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1. Introduction. The geometry of minimal closed submanifolds of
the unit sphere is closely related to the eigenvalue problem of the
Laplacian. In this paper, we study the first eigenvalue of the embedded
minimal hypeasurfaces in the unit sphere.

Let (ikf, g) be an w-dimensional compact connected Riemannian mani-
fold without boundary and A its (non-negative) Laplacian acting on C°°-
functions on ikf. Let {0 = Xo < Xx <; X2 ̂  • • • |oo} be its spectrum. X1 is
called the first eigenvalue of A. Let / be an isometric immersion of (ikf, g)
into the iST-dimensional standard unit sphere S^(l) of the Euclidean space
RN+1 with the coordinate (x°, x\ • • •, xN). Then it is known (cf. [13]) that
the N + 1 functions x*°f (i = 0, 1, • • •', N) on ikf are the eigenfunctions
of A with the eigenvalue n if and only if f(M) is minimal in SN(1).
Therefore the first eigenvalue \ of A of an ^-dimensional minimally iso-
metrically immersed Riemannian manifold (M, g) in SN(1) is not greater than
n. In particular, for the great sphere Sn(l) and the generalized Clifford
torus Sp(yp/n) x Sq{v/'qjn) (p + q = n) of Sn+1(l), the first eigenvalue \
is just n. In this connection, Ogiue [10] posed the following problem:

PROBLEM (A). What kind of embedded minimal hypersurfaces of
Sn+1(l) have n as the first eigenvalue of its Laplacian?

Yau [18] posed independently a similar problem. In this paper, we
consider a little more restricted problem:

PROBLEM (B). IS n the first eigenvalue of the Laplacian for the
embedded homogeneous minimal hypersurfaces of Sn+1(l)?

In this paper we give a partial answer to the Problem (B) using the
classification (cf. [5]) of homogeneous hypersurfaces of the unit sphere
and the theory of spherical functions on a compact homogeneous space:

THEOREM. Let (ikf, g) be an embedded homogeneous minimal hyper-
surface in the unit sphere which is diffeomorphic to one of the following:

( i ) SO(3)/Z2xZ2,
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(ii) SU(3)/T2,
(iii) Sp(2)/T2,
(iv) GJT\
(v) SO(m) x SO(2)/SO(m - 2) x Z2 (m ^ 2),

where T2 are two dimensional maximal tori of SU(3), Sp(2) or (?2. Here
G2 is the simply connected compact Lie group of type G?. (See the Table
in [5], [14]). Then the first eigenvalue of the Laplacian of (M, g) is equal
to the dimension of M.

REMARK 1. In case of (i), the nullity (resp. the index) of the
minimally embedded hypersurface SO (3)/Z2 x Z2 in the 4-dimensional unit
sphere is 7 (resp. 20) (cf. § 5).

REMARK 2. It seems that the answer to Problem (B) is affirmative.
But it seems to be difficult to compute their first eigenvalue because
none of the homogeneous minimal hypersurfaces in the unit sphere except
the great sphere and the generalized Clifford torus is symmetric or normal
homogeneous.

The outline of this paper is as follows. In Section 2, we explain
the connection between the geometry of minimal immersion and the
eigenvalue problem of the Laplacian. In Section 3, we give an explicit
formula for the Laplacian of a regular iJ-space. In Section 4, we deter-
mine the minimal orbit among regular JS-spaces embedded with codimen-
sion one in the unit sphere and calculate their principal curvatures. In
Section 5, we calculate the first eigenvalue of the Laplacian of the homo-
geneous minimal hypersurfaces and Main Theorem.

We would like to thank Professor A. Ikeda for his advice and Pro-
fessor S. Tanno for his helpful suggestion.

2. Laplacian and Jacobi operator. In this section, we explain the
connection between the geometry of minimal immersion and the eigen-
value problem of the Laplacian.

