3.2). This completes the proof.

DEFINITION 3.7. A unitary family {αJt6Λ of ikf satisfying the con-
ditions of Theorem 3.6 is called a cocycle determined by a canonical left-
invariant subspace of L\M, τ).

Next we show that, if Mo is a factor, then every two-sided invariant
subspace of L2(M, τ) which is not left-reducing is left-pure and left-full.
To prove this, we need the following lemmas.

LEMMA 3.8. Suppose that Mo is a factor and Spa has an Archimedean
order. If B is an {ag}g ^-invariant o'-weakly closed subalgebra of M
containing H°°(a), then either B = H°°(a) or B = M.

PROOF. Since B is {ag}geG-mvariant and σ -weakly closed, εr(x) lies in
B for all xeB. Hence, if H°°(a) Φ B, then there is an xeB and a
Ύ «0)eSpa such that εr(x) Φ 0. For this x, we may write εr(x) — aur

for some a e Mo. But, since ikf0ciϊoo(α)cjB, we have MoaMour = MoaurMoc:
B. Since finite factors are algebraically simple ([3, p. 257]), MoaMo = MOf

and ur€B. For every 7' (<0)eSpa, if Y > 7, then Mour = M^ur^yuyc
B. On the other hand, if 7' < 7, then there exists an n > 0 such that
nΎ <: 7'. Thus Mour> = Mour^nrUr c B and B = ifcf. This completes the
proof.

LEMMA 3.9. Suppose that Mo is a factor, M is not a factor and
Spa has an Archimedean order. Then &(M) Π H°°(a) is a maximal σ-
weakly closed subalgebra of S(M).
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PROOF. Set 3(ΛΓ) Π H°°(a) = SI and [3(Jlί)]2 = ίΓ. Let x be a nonzero
element in 81. We now consider the closed subspace [3ta]2 ( = 3ft) of [Sί]2.
Since δw(S(AΓ)) = 3(Jlί), we put /3[σ] = &u\ Lun, [g] e G/iNΓ. Since {A*]L]e<w
acts ergodically on 8>(M)f Spβ is a subgroup of Spa by Lemma 2.1. Let
E be the support projection of x. As in the proof of [15, Proposition 5.2],
we have βωW(E) = E. Since ω(R) is dense in G/N, we have βw(E) = E
for every [g] e G/Nf hence E = 1. By [11, Theorem], Sϊ is a maximal σ-
weakly closed subalgebra of S(ΛΓ) and the proof is completed.

Since ikf is generated by Mo and {ur}r&Spa, we have the following
theorem by Lemmas 3.8 and 3.9 as in the proof of [15, Theorem 5.3].

THEOREM 3.10. Suppose that Mo is a factor and Spa has an Archi-
medean order. Then every-sided invariant subspace of L\M, τ) which is
not left-reducing is left-pure and left-full.

Finally we study the maximality of H°°(a) as a <τ-weakly closed
subalgebra of M.

THEOREM 3.11. Suppose that MQ is a factor and Spa has an Archi-
medean order. Let Ttbe a canonical left-invariant subspace of L\Mf τ).
If B = {xe M: LM c SK}, then B = H^a).

PROOF. Let {Vt}teR be a continuous unitary group associated with
Tt. Since L;ω{t){x) = StLxS? = VtLxVf by Theorem 3.6, we have

.̂(«(-)2W = VtLxVm c VtLxWl dVtmam

for xeB. Thus άωU)(x)eB. Since ω(R) is dense in G/Nf we have
«[,](&) eJ3 for every [g]eG/N and so ag(x)eB, geG. Therefore B is
{(xg}g e<?-invariant. Since B is a σ-weakly closed subalgebra of M containing
H°°(a), we have B = H°°(a) by Lemma 3.8. This completes the proof.

THEOREM 3.12. Suppose that Mo is a factor and Spa has an Archi-
medean order. Then H°°(a) is a maximal σ-weakly closed subalgebra of
M.

