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Let Up(d) = {zeC\ \z — α| < ρ}9 C the complex plane, and / be a
holomorphic function on the closure of Up(a). Then / satisfies the
inequality

\ I/O*) Hxdy ^ ((2πΓ Γ If (a
J U ( a ) \ J O

where z = x + iy. This was proved by Carleman [4]. Beckenbach and
Radό [2] introduced the functions of class PL; a real-valued function
defined in a domain of R2 is said to be of class PL, if u ̂  0 and logu
is subharmonic (cf. [12, 2.12]). It was proved in [3] that a continuous
function u, u ^ 0, is of class PL if and only if the inequality (1) holds
for every disk Uf(a) contained in the domain, and Radό raised a problem
to deal with related inequalities in the case of higher dimensions (cf .
[12, 3.27]). Our main purpose concerns this problem; it will be shown
that, if u is continuous, u ^ 0, and satisfies the inequality of the type
(1) in Rn, then log u is subharmonic for all n ̂  2, but the converse is
not true for n ̂  3.

Beckenbach [1] extended the Fejer-Riesz inequality from holomorphic
functions to functions of class PL, and Yamashita [15] obtained various
results. On the other hand, Hasumi and Mochizuki [9] and Mochizuki [10]
extended the inequality to holomorphic functions of several complex
variables. We shall note that this can be extended to the functions u
such that logu are plurisubharmonic. A meaning of these inequalities
lies in the fact that the growth conditions (3) and (5) imply the integra-
bility of u over any hyperplanes L Π Δ and L Γ) B, respectively (see §2).
This was observed by Hardy for H2 ([8, 5]), and then by Fejer and
Riesz for H1 ([6, §3]). Recently, another treatment of the Fejer-Riesz
inequality based on a different viewpoint appeared in [11, 4.7, 5.5].
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the proof of Theorem 1.

1. Log. subharmonic functions and the Carleman inequality. Let
G be a domain in Rn, n^2, and u be a real-valued function defined on
G. We shall call u a log. subharmonic function, if u ̂  0 and log u is
subharmonic. We do not exclude the case u = 0. The log. subharmonic
functions constitute a subclass of the strongly subharmonic functions
introduced by Carding and Hδrmander [7]. Every log. subharmonic
function u is subharmonic and up is log. subharmonic for p > 0. Let
Bp(ά) = {x 6 Rn 1 1| x - α || < p) for a e Rn, p> 0, where || x ||2 = Σ?=ι &5 if
x = (χlf . . .f XΛ) e Rn. We shall write 5,(0) = BP and B± - B, the unit
ball. We denote by VP the volume of Bp, and simply by V in place of
VΊ. The ordinary volume element in Λ71 and the element of the surface
area in the unit sphere dB will be denoted by da) and dτ, respectively.
The area of dB will be denoted by S. For α e G, δ(α) will stand for the
distance from the point a to the boundary of G.

We use the following notations, if necessary,

I(u) — I u(x)dω(x) , J(u) = I
Js J5

and examine whether V~ll(up) ^ (S~lJ(u))p, p > 0, is valid or not for
log. subharmonic functions u defined in a neighborhood of B. Clearly,
this is equivalent to the problem on the more general inequality
(V-lI(up})l/p ^ (S-lJ(uq)y/g, p,q>0. Note that up is bounded on B. In
J2n, we define

- sup V

where the supremum is taken over the log. subharmonic functions on
neighborhoods of B such that J(u)^0. Note that c(p\ n)^l for every p>0
and every n. Thus, c(2; 2) = 1 is the assertion of the Carleman inequality
(1) extended by Beckenbach and Radό. Since ( V"1/^*))17* is an increasing
function of p9 so is c(p; n), hence we have c(p; 2) = 1, 0 < p <^ 2. Clearly
F"1/^) 5j S~lJ(u) for any subharmonic function u, so c(p; w) = 1 for
0 < p ̂  1. The following is our main result. It is proved in [3] in
case n = 2 that % is log. subharmonic when the inequality (2) below is
satisfied. The same method can be applied to the general case, as is
done in the following, but one can see from this proof that the higher
dimensional analogue of the Carleman inequality is a very strong condi-
tion for n ^ 3. It is the question posed by Radό whether the converse
holds in general.