Let M be an ^-dimensional compact orientable manifold without
boundary immersed in a Riemannian manifold (M, h) of dimension n + p.
We denote by g the Riemannian metric f*h on M induced by the
Riemannian metric h on M through the immersion / . For a C°°-variation
ft of the immersion / , that is, a C°° one-parameter family of immersions
{/J of M into M such that f0 = / , consider the variation of the volume
vol(M, ft*h) of the Riemannian manifolds (Mff*h). The immersion / is
called minimal if the first variation (d/dt)(yo\ (M, ft*h))t=0 vanishes for
every C°°-variation ft of / .
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To state the second variation formula, we need some notions. For
x e M, we denote f{x) by x, and we regard TXM as a subspace of TXM.
Let TXML be the orthocomplement of TXM in TXM, and TML the normal
bundle over M. For a vector field X along M, we denote the normal
component of X by XL. Let F, F be the Riemannian connections of
(ilf, flf), (M, ft), respectively. Then for vector fields X, Y on AT, V XY is
the tangential component of VXY. We denote the normal component of
VxY by B(X, Y) and call it the second fundamental form. For each
element V in the space F(TML) of all C°°-sections of TML and a vector
field X on AT, the tangent component —AVX of FXF satisfies

g(AvX, Y) = h(B(X, Y), V) ,

for all vector fields X, Y on M. The operator Av is called the shape
operator. The normal component FXV of VXV is called the normal con-
nection.

A normal C°°-variation ft of minimal immersion f:M—>M is a Co-
variation ft whose variation vector field Vx = (d/dt)ft(x) \t=0, xeM, belongs
to F(TML). It is known (cf. [11]) that for every normal variation ft of
the minimal immersion f:M-*M with the variation vector field V e
r(TML), we have

(d2/^2)(vol(M,/*ft))|t=0 - \ h(JV, V)dvg

where dvg is the volume element of (M, g). Here the operator J of
F(TML) into itself, called the Jacobi operator, is a self-ad joint strongly
elliptic differential operator. So it has a discrete spectrum:

The index of the minimal immersion f:M^M is the sum of the dimen-
sions of the eigenspaces corresponding to the negative eigenvalues. The
nullity of f:M—>M is the dimension of the O-eigenspace. The Jacobi
operator J of F(TML) is determined as follows: Define the operators
J\ R and A of F(TML) into itself by

and

= ±B(Avei,ei),

for evey Fe/XTM1), respectively. Here {eJJU is an orthonormal local
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frame field of M, and R is the curvature tensor of (M, h). Then we
have (cf. [11])

J = -A1 + R - A .

In the following, we always assume that (M, h) is the (n + ^-dimen-
sional unit sphere Sn+\1) with constant sectional curvature one. Let
(M, g) be an ^-dimensional compact orientable Riemannian manifold iso-
metrically and minimally immersed into Sn+1(l). Then we have

R(V) = ± (h(eif V)ei - h(eif e%)VY = -nV ,
i

for every V e F{TML). Let N be the unit normal vector field on M.
Then each element in F^TM1) can be written as a multiple of N by a
C°°-function on M. Let C°°(M) be the space of all real valued C00-
functions on M. Then, since F^N = 0 , i = 1, • • •, n, we have

- A\(j>N) = (A<f)N , 0 6 CTO(M) ,

where J is the Laplacian of (M, gr) acting on C°°(M) given by

(1.1) A<f>= -±<yuVut-Vue4)

for ^ in C°°(M). Moreover, we have

where a is the square of the length of the second fundamental form B,
that is,

(1.2) a = ti 9(ANeif ANet) .
i

Thus the Jacobi operator J can be expressed (cf. [3, p. 231, (2.4)]) as

(1.3) J(<pN) = (A$ ~{n + a)f)N , <p e C°°(M) .

Therefore, when the square a of the length of the second fundamental
form B is constant, the following conditions are equivalent:

( i ) 0JV, ^ e C°°(M) is the eigensection of J with eigenvalue /5.
(ii) $ is the eigenfunction of A with eigenvalue n + a + fi.

Therefore, the determination of the index and the nullity of compact
minimal hyper surf aces in the unit sphere with constant a (in particular,
compact minimal homogeneous hypersurfaces) is reduced to the eigenvalue
problem of the Laplacian A as follows:

(iii) <j>N is a Jacobi field, i.e., J(<j>N) = 0, if and only if <p is an
eigenf unction of A with the eigenvalue n + a.

(iv) The nullity coincides with the multiplicity of the eigenvalue
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n + a of the Laplacian A.
(v) The index is the sum of the multiplicities of the eigenvalues

smaller than n + a of the Laplacian d.

