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The purpose of this paper is to give an explicit expression for the
Fourier transform of the zeta distributions on a certain class of pre-
homogeneous spaces defined by Jordan algebras.

Let F be a formally real simple Jordan algebra over R. Let
dim V = n and rk V = r (for definition, see 1.1). We fix a (positive
definite) inner product on V defined by

(1) <*,tf>=-tr(Γ.,) (x,yeV),
n

where Tx denotes the linear transformation of V defined by Tx(y) = xy.
The "structure group" of V, G = Str(V) (see 1.2), is then self-adjoint
with respect to ( >, and hence is a reductive algebraic group. It is
well-known that the pair (G, V) is a (real) prehomogeneous vector space
in the sense of Sato-Shintani [6], i.e. if one denotes by Gc and Vc the
complexifications of G and V, respectively, Gc is transitive on the
Zariski-open set

Vc

x = {xeVc\N(x)Φθ}

(see [5c]). Here JV denotes the "reduced norm" of V, which is an abso-
lutely irreducible homogeneous polynomial function on V of degree r,
characterized by the property:

(2 ) iSΓ(l) = 1 , N(gx) = det(gY/nN(x) (g e G°, x e V) ,

where G° is the identity connected component of G.
The set of real invertible elements Vx = V Γ\Vc is decomposed into

the disjoint union of r + 1 (open) G°-orbits:

V* = Π Ω< ,

where Qt is the set of elements of signature (r — i, i) ([5c]). In particular,
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ΩQ, the G°-orbit of the unit element 1, is a self-dual homogeneous cone.
The gamma function associated to Ωo is given by

(3) ΓΩo(s) \

= (2π)ΐ<-') Π Γ(a - |-(i - 1)) (Re s > - | ( r - 1)) ,

where d(u) is the Euclidean volume element with respect to < > and d
is a positive integer given by d — 2(n — r)/r(r — 1).

Now, for feg*(V) (the Schwartz space of V), we set

( 4 ) Φt(f, s) = \ f(u)\N(u) |8 d(u) (0 £ i ^ r) .

Then, it is known ([6]) that this integral is convergent for Res>0, the
analytic function Φt(f, s) has a meromorphic continuation with respect
to s to the whole plane C, and the map / h-> Φt(f, s) is a tempered dis-
tribution on Vf called a "zeta distribution". Moreover, denoting by /
the Fourier transform of /, one has a functional equation of the follow-
ing form

, s - ^ ) - (2τr)-"e(^)/V«) g w<y(8)Φy(/, -s) ,

where ui5(s) is a polynomial in e( —s/2) of degree at most r.
For the cases V = Herr(C) and Symr(iί), explicit expressions for

uu(β) were obtained by Sato-Shintani [6] and Shintani [7]. For the case
r = 2, the functional equations of the corresponding zeta functions were
obtained by Siegel [8] (cf. also [2]). Other cases were treated by Muro
[4] by using the micro-local analysis (cf. [10]). Here we will give a
direct and unified way of computing the Fourier transform based on the
theory of Jordan algebras, generalizing the method of [6], [7].

REMARK. In the notation of [6], our uiό(s) and ΓΩQ(S) are equal to

(2π)~^{n~r)uij(s) and (2π)^{n~r)7(s — — \ respectively. In our case, using

the relation N(gra,d)N(u)s = b(s)N(u)s~1 (ueΩ0) and (3), it is easy to see
that the "6-function" is given by

( 6 )

NOTATION. R+ is the semi-group of positive real numbers. For z e C,
we set e(z) = exp(2τπ/^T2). For a linear transformation T of a (real)
vector space V and aeR, we set V(T, a) = {v e V\ Tv = av). The real
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linear subspace of V generated by a subset {vlf , vm} in V is denoted by
{̂ i, , ̂ mU When F is endowed with an inner product < >, we write
S[v] = (v, Sv) (veV) for any symmetric linear transformation S. For
a topological group G, G° stands for the identity connected component
of G.