THEOREM 1. Let G be a domain of Rn, n^2, and u be a continuous
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function defined on G and u^Q. If u satisfies the following inequality
(2) at every point aeG for any p, 0 < p < δ(α), then u is log. sub-
harmonic:

-1 \ u(x)2dω(x) ^ (S-1 \ u(a
jB(a) \ JdB

The converse is not true for n ^ 3; that is, c(p; n) > 1, if n ^ 3 and
p ;> 2. Moreover, if n ^ 2 αwd p > (n + l)(n — I)"1, then c(p-, n) — °o .

PROOF. Note that, if u satisfies the inequality (2), then so does
u + ε, e > 0, and log (u + e) tends to log u decreasingly as ε — » 0. Thus
we can suppose u(x) > 0 on G. First, we prove the log. subharmonicity
of u under the assumption that u is a C2-function satisfying (2). Further,
it is sufficient to show that the inequality (2) at a = 0 implies that
u(0)z/^(0) - Σ?=ι ((du/dXj)(Q))2 ^ 0. We can see from the straightforward
use of Pizzetti's formula ([5]) to the function u that

/,: = S-1 \ u(px)dτ(x] = u(Q)
J d B

Applying the same formula to the function u2, we obtain

Ip: = V,-1 \ u(x)2dω(x) = nρ~n (' r^drί S~l \ u(rx
jBp JO \ JdB

= u(OY + p\n + 2)

From the assumption that J2

P — Ip ^ 0, 0 < p < <5(0), we get

0 .

Now let Gr = {x e G | δ(x) > r}9 r > 0. Define ur by

u(t)dω(t) , x e Gr .

Then ur becomes a positive C^-function on Gr and {ur} tends to u uniformly
on compact subsets of G as r -> 0. If u is a C^-f unction on G, then ιer is
a CVfunction. Hence, for the proof, it is sufficient to verify that, if u
satisfies the inequality (2), then so does each function ur. This is done
by using Minkowski's inequality as follows. Let aeG. Take r0>0 so that
a 6 (rro. Define ur, 0 < r < r0, and take p > 0, sufficiently small. Then

( f V/2 f / Γ X1/2

T71 ttr(x)2<ί<ϋ(α;) ) ^ F,-1 \ dα)(ί)( T71

JB^ία) / JBr \ JB^C

< V~l \ dω(t}(s-1 \ u(a + t + px)dτ(x)] = S'1 ί ^r(α + px)dτ(x)
~~ Jsr \ JdB / JdB
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The second assertion can be seen from the function u(xlf , xn) —
(xl + I)2 + x\. Indeed, this is log. subharmonic and, recalling

Γ(k, + - + kn + w/2 + 1)

for integers kl9 , kn ^ 0, where Γ denotes the gamma function, we
obtain V^I(u2) = l + (Sn + 40)/(n + 2)(n + 4), fi-1 J(w) = 1 + 2/n. It follows
that c(2; n) > 1 f or π ̂  3. In order to show the last assertion, we take
the functions uk(xl9 ••-,&„) = ekxι in Rn, n ^ 2, /c = 1, 2, - . In what
follows, we shall use the symbol C to denote various positive constants
independent of k. We have

dx2 -dxn
-l

= C Γ e»* (l - ic2)1"-1'/2^ > C Γβ'» (l - x)(n

J-l JO

Using polar coordinates for dB, we have

/(it.) = \'dθ1 \' ddn_,{* e" cos *' Π (sin θ^-
Jo Jo Jo ί=ι

= C Γ efex(l - x2)(n-3)/2dx < C Γ efca!(l
J-i Jo

Now let α > 0 and I > — 2. Then, by α(l — x) = t, we can write

where A(a) —> 1 as α -* °o. Thus, we have

T(ιιp\ Tin \~v ^> /^L -(«+ι)/2£p(ra-ιI(Uk)J(Uk) χ> O/C K

this gives the desired conclusion.