REMARK 1. In fact for a compact orientable minimal hyper surf ace
M of the unit sphere with constant a, the Laplacian A has n, a and
n + o as eigevalues. Moreover, if o ^ 0, then the index of M is not
less than 2n + 3.

REMARK 2. (i) The eigenvalues of the Laplacian of the great sphere
Sn(l) in the unit sphere Sn+\1) are j(j + n - 1), i = 0, 1, 2, • • •. The
nullity is w + 1, which is the multiplicity of the eigenvalue n of A.
The index is one, which is the multiplicity of the eigenvalue 0 of J.
(ii) The generalized Clifford torus Sv{\/p[n) x S9(i/q/n)f p + q = n, in
Sn+\1) has

(n/p)j(j + v - 1) + (n/q)k(k + q - 1) , j , k = 0, 1, 2, • • • ,

as the eigenvalues of the Laplacian (cf. [2]). The first eigenvalue is n
with multiplicity n + 2. The nullity is (p + l)(w - p + 1) (cf. [11]),
which is the multplicity of the eigenvalue 2n of A. The index is w + 3
(cf. [11]), which is the sum of the multiplicities of the eigenvalues 0
and n of A.

3. Laplacian of homogeneous hypersurfaces in Sn+\1). Hsiang-
Lawson [5] showed that every homogenous hypersurface in the unit sphere
is represented as an orbit of a linear isotropy group of a Riemannian sym-
metric space of rank 2 (see also [14]). We follow the notations in [14].

Let (u, d) be an effective orthogonal symmetric Lie algebra of com-
pact type and let (U, K) be a symmetric pair associated to (u, 6) (cf. [4]).
Let f be the Lie algebra of K and n = I + p the orthogonal decomposi-
tion of u with respect to a fixed Ad(C7)-invariant inner product ( , ) on
u. We choose a maximal abelian subspace a in p and denote by I the
set of all roots of (u, d) with respect to a. We fix a linear order in I
and denote by S+ the set of all positive elements in I. For XeZ+, set

I, = {Xe I; (sidHyX = -X(H)2X for all He a} ,
px = {Xe p; (adif)2X = - M i M for all He a} .

It is known that diml^ = dimfo, say m(X), for each Xel+. Let f0 be
the centralizer of a in I. Then f and p have the following orthogonal
decompositions:
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For a fixed unit vector He a, let L be the stabilizer of the adjoint action
of K at H whose Lie algebra I is {Xe t; ad (X)(H) = 0}. Define an
embedding 0H of K/L into p by QH(kL) = Ad (fc)ff. The homogeneous
space X/Z/ is called an R-space and OH its standard embedding (cf. [16]).
The image iNT(i?) of OH is a submanifold of the unit sphere S in p with
respect to the inner product ( , ). Here we regard p also as Euclidean
space with the inner product ( , ) and identify the tangent space of p
with p itself. Consider the Riemannian metric on N(H) induced by the
inner product ( , ) of p. Then the tangent space THN(H) of N(H) at
H is the direct sum of pXf Xe2H, and the orthogonal complement
THN(H)L of THN(H) in THS is the direct sum of H1 and px, X e 2+ - 2H,
under the above identification. Here ^ = {A;e 2+; X(H) ^ 0} and HL —
{H'ea;(H',H) = 0}.

In the following we assume He a to be a regular element, that is,
2+ = 2H. In this case N(H) or K/L is called a regular R-space. Then
we have

THN(H) = E f c , THN(HY = i P ,

and the Lie algebla I is Io. Let m be the orthogonal complement of f0
in I with respect to ( , ). Then we have m = ^jXeS+ *x a nd the Ad(L)-
invariant decomposition I = I + m.

Let g be the Riemannian metric on K/L induced by the embedding
0H: K/L-+N(H). Under the identification of the tangent space T0(K/L)
of K/L at the origin o = {L} with m by mBX\-+Xoe T0(K/L), we get
an inner product < , > on m defined by (X, Y) = g(X09 Yo), X, Fern.
Since <X, Y) = {[X, H], [Y, H]) for all X, Ye m (cf. [16, p. 208]),
{\X(H)\~lXXti; Xe2+, i = 1, •••, m(X)} is an orthonormal basis of m with
respect to < , >. Here, for each Xe 2+, {XXti; i = 1, • • •, m(X)} (resp.
{YXfi; i = 1, • • •, m(X)} is an orthonormal basis of kx (resp. px) with respect
to ( , ) such that

Yl9t and
[.ff', Ylft] = -X(H')XXii , for all H'ea.