To prove this theorem, we need the following lemma as in the proof
of [15, Theorem 6.3] if Spa is a dense subgroup of R.

LEMMA 3.13. Suppose that Mo is a factor and Spa is a dense sub-
group of R with the discrete topology. Let Wlbe a left-invariant subspace
of L\Mf τ). If 3ft is not left-reducing, then so is 2ft(+).

PROOF. Suppose that SK(+) is left-reducing. For every xeίSR, we
have u_2PxeWl{+) for each peSpaΠ Γ+o. Hence uru_2Px e 9ft for each
7 e Spa Π Γ+o. Since there is an element 7 e Spa Π Γ+o such that 7 < p,
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we see that Mou_px = M0uP__ruru_2Px c 3ft. Thus u_Px e 3ft and so 3ft is
left-reducing. This is a contradiction and completes the proof.

PROOF OF THEOREM 3.12. Let B b e a proper σ-weakly closed sub-
algebra of M containing H°°(a). Let [B]2 be the closed linear span of B
in L\M, τ). By [9, Corollary 1.5], we have [B]2 Φ L\M, τ). It is clear
that [B]2 is a two-sided invariant subspace of L2(M, τ) which is not left-
reducing. If Spa is a dense subgroup of R (resp. isomrphic onto Z),
let 3ft be the two-sided invariant subspace ([B]2){+) (resp. [B]2) of L2(M, τ).
By Lemma 3.11, 3ft is not left-reducing. Hence, by Theorem 3.10, 3ft is
left-full and left-pure and so 2ft is canonical. As in the proof of [15,
Theorem 6.3], we have Theorem 3.12 by Theorem 3.11. This completes
the proof.

It is attractive to conjecture that the converse of Theorem 3.12 is
true. As a partial answer, we have the following:

THEOREM 3.14. Suppose that &(MQ)ci3(M) and there is no nonzero
projection p e 3(Mo) such that Mop = Mp. Then H°°(a) is a maximal
σ-weakly closed subalgebra of M if and only if Mo is a factor and Spa
is a subgroup (of Γ) with an Archimedean order.

PROOF. (<=) is trivial by Theorem 3.12.
(==>). First we suppose that Mo is not a factor. Then there exists

a nonzero projection p e Q(M0) such that MQp Φ Mp. Considering a σ-
weakly closed subalgebra B generated by H°°(a)p and ikf(l — p), this is
clearly a contradiction. Therefore Mo is a factor. Hence Spa is a
subgroup of Γ. Next we suppose that Spa does not have an Archime-
dean order. Then there are λ, 7 e Spa Π Γ+o such that wλ ^ 7, n — 1, 2,
3, . Let B be the σ-weakly closed subalgebra of M generated by u*
and H°°(a). Then B Φ H°°(a). Since uίnux e HS°(a), n = 1, 2, 3, -, we
have τ(xufnux) = 0 for every x e H°°(a). Hence it is clear that τ{yuλ) =
0 for every y e B. This implies that B Φ M, a, contradiction.

REMARK 3.15. Suppose that 3(Af0) c 3(AΓ). By Theorem 2.3, for
every ΎeSpα there are a partial isometry ur in Mr and a projection er

in S(M0) such that Mr = Mour and ufur = uru? = er. Put e — sup{βr: 7 6
Spa Π Γ+o}. Then Λfo(l — e) = Λf(l — e) and ikfop ^ Mp for every projec-
tion p e 3(AΓ0) such that 0 < p ^ β. Thus i Π α ) = H°°(a)e © ΛΓO(1 - e).
To prove the maximality of H°°(a), it is sufficient to consider the part
of H°°(a)e. Therefore, by Theorem 3.14, H°°(a) is a maximal σ-weakly
closed subalgebra of M if and only if Moe is a factor and Spa has an
Archimedean order.
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