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1. Introduction. Let G be a compact abelian group whose dual I
has a total order. Suppose that M is a von Neumann algebra with a
faithful normal tracial state z and {a,},.¢ is a o-weakly continuous re-
presentation of G as *-automorphisms of M such that zea, =7, g€G.
Put I'y ={yel:v =0} and let H*(a) be the set of xe€ M such that
Sp.(2) cI',. Recently, the structure of H*(a) has been investigated by
several authors (cf. [7], [8], [9], [10], [12], [13], [15]). It is well-known that
H>(a) is a finite maximal subdiagonal algebra of M (cf. [8]). However,
H>(a) is not necessarily maximal as a o-weakly closed subalgebra of M.
McAsey, Muhly and the author in [9], [10] and [15] studied the maximality
of typical examples of H>(a) which are called nonselfadjoint crossed
products.

Our aim in this paper is to investigate the maximality of H*(a) as
a o-weakly closed subalgebra of M. Our method is based on a charac-
terization of spectral subspaces and the invariant subspace structure of
the noncommutative Lebesgue space L* M, 7) associated with M and 7 in
the sense of Segal [16]. In §2, we give a characterization of spectral
subspaces. For every veI', we put M, = {xe M: a,(x) = (g, V)z, g € G}.
Suppose that the center 3(M,) of M, is contained in the center B(M) of
M. If M, = {0}, then there is a partial isometry «, in M, and a projection
e; in 3(M,) such that M, = M, and wfu, = wu} = e;,. In particular, if
M, is a factor, then we may choose a unitary element w, in M, such
that M, = Mu,. In §3, we first define the cocycles of canonical left-
invariant subspaces of L*(M, 7). If M, is a factor, then every two-sided
invariant subspace is left-pure and left-full. As the main result in this
paper, we show that, if 3(M,) < B3(M) and if there is no nonzero projection
p of B(M,) with Mp = M,p, then H*(«) is a maximal og-weakly closed
subalgebra of M if and only if M, is a factor and Spa is a subgroup
(of I') with an archimedean order.
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2. A characterization of spectral subspaces. Suppose that M is a
finite von Neumann algebra acting on a Hilbert space H and that {a,},cq
is a o-weakly continuous representation of a compact abelian group G as
a group of *-automorphisms of M. For simplicity, such an {a,},.¢ is
called a compact abelian group action on M in this paper. Following
Arveson [3] and Loebl-Muhly [8], we define a representatin a(-) of LYG)
into the algebra of bounded operators on M by

o)z = | f@a)dpto)

where fe LY(G) and g is the normalized Haar measure on G. Let I" be
the dual group of G. The pairing between G and I will be written
as {g9,7),9€G,ver, hence the Fourier transform will take this form:
Ffon= §G<g, ) f(9)dg), fe L(G). If feLX(G), welet Z(f)={yel: f(v)=
0}. We let Spa be NZ(f), where f runs through the set of functions
in LY@) such that a(f) =0. If xeM, we let Sp.(x) = NZ(f), where
a(flx =0, fe L}(G). If S is a subset of I, we denote by M*(S) the set

of xe M such that Sp.,(x)cS. For every vyeI we define a g-weakly
continuous linear map ¢, on M by the integration

o) = | @ Daw)due), weM.
Put ¢(M) = M,. Then it is clear that

M, ={xe M: a,(x) =<9, 7>z, g€ G}.
The following lemma is well-known and easy to prove.

LemMA 2.1 (cf. [12], [4]). Keep the notations as above. Then

(1) M, = M*({7}.

(2) MM,CcM;,, and M} = M_; for every Y, nel.

(83) Let x,yec M. If e(x) = ey) for each 7€', then x = y.

(4) Sp.x) ={vel:¢ex) = 0} for xe M.

(5) Spa ={verl: M, =+ {0}}.

(6) Let xe M, and let x = v|x| be the polar decomposition of .
Then ve M, and |xz| € M,.

By a result of Connes [4, Théoréme 2.2.4], if M, is a factor, then
Spa is a subgroup of I. Thus we have the following analogue of
Stormer [17, Theorem 3.2].

LEMMA 2.2. Keep the notations as above. If M, is a factor, thenm
the dual (Spa)” of Spa is canonically isomorphic to- G/N, where N 1is
the kernel ker a of a in G.
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Our goal in this section is the following theorem whose proof is
inspired by Araki [1].

THEOREM 2.3. In the notations above, suppose that the center 3(M,)
of M, is contained im the center 3(M) of M. Then for every v e Spa,
there exist a partial isometry ur in M, and a projection e, in B3(M,) such
that M; = M, and ufu; = wu; = er.