Therefore the Laplacian A of the Riemannian manifold (K/L, g) is given
as follows: Let g be a left invariant metric on K induced by the inner
product on I, defined in such a way that the restriction to m coincides
with < , > and that tn and I are mutually orthogonal. Then the canoni-
cal projection n\ K3kt-*kLe K/L is a Riemannian submersion (cf. [2]) of
(Ky g) onto (K/L, g) all of whose fibers are totally geodesic. Let A be the
Laplacian of (K, $). Then we have the following proved in [7, p. 477].
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PROPOSITION 3.1. For every smooth function f on KjL, we have

Here 7r*f is a function on K defined by TT*/(&) = f(n(k)) = f(kL), ke K,
and Lx ( len t ) denotes the Lie derivation on K with respect to the left
invariant vector field X.

Now let us assume that (u, 0) is of rank 2, that is, dim a = 2. Then
for every regular element H in a, we have dim if1 = 1 and N(H) is a
hypersurface of the unit sphere S in p. Moreover by Hsing-Lawson [5]
every compact homogeneous hypesurface in the unit sphere can be ob-
tained as N(H) in this manner. In the following we always assume that
dim a = 2 and N(H) or K/L is a regular i2-space, i.e., He a is regular.

4. Minimal homogeneous hypersurfaces and principal curvatures.
Let the situation be as in Section 3. In this section, we use the result
in [8], [14] to determine the minimal hypersurfaces among the family of
regular it!-spaces N(H).

Let IX = {X 6 2+; X/2 $ 2} (say 1% = {Xo, . -., XP_J, p = p * ) . For a
fixed regular element H in a, choose Z in H^-PiS to be a unit normal
vector of JV(JET) at H. Let Hi9 i = 0, • • •, p — 1, be unit vectors in a
satisfying X^H^ = 0, i — 0, • • •, p — 1, and 0 < 0t < TT, the angles between
the vectors H and Hif i = 0, • • •, p — 1. We may choose Xi9 i = 0, • • •,
p — 1, in such a way that

0 < 0O < 0i < • • • < 0p-i •

Then by [14], the distinct principal curvatures kt of the regular .R-space
N(H) with respect to the normal vector Z are .— Xt(Z)/Xt(H), i = 0,
1, • • •, p — 1, the multiplicity mf of fc* is equal to mC Ĵ + m(2Xi)9 i = 0,
1, • • •, p — 1. By the definition of 0*, we have

-x^zyx^H) = cot (0j i = o, l, . •., p - l .

Miinzner [8] showed that

(4.1) dt = 0O + inp-1 , i = 0, • •., p - 1 ,

(4.2) mt = mi+2 , where indices are considered mod p .

Moreover he showed in [9] that

(4.3) pe {1,2, 3, 4, 6}.

If p = 1, then JV(£T) is a small or great sphere of the unit sphere. If
p = 2, then N(.ff) is the generalized Clifford torus Sm°(r0) x Smi(n), w =
m0 + mx, r§ + r\ — 1. In the following we treat the case p ^ 3. It is
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known (cf. [1] and [14]) that m0 = m1 if p = 3, 6. Therefore the mean
curvature h of N(H) with respect to Z is given (cf. [8, p. 64]) by

(dim (N(H))h = mop cot (p0o) , if p = 3 ,

(4.4) = (mop/2) cot (p0o/2) - (m^/2) tan (p0o/2) ,

if p = 4, 6 .

Therefere by (4.1), (4.4), we have:

PROPOSITION 4.1. Suppose dim a = 2, He a is regular and that the
regular R-space N(H) is a minimal hypersurface in the unit sphere S
in p. Then we have the following:

(I) Determination:
(i) If V — 3 or 6, then the angle 60 between the vectors H and Ho

is given by ;r/(2p).
(ii) If p = 4, then d0 satisfies the equation

tan 0O = ( — v/m1 + v/m^T~

(II) The distinct principal curvatures kt of the minimal regular
R-space N(H) are:

( i ) l / T , 0, - i / T , if p = 3 .