REMARK. The case of n = 1 may be helpful to see the influence of
the dimension on the inequality. Let u(x) be a positive function on an
open interval (α, &). If log u(x) is a convex function, then we have

u(xfdx ^ (2~1(u(α) + u(β))Y ,

where a < a < β < 6; this is the 1-dimensional analogue of the inequality
(2) and follows from the inequality (s - t)~l(e8 - e*) < 2~l(e° + e*), s Φ t.
But the converse is not true, as is seen from the function %(#) — xz, x > 0.
Thus, situations are different in three cases: n — 1, n = 2, and n ^ 3.
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2. Log. plurisubharmonic functions in Cn. Hereafter, we restrict
ourselves to the space of n complex variables, Cn. Let G be a domain
in Cn and u be a real-valued function on G. We shall say that u is a
log. plurisubharmonic function, if u ̂  0 and log u is plurisubharmonic.
In this case, u is plurisubharmonic and up is log. plurisubharmonic for
p > 0. Let F = (Λ, , /J: G -> Cm be a holomorphic map. Then || jP|| =
(ΣjMi IΛI2)172 is a l°β plurisubharmonic function on G; this follows from
the fact that, if u, v are functions of class PL in a domain of R2, then
so is u + v ([12, 2.14]). Further, as is well known, log. plurisubharmonic
functions frequently occur in complex analysis. We shall define a class
of log. plurisubharmonic functions corresponding to the Hardy space Hp.
Let Δ be the unit polydisk of Cn and T denote the Bergman-Silov
boundary with Lebesgue measure dτ. We define the class LHP(Δ},
0 < p < oo, as the totality of the log. plurisubharmonic functions u on
A satisfying the condition

( 3 ) sup {( u(rz)pdτ(z)\Q ^ r < ll < oo .

This class was introduced by Yamashita [15] in case n = ί. Let u e LHP(Δ).
Then from the same argument as in [13, 3.3.3], we can see that

( uz(rά)pda ^ M < oo , 0 ̂  r < 1 ,
J3Z7

for almost every point zeT, where 3U denotes the unit circle and da
Lebesgue measure. The function uz(\)p is subharmonic in | λ | < 1, hence a
theorem of Littlewood implies that uz(\) has the radial limit for almost
every aedΐl (cf. [14, Theorem IV. 34]). Thus, we can conclude that u(z)
has the radial limit u*(z) for almost all ze T. Moreover, u* eLp(T), and

I u(rz)pdτ(z) -> \ u*(z)*dτ(z) , r
JT JT

In the present situation, the Carleman inequality can easily be proved.
We write z3 = cc2/_ι + ix2j9 ί ^ j ^ n.

PROPOSITION 1. Let usLH\A). Then

( 4) π~n \ u(zγdω(z) ^ ((2π)~n \ u*(z)dτ(z^\ .
JJ \ JT /

PROOF. First, let u be a log. plurisubharmonic function defined in
a neighborhood of I. Write z' = (z2, , zn)eCn^. A', T and dω', dτ'
are symbols with respect to the space C71"1. Assume that the case n — 1
is valid. By means of Minkowski's inequality we have
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S i fdXidXz (π~(n~1] \ u(zl9 zf)zdω'(
u \ Jdf

S I f rdXidXz ((2τr)"ίπ"" \ u(zlf zf

U \ J2"

S ( f
dτ\z')[ π~l \ u(zl9 z'

T' V }ϋ '

1/2

= (2πΓn \ u(z)dτ(z) .
JT

Now let u e LH\Λ) and let ur(z) = u(rz), 0 < r < 1. Then each ur

satisfies the inequality (4). Let ur(z) — r~nu(z) for z 6 Δr and ur(z) = 0
for ^ g 4r, where Jr = {z e Cn \ \z3-\ < r, 1 ̂  j <: w}. From the fact that
$r(z) — > (̂2;), r — > 1, for 2; e J and Fatou's lemma, we can see that the
inequality (4) holds for the function u. This completes the proof.