ProoF. Let veSpa. By Lemma 2.1 (2), it is clear that the linear
span S of M}M; is a two-sided ideal of M,. Then there exists a nonzero
projection e, in 8(M,) such that the o-weak closure S of S equals Me;.
Further, since 4y*x = (x + ¥)*(@ + y) — (@ — ¥)*(@ — y) + i(x + 1y)* (@ + 7y) —
i — iy)*(x — 1y), x, y€ M, we have

S = {2 aztn,:w, e M, a,c C} ,
n=1

where C is the complex field. Hence there exists a sequence {y;};c. in
S such that ¢; = g-weak limit y,. Put p = sup{u*u: u is a partial isometry
of M;}. By Lemma 2.1 (6), ¢, — » = (¢; — p)e, = o-weak limit (¢, — p)y, =0
and so ¢, = p. Since e, is a central projection of M, we have uu* < ¢,
for every partial isometry » in M,. Thus we similarly have e,=sup{uu™: u
is a partial isometry of M.}.

Next we show that there is a partial isometry u, of M, such that
ufur = uu = e¢;. Consider a maximal family {u;};., of partial isometries
of M, such that u,u} are mutually orthogonal and wfu; are mutually
orthogonal. Put u, = X,;.,u;. Then u, is a partial isometry of M,.
Suppose that e, — u*u, # 0. Since ¢, = sup {u*u: u is a partial isometry
of M;}, there exists a partial isometry v in M; such that v*v(e; — w}u,) +#
0. By the comparability theorem, there are a central projection z in M,
and partial isometries u, and u, in M, such that w}u, = 2(e; — ufu,),
wuf < 2v*, ufu, = (1 — 2)v*v and wu¥ < (1 — 2)(e; — wfu;). Then we
have either u, # 0 or u, 0. If u, # 0, then we set v, = zvu,. Thus
v, = ufevtou, = ufuuiu, = ufu, = 206, — u;) < e, — ufu, and v, is a non-
zero partial isometry in M,. If u, = 0, then we set v, = (1 — 2)vuf. Thus
v, = w,uf < e — ufu, and v, is a nonzero partial isometry in M,. Let T
(resp. T,) be the center valued trace of M (resp. M,). Since 3(M,)c3(M),
the restriction of T to M, equals T,. Hence we have

To(er — wyuy) = T(er — wuy) = T(er — uyuy)
= T(v¥v) = T(ww)) = Ty(vy) .

By [18, p. 314, Corollary 2.8], v,vf < e — uyuf. Thus there is a partial
isometry u in M, such that w*u = v} and wu* < e¢; — w;uf. Put v, =



488 K.-S. SAITO

uv,. Then

viv, = vutuv, = vfv, < e — ufuy
and

v0F = wvviu* = uu* £ e — wuy .

Since v, is a nonzero partial isometry in M,, this contradicts the max-
imality of {u;};cs.. It is clear that M, = Mu,. Hence we are done.

COROLLARY 2.4. If M, is a factor, then there exists a umnitary
element u, of M, such that M, = My, for every 7 € Spa.

3. Invariant subspaces and maximality of H*(a). Let M be a
von Neumann algebra with a faithful normal tracial state 7. Let
{a,},;c¢ be a compact abelian group action on M such that zea, =<,
g€G. We suppose that the dual group I" of G has a total order. Set
' ={yelr:v=0} and I, ={verl:v >0}, respectively. Let LM, 7)
be the noncommutative Lebesgue space associated with M and 7 (cf.
[16]). For every zc M, we define operators L, and R, on LM, ) by
the formulae L,y = 2y and R,y = yx, y€ LM, 7). For a subset S of
M, we write L(S)={L,: x€S} and R(S) = {R,: x€ S}, respectively.
For a subset S of L*M, z), we denote by [S], the closed linear span
of S in LM, 7). Further, we define H*(a) = M*(",), which is called
the noncommutative Hardy space with respect to {a,},.c. We also define
Hy(a) = M*(I" ,), H(a) = [H*(a)], and H¥a) = [H(a)],. Since zoa, = 7,
there is a unitary group {W,},.; on LM, ) such that W, L. W} = L, .,
and W,R,W} = R, ,, g€ G, € M. By Lemma 2.1 and [8], we have the
following:

ProproOSITION 3.1. (1) H*(a) ts a finite maximal subdiagonal algebra
of M with respect to & and 7.

(2) H(a)={xeM:¢e(x)=0,vel,v <0}

(3) Hp(a) ={xe H*(a): &x) = 0}.