(ii) (l/m0 + mx + l/mj/i/mo , (l/m0 + i/mx — i/m0 + m1)/(v
/m0

+ l/m0 + m1 — i/m[) , — (i/m0 + mx

— (i/m0 + mx — i /m! + i/mo)/(v/mo + i /m! — l/ra0

*/ P = 4 ,

(iii) 2 + i/T, -2 + i/T, 1, - 1 , 2-i/lF, - 2 - i / F ,

i/ P = 6 .

5. Proof of Main Theorem.

5.1. In this section, we prove Main Theorem calculating the eigen-
values of the Laplacian in each case. We first explain our method of
computing the eigenvalues of the Laplacian for the compact minimal
homogeneous Riemannian manifold (K/L, g). Recall the spherical represen-
tation theory for the coset space K/L (cf. [15]). Let D(K) be the set
of all finite dimensional inequivalent irreducible unitary representations
(Pt yp) of K and D(K, L) the set of all spherical representations in D(K)
for the pair (K, L), that is,

D(K, L) = {(p, V>) 6 D(K); VI * {0}} ,
where

VI = {veVp; p(l)v = v for all leL} .
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Let (( , )) be a Hermitian inner product on Vp invariant under the action
of p(K) and {vs, i = 1, —•fdimVp} an orthonormal basis of Vp with
respect to (( , )) so that {vs\ j = 1, •••,dimF^} is a basis of V[ for
(p, Vp) e D(K, L). Then by Peter-Weyl's theorem,

{pij; 1 ̂  j rg dim V£, 1 ̂  i ^ dim V>, (p, V>) 6 D(K, L)} ,

is a complete orthogonal system of the space C?(K/L) of all C°°-complex
valued functions of K/L with respect to the following inner product:

(5.1) ((&, &)) = ( h(xL)$&L)dv, , ft, & e C%(K/L) .
JK/L

Here dvg is the volume element of (K/L, g) and

(5.2) pij(x) = ((p(x)vj,vi)) , xeK, l^j^dimVp
L, 1 ̂  i ^ dimVp

are regarded as functions on K/L since p(V)Vj = vjf le L, implies pi5(xl) =
piS(x) for all xeK, leL. We identify piS with 7c*pi:}.

Now since the Laplacian A of (.K/L, g) is expressed in terms of the
Lie algebra ! (cf. Proposition 3.1), we have

(APij)(x) = ((p(x)p(D)vjf vt)) , 1 ̂  j ^ dim Vp
L , 1 ̂  i £ dim F ' .

Here p(D) is the endomorphism of Vp given by

(5.2)

where {-3T;,4; X.e ̂ +, i = 1, • • •, m(X)} is as in Section 3 and p(X), Xe I, is
the infinitesimal representation of p on Vp. We note that p(D) leaves
VP

L invariant, since {^(H^Xx^; Xe 2+, i = 1, • • •, m(X)} is an orthonormal
basis of m with respect to the Ad (L)-invariant inner product < , > on
m induced by the invariant Riemannian metric g on K/L. Therefore if
we find all the eigenvalues of the endomorphism p(D) on the finite
dimensional space VP

L for each (p, Vp) e D(K, L), then these eigenvalues
exhaust all the eigenvalues of the Laplacian A of (K/L, g). Except in
the case SO (3)/Z2 x Z2f however, it is very difficult to find all the eigen-
values of p(D). In the remaining cases, we will determine only the first
eigenvalue \ of the Laplacian A of (K/L, g) by estimating all the eigen-
values of p(D).