We can define LHP(B), 0 < p< <*>, for the unit ball B of Cn as the
class of log. plurisubharmonic functions u on B such that

( 5 ) sup u(rz)pdτ(z) \ 0 ̂  r < l < oo .
V J 3 J 5 )

By the same method as in the case of LHP(A), we can see that every
u e LHP(B) has the radial limit u*(z) for almost all z e dB and u* e Lp(dB).
On the other hand, there is a boundary function v(z) of % for almost
every zedB in the sense of [7] such that J(|w? — v p | )— »0, r — >1. Thus
v = ̂ * a.e., and J«)-> J(^*p), r-»l.

For functions in LHP(B) and LHP(Δ), we have inequalities of the
Fejer-Riesz type. Since ^p is log. plurisubharmonic with u, it is sufficient
to state the results for functions in LH1.

THEOREM 2. There exists a constant K, K ^ 1, such that every
function u in LH\B) satisfies the following inequality for any hyper-
plane L in Rzn with Lebesgue measure dσ:

( 6 ) ( u(z)dσ(z) ^ K \ u*(z)dτ(z) .
JLΪ\B JdB

If L passes through the origin, then K ^ 1/2.

PROOF. If u is log. plurisubharmonic on a neighborhood of B, then
the inequality (6) is derived by the same method as in [9] and [10] based
on the inequality extended by Beckenbach and Yamashita for n = 1.
Let u 6 LH\E) and let ur(z) = r"(tn-ί}u(z) for z e Br and ur(z) = 0 for
z&Br. Assume that the hyperplane L is defined by the equation xίn = α,
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0 <; a < 1, and Lΐ\BΦ 0. Take r such that α < r < 1 and define a
hyperplane L' by x2n = r~la. A parametrization Φ: G -*L' Γ) B is defined
by Φ: Xi = cos ̂ , x3- - sin 0X sin 0^ cos ΘJ9 2 <; j <; 2n — 1, #2n - r-1a.
Further, ^(a?lf , #2n) = (rxl9 , r#2n) gives the parametrization φ°Φ: G— >
L Π £r. Writing (̂ , , 0 )̂ = 0 and dθ, d02n-1 = d0, we have

( ur(z)dσ(z) = r~(2n-1} ( u((^ o Φ)(0))r271-1 'if (sin θjΓ'^θ
JLftB JG j=l

= \ ur(z)dσ(z) ^ ίΓ ( ur(z)dτ(z) .
JL'ΠB JdB

If L is a hyperplane defined by a general equation, a suitable unitary
transformation U can be used to derive the above inequality, since
ur o U = (u o [7)7 and ur o [7 = (u ° C7)r. Fatou's lemma proves the inequality
(6).

THEOREM 3. Let u e LHl(Δ). Then u satisfies the inequality for any
hyperplane L:

u(z)dσ(z) :S 2-("-1V/2 ( u*(z)dτ(z) .

PROOF. Let u£LH\Δ), and ur(z) = r~(2n~1}u(z) for zedr, =0 for
z g Jr. Suppose L is defined by the equation cc2π — Σy^ϊ1 αj^j + α aι1d
define a hyperplane L' by #27l = r-1(Σ αy»y + α). L' (Ί Δ is parametrized
by Φ: Xj = x3; 1 <* j <* 2n — 1, x2n = the defining equation of I/', and the
measure dσf on I/' Π J is given by dσ' = crdx^ dfl?2n_ l f where cr =
r~l(ΣS^a} + r2)1/2 On the other hand, L Π Δr is parametrized by φ°Φ
with the measure dσ = r271"1^^ dx2n_^ on it. The inequality (7)
follows from Fatou's lemma.
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