We first define invariant subspaces of L*M, 7) according to [9], [10]
and [15].

DEFINITION 3.2. Let I be a closed subspace of LM, r). We say
that I is left-invariant, if L(H>(a)M c M; left-reducing, if L(M)M < M;
left-pure, if M contains no left-reducing subspace; and left-full, if the
smallest left-reducing subspace containing I is all of L*(M, 7). The
right-hand versions of these concepts are defined similarly. A closed

subspace which is both left- and right- invariant will be called two-sided
invariant.
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Throughout this section, we suppose that M, is a factor. By Corol-
lary 2.4, there exists a family {u;};es,. Of unitary operators in M such
that Mr = Mour, 7E Spa.

PrOPOSITION 3.3 (cf. [15, Proposition 3.2]). Let IN be a left-invariant
subspace of L*(M, 7). Then we have the following:

(1) M is left-reducing if and only if u, M C M for every 7€ Spa.

(2) WM is left-pure if and only if Arcspe UM = {0}.

(8) M is left-full if and only if Vrespe ey = L¥(M, 7).

Throughout this section, suppose that Spa has an Archimedean
order, that is, Spa may be regarded as a subgroup of R with the
discrete topology ([19, Theorem 8.1.2]). Thus Spa is order isomorphic
onto Z or a dense subgroup of R with the discrete topology.

Let I be a left-invariant subspace of LM, 7). Put M, = w,M, 7 ¢
Spa. The family of subspaces I, decreases as 7 increases in Spa. If
Spa is a dense subgroup of R with the discrete topology, then we have

My =AM _:veSpanl,} and M, =V {M:veSpanTl,.

DEFINITION 3.4. Let It be a left-invariant subspace of L*(M, 7). If
Spa is a dense subgroup of R with the discrete topology, then I is
said to be left- (resp. right-) normalized in case M = M, (resp. M =
M._). If M is both left- and right-normalized, then M is said to be
completely normalized. Further, if Spa is a dense subgroup of R (resp.
Spa is order-isomorphic onto Z), then a left-invariant subspace IN of
LM, 7) is said to be canonical in case I is left-pure, left-full and left-
normalized (resp. left-pure and left-full).

Next we define cocycles of canonical left-invariant subspaces of
L¥M, 7). We now fix such a subspace I of L*(M, 7). For 7€ Spa, we
denote by P; tne projection of LM, z) onto M,. As 7 increases in Spa,
P, decreases from the identity 1 to 0, by Proposition 3.8. For each real
number A not in Spa, we define P, so that the family {P,};.x is continuous
from the left. Then 1 — P, is a resolution of the identity in L*(M, 7),
to which by Stone’s theorem is associated the unitary group {V.}.x
defined by

3.1) Vv, = —r ¢"dP, .

Since L(M)IM;,cM,, it is clear that P, and V, are in L(M,) for tc R.
Hence we have P, = L,,TPIL,,; and
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Lu; VtLur = —Sm e“zd(Lu;PlLur) = —Sm e“zdP)__r = 7 Vt .
PROPOSITION 3.5 (cf. [15, Theorem 4.1]). Keep the motations and the
assumptions as above. The families {P.},er and {V,}.r associated with
a canonical left-invariant subspace M satisfy

P2+T = LurPiLu; ’
(3.2) V.L, = emLur Vs
P, V,eL(M)), t, ne R, 7eSpa.

Conversely, every left-continuous family {P.}..r of projections and every
continuous unitary group {V.,}.r satisfying (3.2) are obtained from a
unique, canonical left-invariant subspace of L¥M, 7).

Put N = kera. Since Spa is a subgroup of I', the dual (Spa)” of
Spa is canonically isomorphic to G/N by Lemma 2.2. Since Spa is also
a subgroup of R, let ¢, for each real number ¢ be the element of G/N
defined by e,(\) = ¢*%, v € Spa. It is easy to verify that the mapping w
defined by w(t) =e, is a continuous homomorphism of R into G/N and
the image w(R) is a dense subgroup of G/N. Now {a,},cs (resp. {W,},cq)
induces a o-weakly continuous representation of {@pi}1cenw (TESD.
{Wihiseaw) of *-automorphisms of M (resp. unitary operators on LM, 7)),
where @, = a, (resp. Wi,; = W,), with the coset [g] of g in G/N. It is
clear that Lz ,(«) = WinL, Wiy, [g1€ G/N. Put S, = W,u, teR. Then
{S.};cr is a continuous unitary group on L*(M, ) and we have the following:

THEOREM 3.6. Keep the mnotations and the assumptions as above.
Then each continuous unitary group {V.}er on LM, t) satisfying (3.2)
has the form V, = R,S,, where {a};cr 8 a continuous unitary family
of M such that

3.3) Qpu = Gup(@)a, , t,uck.
Conversely, if {a.}ier 18 any such unitary family of M, then V, = R,S,
defines a continuous unitary group on LM, t) which satisfies (3.2).