S^^jOase of SO(3)/Z2 x Z2. In this case, let (u,!) = (8u(3), 8o(3)),
p = {V^lX\ X 3 x 3-real matrices, X - lX = 0, tr X = 0}, and (U,K) =
(SU(3), SO (3)). Here lX (resp. t rX) is the transpose (resp. the trace)
of X. Then the Ad (inact ion on p is given by SO (3) x p 9 (k, X) ^
kXk-'ep. Pat a = {V-\ diag (yly y2, y,); yte R, SJ-i Vt = °1- H e r e w e

d e n o t e b y d i a g (yu y2, y3) t h e d i a g o n a l 3 x 3 m a t r i x w h o s e d i a g o n a l e n t r i e s
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are y19 y2 and y3. Put

/0 - 1 0\
0 0 ,

\0 0 0/

and H = j / ^ 1 diag ( - 1 , 1, 0) e a. Let ( , ) be the Ad (?7)-invariant inner
product on 8u(3) defined by (X, F) = - 2 " 1 t r ( X r ) , X, TG§U(3). Then
(H, H) = 1. Let ^ be the linear form on a defined by a 3 V — 1 diag (ylf

V2, Vz) -> 1/i- Then we have 2 = I7* = {±(fa - ft); 1 ^ i < j ^ 3}. Fix a
lexicographic order > on I so that fa> ft> fa- Then 2^ = {fit — ft;
1 ^ i < j S 3} and p = 3. Put c = l/i/"3" and

J?o = V 7 ^! diag ( — 2c, c, c) , ff, = V^l diag (c, c, -2c) ,
i?2 = l/"11! diag (c, -2c, c) .

Let Xo = fi2 — ^3 , X1 = fi± — ftz, \ = fa — fts. Then we have

,) = 0 , 0 ^ i ^ 2 , and 0O = TT/6 , ^ = TT/2 , 52 = 57T/6 .

Thus by Proposition 4.1, the Ad(JST) orbit through H is minimal in the
4-dimensional unit sphere S = {Xe p; (X, X) = 1}. The stabilizer L of K
at H under the Ad (K) action is a finite subgroup of SO (3) consisting of

diag (1,1, 1) , diag ( - 1 , 1 , - 1 ) , diag ( - 1 , - 1 , 1 ) and
diag(l, - 1 , - 1 ) .

Thus the homogeneous space K/L is just SO(3)/Z2 x Z2, ! = tn and I = {0}.
We note that {2~1X1, X2, XJ is an orthonormal basis of 8o(3) with respect
to the inner product < , > given by <X, Y) = ([X, H], [Y, H]), X, Ye
p. Let TT; S3 = SU (2) -* UP3 = SO (3) be the canonical projection given
by SU ( 2 ) 9 X H Ad (a?) 6 SO (3) c GL (8u(2)). Then 2/ = TT"1^) consists of

/l o\ /i/"17! o \ /o - i \
±(o i) • *( o _ • = ! ) • * d o)' and

0 i/~

^ 1 0

Moreover put
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Then {A~1H*9 U, V) is an orthonormal basis of 3u(2) with respect to the
inner product induced by the Riemannian metric 7r*# on SU(2). Here g
is the invariant Riemannian metric on K/L corresponding to < , > with
respect to which OH is a minimal embedding into the 4-dimensional sphere
S. g is also regarded as a left invariant Riemannian metric on SO (3).
Thus the Laplacian A^g of the Riemannian manifold (SU (2), n*g) is ex-
pressed as

where Lx is the Lie derivative with respect to the left invariant vector
field Xe§u(2) on SU(2). Therefore we have only to calculate the eigen-
values of An*g making use of the above expression.

It is known that D(SU (2)) = {(pm, Vm); m non-negative integers}.
Here Vm is the vector space of all homogeneous polynomials of degree
m in two complex variables zlf z2, and the action of SU(2) on Vm is
defined by

/ a b\
Pm(x)f(zl9 z2) = f(az, - bz2, bzx + az2) , with x= [ 1 e SU (2)

\-b aj

for every feVm. The pm(SU (2))-invariant Hermitian inner product is

((/i, /.)) = takbkkl(m - k)l ,tb

for /x = S akzi*?-k and /2 = S bkz\zt~k

fc0 fc0

Then vk = (1/i/fc! (m — k)\)zkzf~k is an orthonormal basis of Vm with re-
spect to (( , )). Moreover the subspace V™ of Vm is

'=! 0

Then F^ =£ {0} if and only if m is even.
If we let m = 2p, then the subspace V™ is given as follows:

(i) If p — 21, then V™ is generated by {wjjii. Here wt are given by

(ii) If ^ = 2i + 1, then V? is generated by {w'i\l
i=1. Here wj are

given by
w't = 2 " 1 ( ^ - i - v 4 l _ 2 i + B ) , i = l, - - - , 1 .