1. Preliminaries on Jordan algebras (cf. [1], [5a], [5c]).

1.1. Let V be a formally real simple Jordan algebra of dimension
n. We choose and fix a set of primitive idempotents {̂  (1 ̂  ί ^ r)}
such that

the cardinality r is uniquely determined and is called the "rank" of V.
The linear transformation Te. has eigen values 0, 1/2, 1, and one has
V(TH, 1) = {et)R. We put

V(TUfl) if i = j ,

.if I ) n v ( τ . i 9 1 ) if < ^ i .viό =

Then, dim Vti (i Φ j) are all equal, and one has the Peirce decomposition:

(7) V = φVti.

Hence, putting d = dim Vi5 (ί Φ j), one has

( 8) n = r + —r(r - 1) .
2

It follows that (eίt eά) = δiS.

1.2. Following Koecher, we use the notation

xny = Txy + [ T x , T y ] f o r x,yeV .

By definition, the structure group G = Str(F) is an algebraic group
given by

G = {ge GUV) \ g(x π y)g~ι = (gx) π Cg-'y) (a?, i/eF)}.

Then G is reductive, and it is known that

Q = Lie G = {x D 2/ (a?, 3/ e F)}Λ

(see e.g. [5a]). Let K = Aut(F) be the automorphism group of the
Jordan algebra V. Then one has K° = {ge G° |V~1:=#} and K° is a maximal
compact subgroup of G°. Let g = ϊ + p be the corresponding Car tan
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decomposition. Then one has p = {Tx (xeV)}, and

a = {TH (1 ^ i ^ r)}R

is a maximal (abelian) subalgebra in p. Thus r coincides with the (real)
rank of g.

We put V = Σi<y Vi3 and, for x = Σ«i&ϋ (a^ e Vtj), put

( 9 ) Tί+) = Σ e< Π xiS , Tlr* = Σ *y • xtJ ( = '2™

Then

n' = {Γi+) ( « 6 E ) | , n = {T-] (xeV)}

are (mutually opposite) maximal nilpotent subalgebras of g normalized
by α. Let A, N, N' denote the analytic subgroups of G corresponding
to α, n, n', respectively. Then one has Iwasawa decompositions G° =
K°-AN= K° AN'.

1.3. Let £? denote the set of all r-tuples consisting of ± 1 . For
s = (βj)e &, we denote the cardinality of {j\e3- = — 1} by n(ε) and set

By definition, Ωt is the G°-orbit of -Σi=i βy + Σ5=ί+i es. For e = (e, ) e
we denote by Ωε (resp. i2J) the AiV-orbit (resp. AZV'-orbit) of Σ i = i ^
Clearly, one has Ωε, Ω'ε c Ωt if εe ^

LEMMA 1. (i) ΓΛe ώ̂  (seg 7) are mutually disjoint and
α Zariski-open subset in Ω^

(ii) JF'or eαcfe s e g 7 , the map

(ίx, •• , t r ) X ί C H (exp Γi

is α (bijective) homeomorphism.

For a proof, see [5c]. We have also an analogous lemma for Ωε.
The correspondence in Lemma 1, (ii) is given explicitly as follows:

(10) v = Σ (eA + j Σ eΛ&ΛaO8)^ + y Σ (ejt^ix) + Σ eAfi*(a)fy*(*)) ,

where, for x = Σi<i »<ye K> w e s e ^

f<y(») = Σ —7- Σ χikl %klk2 ^ v _ x i .

It follows that for the corresponding (Euclidean) volume elements one has
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d{v) = 2r-*

Since N(v) = Πi=i(^εi)> the G-invariant volume element on Vx is given by

(11) I N(v) \~n/rd(v) = 2 r - n (ή tt1)d~n/r dtλ d(x) .

1.4. We set

Then Va) = V{Tλm, 1) is a (simple) Jordan subalgebra with the unit
element Vk) =Σ*=iβy. We denote the reduced norm of V{k) by N{k).
Note that the restriction of the "standard" inner product (1) to V{k) is
that of V{k). It is known that V{k)Vk+1 c Vk+1 and the map

Pk(v): F(fc> a v H> 2ΓJ Ffc+1 e End( 74+1)

is a (unital) Jordan algebra representation of V{k). For v e P 1 , cce Ffc+1,
we put

^ N = —Pk(v)[x] = (x, vx) .
Li

LEMMA 2. ( i ) For veV{k\ one has

(12) det(ρk(v)) = iV(Λ)(i;)d .