PROOF. Put A, =V,S¥. Since (Spa)” is canonically isomorphic to
G/N, Spa is the annihilator of N, that is, Spa ={verl:{g,7) =1 for
all ge N}. Thus we have

StLurst* ZWm(c)Lu,WZu) = Lc?(,,(‘)(u,) = Lag(u,.)
= {9, WL, = ((t), WL, = "L, ,

where e R, Y€ Spa and g€ w(t). Thus
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AL, A, = (V,SH'L.(V.SH) = 8,VAL, V.St = e“8,L, St = L, .

Since V, and S, are elements in L(M,) and L(M) is generated by L(M,)
and {Lu }respar WeE have A,e L(M) = R(M). Thus there is a unitary
family {a;};.x of M such that A, = E,,. Further, we have

At+u = Vt+uSzk+u = VtSt*St V,,S:S,* = AtStAqu
= RatStRauSt* = RutRZw(t)(a’u) = R;w(t)(au)at .
Thus aH.u = &m(t)(au)at‘

Conversely, put V, = R,,S;. By (8.3), {Vi}icr is a continuous unitary
group of L(M,’. By Stone’s Theorem, there is a left-continuous family
{P,},.r of projections of L(M,) such that V, = ——S e'*dP,. Now, for 7ve
Spa and t€ R, we have

L, V.L: = L, R.SLE = R.S.StL, S.Lt,
= R“tStL;w(—t) (“,)L;‘T — e_“rRatSt = e itr Vt .

Therefore {P},.r and {V,},.r satisfy (3.2). This completes the proof.

DEFINITION 3.7. A unitary family {a.,},.r of M satisfying the con-
ditions of Theorem 3.6 is called a cocycle determined by a canonical left-
invariant subspace of L*M, 7).

Next we show that, if M, is a factor, then every two-sided invariant
subspace of L*(M, r) which is not left-reducing is left-pure and left-full.
To prove this, we need the following lemmas.

LeEMMA 3.8. Suppose that M, is a factor and Spa has an Archimedean
order. If B is an {a,},.c-itnvariant o-weakly closed subalgebra of M
containing H*(c), then either B = H*(a) or B = M.

PrOOF. Since B is {a,};c¢-invariant and o-weakly closed, &,(x) lies in
B for all xeB. Hence, if H”(a) # B, then there is an z€B and «
v (<0) € Spa such that &(x) # 0. For this z, we may write &(x) = au;
for some a € M,. But, since M,c H*(a)C B, we have MaMu, = Mau,M,c
B. Since finite factors are algebraically simple ([3, p. 257]), MaM, = M,,
and u,€ B. For every 7' (<0)e Spa, if ¥ > v, then Myu, = Muy_yu, C
B. On the other hand, if 7’ < v, then there exists an » > 0 such that
nYy £7'. Thus Muy = My _ u; CB and B= M. This completes the
proof.

LEMMA 3.9. Suppose that M, is a factor, M is mot a factor and
Spa has an Archimedean order. Then 3(M)N H*(a) is ¢ maximal o-
weakly closed subalgebra of 3(M).
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PrOOF. Set 3(M)NH=(a) = A and [3(M)], = K. Let x be a nonzero
element in A. We now consider the closed subspace [2x], (=) of [A]..
Since @;,;(3(M)) = B(M), we put B = &1lsun, [9] € G/N. Since {Baltsrea/n
acts ergodically on 3(M), Spg is a subgroup of Spa by Lemma 2.1. Let
E be the support projection of z. As in the proof of [15, Proposition 5.2],
we have B,(E) = E. Since w(R) is dense in G/N, we have By(E) = E
for every [g]e G/N, hence E =1. By [11, Theorem], % is a maximal o-
weakly closed subalgebra of 3(M) and the proof is completed.

Since M is generated by M, and {u;};cs,.» We have the following
theorem by Lemmas 3.8 and 3.9 as in the proof of [15, Theorem 5.3].

THEOREM 3.10. Suppose that M, is a factor and Spa has an Archi-
medean order. Then every-sided invariant subspace of LM, T) which is

not left-reducing is left-pure and left-full.
Finally we study the maximality of H*(a) as a o-weakly closed
subalgebra of M.