The endomorphism pm(D) on F21', defined by (5.2), satisfies the following:
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(i) If p = 21, then

pm(D)wt = {(l/16)(4(i - 1) - 2pf + A(i - l)(p - i + 1) + p}wt ,

i = l, . - • , ! + 1 .

(ii) If p = 2i + 1, then

/om(D)ii;; = {(1/16)(4; - 2 - 2pf + (2i - l)(2p - 2i + 1) + p}W; ,

i = 1, •••, I .

PROPOSITION 5.1. The spectrum of the Laplacian of the compact
Riemannian manifold (SO(3)/Z2 x Z2, g), minimally embedded in the
^-dimensional unit sphere is given as follows: The eigenvalues are

(i) (i - 1 - If + (2i - 2)(4i - 2i + 2) + 2Z ,

I = 0, 1, 2, • • • ; <£ = 1, 2, • • •, I + 1 , and

(ii) (i - 1 - I)2 + (2i - l)(4l - 2i + 3) + 21 + 1 ,

1 = 1,2, . . . ; i = l , 2 , . . . , l .

T/̂ e multiplicity of the eigenvalues (i) (resp. (ii)) is U + 1 (resp. 42 + 3).

Therefore, by Proposition 5.1, we see that the first eigenvalue of
(SO(3)/Z2 x Z2, g) is 3, while the index (resp. the nullity) is 20 (resp. 7).

5.3. Case of SU(3)/T2. Let ( , )' be the inner product of Su(8)
defined by (X, Y)' = - 2 ~ 1 t r ( X r ) , X, re3u(3) . Let $ = {Xe3u(3); X di-
agonal}, tn' the orthocomplement of I) in Su(3) with respect to ( , )'. Then
T2 = {ke SU(3); & diagonal} is a maximal torus of SU(3).

In this case, we have (3u(3) x 3u(3), A), as a pair (u, f), where A =
{(X, X); Xe§u(3)}. Put p = {(X, - X ) ; Xe3u(3)}, C7 - SU(3) x SU(3), and
K = {(x, x); xe SU(3)}. Then (U, K) is the corresponding symmetric pair.
Put a = {(X, - X ) ; Xe§} . Let ( , ) be the Ad(i7)-invariant inner pro-
duct on u given by

((X, F), (X', Y')) = (X, X') ' + (F, Y')' , X, X', F, r e Su(3) .

Fix an element H = (H\ -H')ea, where H' = V~-idiag ( - 1 , 1, 0) 6 $.
Let ^ be the linear map on a defined by ct9(X, — X) —>^eiJ, where
X = i / ^ 1 ! diag (0X, 58, tf8), i = 1, 2, 3. Then J - ^* = { ± ( ^ - fid); l ^ i <
j ^ 3}. Fix a lexicographic order > on I so that ^ > ft2 > ftB. Then
2* = {^ - jeiy; 1 ^ i < i ^ 3} and p = #J* = 3. Put Ht = {H'i9 -Hi) e a,
i = 0, 1, 2, where if/ coincides with Ht as in 5.2. Define \ as in 5.2
using ftt. Then A,i(Hi) = 0, i = 0, 1, 2, and 0O = ^/6, #i = TT/2, ^2 = 5TT/6.

Therefore by Proposition 4.1, the Ad (K)-orbit i\T(H) through H is mini-
mal in the 7-dimensional unit sphere S = {(X, -X)ep; (X, X) ' = 1}. The
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subgroup L is {(t, t); te T2} and the orthocomplement m of the Lie algebra
I in f is {(X, X); l e m'}. Identify p with 8u(3) by p a (X, - X ) H-> I G 8U(3).

Under this identification, the Ad(if)-action on £ coincides with the
Ad (SU(3))-action on 8u(3) and the homogeneous space 2ST/L is SU(3)/T2.
Moreover the inner product < , > on m induced by (K/L, g) coincides
with the inner product < , >' on m' defined by

<X, YY = ([X, H% [Y, my , X, Ye m' .