(ii) For i e F , v = Σϊ^iv< y, we write

Vu = ί^ , ^(fc) = Σ Vϋ , vk = Σ f̂c .

J/ v**-" is invertίble (i.e. i/ iV^""^**-") Φ 0),

(13) N{k)(v{k)) - iV^-^^^"15)^ - v^-0"1^*]) .

(For k = 1, we mαfe α convention that v{0) = 1, ^ = 0.)

PROOF. TO prove (12), we may assume k = r — 1. Then, for any
ί ; e 7 ί M l , there exists #e K such that

r- l

#er = er , 0w = Σ *iβ* with ίi e iί

([5c]). Then g leaves Vr invariant, and one has

Hence
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which proves our assertion.
To prove (13), we may again assume k = r — 1. Then, in our nota-

tion, one has

v = v{r~ι) + vr + ξrer

= exp(er D x)(y[r-ι) + ζ'rer) ,

where

ξ'r = ξr - V»-»-\vΛ

(see [5c]). It follows that

N(v) = N(v{r-1] + ξ'rer)

= N^-'Kv^-^ξr , q.e.d.

We denote the projection map vv-+v{k) by Pk and, when Pk_L(v) = v{k~ι)

is invertible, set

(14) Xk(v) = N^KPMVN^KP^v))

= f* - t;(*-1}-ι[i;J

(We set Zx(v) = ̂  for any v.) Then, when all Pk(v) = va) (1 ̂  k ^ r)
are invertible, one has

(15) N(v) = Π Uv) .
k = l

Similarly, the projection map onto F(2\<fc), 0) is denoted by P'k, i.e.
PjίCv) = Σnti*k+iVis- We denote the reduced norm of Pk(V) = V(T^k)f0)
by N{k)f and, when Pί(ι ) is invertible, set

Then, in the notation of Lemma 1, (ii), it is clear that, for ve Ω'ε, one has

Pί(υ) - exp(nt}(.,)( Σ

whence follows that

Nw\Pi(y))= Π (tfit) and Vk{v) = tkεk .

Thus one has v e Ω'ε, if and only if all Pk(v) (l^k^r) are invertible and
the sign of Vh(v) is εk ([5c]). One has also an analogous result for Ωe, Pk,
and Zfc.

1.5. For σ = (σk) e Cr, one defines the gamma function of r vari-
ables associated to Ωo by
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Γ0o(σ) = \ fl
jfc=i

Then, by changing variables as in Lemma 1, (ii), it can be shown that

this integral is convergent for Re σk > —(r — k) and
LA

(16) Γΰΰ(σ) = (2jr)i<»-" f[ r(σk - A(r - k))
k—1 \ ^ /

(cf. [3], [5b]). If we identify seC with the r-tuple (8,8, ••-,«), then
(3) becomes a special case of (16).

2. Computation of the Fourier transforms.

2.1. In the following computation, / is a function in £*(V) whose
support is compact and contained in the union of the sets Ωε ( ε e i f ) .
For σ = (σk) e Cr and ε = (ek) e gf, we put

(17) Ψ.(f, σ) = \ f(v) Π \Xh(v)\°h d(v) ,

(18) Ψ'lf, σ) = \ f(v) Π I Ά(v) \°« d(v) (Re σk > A(r - *) - - ) .
JΩ'£ k=i \ 2 T '

T h e n , i f o n e i d e n t i f i e s seC w i t h t h e r - t u p l e (s, •••,«), o n e h a s b y
L e m m a 1, (i)

(19) Φt(f, s) = Σ y.(/, s), oil s) =. Σ y;(/,«).

Hence, by computing the integral Ψ'lf, s — — J and using Theorem 1 in

[6], we will obtain the functional equation of the zeta distributions.