THEOREM 3.11. Suppose that M, is a factor and Spa has an Archi-
medean order. Let M be a canonical left-invariant subspace of L¥(M, 7).
If B={xeM: LI CM}, then B= H*(a).

PrOOF. Let {V.};,cx be a continuous unitary group associated with
M. Since L;, , w = S.L,S¥ =V,L, V¥ by Theorem 3.6, we have

L;w(t) mwb =VL,ViMcCcV.LIMNCVIC aIMm

for x€ B. Thus &,,(x)eB. Since w(R) is dense in G/N, we have
&, (x)e B for every [g]leG/N and so a,x)eB, geG. Therefore B is
{a,},cc-invariant. Since B is a g-weakly closed subalgebra of M containing
H~(a), we have B = H”(a) by Lemma 3.8. This completes the proof.

THEOREM 3.12. Suppose that M, is a factor and Spa has an Archi-
medean order. Then H*(a) is a maximal o-weakly closed subalgebra of

M.
To prove this theorem, we need the following lemma as in the proof
of [15, Theorem 6.3] if Spa is a dense subgroup of R.

LeEMMA 3.13. Suppose that M, is a factor and Spa is a dense sub-
group of R with the discrete topology. Let M be a left-invariant subspace
of LAM, 7). If IM is mot left-reducing, then so is M ,,.

PrROOF. Suppose that I, is left-reducing. For every ze M, we
have u_,xe M, for each peSpanrl,,. Hence uu_,xcM for each
veSpan T, Since there is an element ve Spa N I',, such that v < p,
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we see that Mu_,x = My, ;u,u_,,x C M. Thus w_xcM and so WM is
left-reducing. This is a contradiction and completes the proof.

PrROOF OF THEOREM 3.12. Let B be a proper o-weakly closed sub-
algebra of M containing H*(a). Let [B], be the closed linear span of B
in LM, 7). By [9, Corollary 1.5], we have [B], = LM, z). It is clear
that [B], is a two-sided invariant subspace of L*(M, r) which is not left-
reducing. If Spa is a dense subgroup of R (resp. isomrphic onto Z),
let M be the two-sided invariant subspace ([Bl,) ., (resp. [B),) of L*M, 7).
By Lemma 3.11, I is not left-reducing. Hence, by Theorem 3.10, IN is
left-full and left-pure and so IN is canonical. As in the proof of [15,
Theorem 6.3], we have Theorem 3.12 by Theorem 3.11. This completes
the proof.

It is attractive to conjecture that the converse of Theorem 38.12 is
true. As a partial answer, we have the following:

THEOREM 3.14. Suppose that 3(M,) C 3(M) and there 18 no mnonzero
projection pe B(M,) such that Myp = Mp. Then H"(a) 18 a maximal
o-weakly closed subalgebra of M if and only if M, is a factor and Spa
18 a subgroup (of I') with an Archimedean order.

PROOF. (=) is trivial by Theorem 3.12.

(=). First we suppose that M, is not a factor. Then there exists
a nonzero projection pe J(M,) such that M,p = Mp. Considering a o-
weakly closed subalgebra B generated by H*(a)p and M(1 — p), this is
clearly a contradiction. Therefore M, is a factor. Hence Spa is a
subgroup of I". Next we suppose that Spa does not have an Archime-
dean order. Then there are \, Y€ Spa NI, such that nAx <7, n =1, 2,
3, ---. Let B be the og-weakly closed subalgebra of M generated by uf
and H*(a). Then B # H*(a). Since uf'u,€ Hi(a),n=1,2,3, .-+, we
have z(wu}"u;) = 0 for every v € H*(a). Hence it is clear that z(yu,;) =
0 for every ye B. This implies that B = M, a contradiction.

REMARK 8.15. Suppose that 3(M,) c B3(M). By Theorem 2.3, for
every Y e Spa there are a partial isometry u, in M, and a projection e,
in 3(M,) such that M, = Mu, and wfu, = w,u; = e, Put e =supfe;:7e
Spanrl.}. Then M1 —e) = M1 — e) and M,p + Mp for every projec-
tion pe 3(M, such that 0 < p <e. Thus H*(a) = H*(a)e D M1 — e).
To prove the maximality of H*(a), it is sufficient to consider the part
of H*(a)e. Therefore, by Theorem 3.14, H*(a) is a maximal o-weakly
closed subalgebra of M if and only if M, is a factor and Spa has an
Archimedean order.
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