Therefore we have only to calculate the eigenvalues of the Laplacian A'
of the Riemannian manifold (SU(3)/T2, g') whose Riemannian metric gf is
induced by the inner product < , >' on m\ The Laplacian A' is given
as follows: Let Hlf H2 be any fixed orthonormal basis of § with respect
to ( , )'. Set

/0 - ^ -z2\
X(xu •••,&e) = lz± 0 - 2 8

\z2 zs 01

where zl — xL + V — lx2, z2 = xz + V — lx 4 , a;3 = x5 + V7 — lx 6 , xte R (i =

1, • •., 6). Put X, = X(0, • • •, 0, 1, 0, • • •, 0), with 1 in the i-th place for
i = 1, • • •, 6. Then {i?i, H2, Xt (i = 1, • • •, 6)} is an orthonormal basis of
8u(3) with respect to ( , )'. By the definition of < , >', {(l/2)Xlf (1/2)X2,
X3, X4, X5, X6} is an orthonormal basis of m' with respect to < , >'.

We extend the inner product < , >' on m' to that on 3u(3), which
we denote by the same letter as <X, F>' = (X, Y)' for X, Te §, and
<X, Y)f = 0 for Xetn', Ye%. Let ^ be the left invariant Riemannian
metric on SU (3) induced by < , >'. Then for each smooth function / on
SU(3)/T2,

TC*(J7) - 2(ic*f) = ((l/4)Jf0 - (3/4)(I48 + L2
X4 + L\ + UXQ)){iz*f) ,

where n*f(k) = f(n(k))> &eSU(3), % is the projection of SU(3) onto
SU(3)/T2, and Ago is the Laplacian of the bi-invariant Riemannian metric
g0 on SU (3) induced by the Ad (SU (3))-invariant inner product ( , )' on
8u(3). Since (X, Y)' = -B(X, Y)/12, for X, Fe§u(3) with the Killing
form B of 8u(3), we have

AH= -120 9

where Q is the Casimir operator of 8u(3) (cf. [17]). Therefore, by 5.1,
we have only to consider the eigenvalues of the operator

on the subspace VI of Vp for all (p, Vp) e D(SU (3), T2). Yamaguchi [17]
determined the spectra of flag manifolds, in particular, D(SU (3), T2) and



266 H. MUTO, Y. OHNITA AND H. URAKAWA

the eigenvalues of p{Q) for each (p, Vp) e D(SU (3), T2). By his results,
there exists a Injection between D(SU(3), T2) and the set £(SU(3), T2)
given by

£(SU(3), T2) - {((m, + 2m2)/3, (2m, + m2)/3);

mi, m2 non-negative integers} .

We put p1 = (2m1 + m2)/3 and p2 = {m1 + 2m2)/3. We denote this bisection
by £(SU (3), T2) s (plf p2) -> ft,^ 6 D(SU (3), T2). Then for each (Pl, p2) e
l5(SU(3), T2), the eigenvalue of pPlfV2(Q) is

( 1 / 6 ) ^ ^ + m2p2 + 2(px + p2)) .

The operator P = -(L2x3 + L2x4 + L2
Xg + L2

X6) is positive, that is,

(Pf)$dvgo ^ 0 ,
SU(3) °

for every smooth function <}> on SU(3), where dvgo is the volume element
of (SU(3), g0). Since P commutes with dgo, the eigenvalues of pPliP2(D)
is not less than (m.p, + m2p2 + 2{pl + p2))/2, for each (plf p2) e D(S\J (3), T2).
For all (pu p2) in JS(SU(3) , T2) except for (Pl, p2) = (1, 1), we have

(mxft + m2p2 + 2(px + p2))/2 ^ 6 .

In the case of (plf p2) = (1, 1), we have ( m ^ + m2p2 + 2(px + pz))/2 = 3.
But the representation pltl coincides with the adjoint representation of
SU(3) on 8u(3). In this case, the subspace VI1'1 is just the space f).
Hence the eigenvalues of pltl(D) on this space are 6 and 12. Thus the
first eigenvalue of the 6-dimensional minimal hypersurface SU(3)/T2 in
the unit sphere is just 6.

In the cases of Sp(2)/T2, G2/T
2 and SO(m) x S0(2)/S0(m - 2) x Z2,

m ^ 2, the assertions of Main Theorem can be proved in the same manner
as in the case of SU(3)/T2. We omit the lengthy computations.
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