2.2. By Lemma 1 and (11), writing v e Ω'ε in the form v =

(exp Γi+))(Σ tkεkek), one has for Re σk > —(r - fc)

'if, σ-2) = \ f(v)U\ Ά(v) \'" IN(v)\-"d{v)

, (exp Γ<+

x Π (ψ+ιk-1)d-n/rdtk) d(x) ,
k = l

where the integral is t a k e n over tkeR+ (1 ^ k ^ r ) , # e F and

We wr i te
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r

y* = Σξkβk + Σ % » ζkeiί, w w e V w ,

£w(a?) = a?iί , »' = Σ s« >
fc<Z

^ = Σ w<fc, «i = Σ x'ih

Then, by (10), one has d(x) = d(xf) = Πί«i^(»*) Also, one has

<u, v> = Σ e*ί*(f* + γ<w*f a θ + | P M ( Φ ; ] )

Following the method in [6], we define Qk = Qk(u9 δ, ek) e End( Ffc) with
δ > 0 by

Then one has

= δl - i^zl^^^P,.^)) (2 ̂  & ^ r) .
4

lim^ lim |δ Σ

lim Σ
3-^0 Jfe=l

where we make a convention that Qx — 1, ^ = 051 = 0. Therefore, one
obtains

ίZ σ-2) = 2— lim \ f(u)e(^^±tk(δ - 2\Z^ϊεkξk + Qk[x'k]

= ϊ , »i») Π (Uk+(k-1)d-n/rdtk)d(x)d(u)

im Π Γ
s-»o * = i Jo

where one puts

Fk(h, u, δ) = e

χ j j

Since the last integral over Vk is equal to άet(tkQk)~1/2, one has

*(tk, u, δ)dtk =
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Now assume that ueΩv, η — (%). Then, when 3 tends to zero, one
has by Lemma 2 and (14), (15).

~d/2

and

+ -ί
-σk+*{r-k)

By (15) one has

Π
fcl

Hence one has

π
δ-*0 k=l Jo

, u,δ)dtk

where one puts

(20) ttrt(ff) = β ( - | ( Σ e»i7, - Σ 6»%(r - As)) + j Σ

Thus one has by (16)

(21) Ψ'lf, σ-2) = (2π)-Σ *e(i- Σ σk)rao(σ) Σ uΛ

2.3. When α = s = (s, , s), it is clear that
only on the sign of 27. Hence we set

(22) uiό(s) = Σ 'Ms) for 27 6 g^ .

Then one has

, -σ) .

depends
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fJ - s ) .

Thus we have shown that, if one defines uiό(s) by (20) and (22), the
formula (5) holds for any function / in S^(Y) whose support is compact
and contained in \J Ωε. Hence, by Theorem 1 in [6], the same formula
holds for all / in &>(V).

Taking η = ( —1, , —1,1, , 1) (-1 repeated j times), one has

(23) uiά{s) = Σ e ( 4 ( Σ ek(r - 2k + 1) - ± εk(r - 2k + 2j + 1))
se^ \ 8 \k=i k=j+i /

Σ e * - ) )

Thus we have proved the following

THEOREM 1. Let V be a formally real simple Jordan algebra. Then
the tempered distribution f ι-> Φt(f, s) defined by (4) satisfies a system of
functional equations

Φίf, β - —) = (2π)—e(^s)rΩo(s) ± uiό{s)Φά{f, -s) (0 ^ i ^ r) ,
\ r ' \ 4 / 3=o

where ΓΩo and uiά are given by (3) and (23).

REMARK. It can be shown that

(24) V e x H+ exp(er D xr) exp(e2 D x2) e N

is a bisection of V onto N (cf. [3], [9]). One can give an alternate proof
of Theorem 1 by using this parametrization instead of Lemma 1, (ii) and
by proceeding by induction on r.

3. Properties of the matrix U{r\x). In what follows, we put x —
e(—s/2) and write uiS(x) for ui3-(s). Then uί5{x) is a polynomial in x of
degree at most r. We consider the matrix U(x) = U{r\x) = (utj(x)).

From (23) one has

- 2k + 2j + 1) )

2 + ^ 2 //
— ^ — 1 r ^ — 1 1
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Hence, putting ζ = \/ — ldir+1), one has

(25) Σ y%i(χ) = Π {{-iYKχ + v) fί ( ( - i ) ^ ζ - 1 + xv),
ϊ=o fc=i *=i+i

which can also be written as

r
O^Λ i >̂  II^H | V | — f '*" J' ϊ^ [ ( /γ Ql\ P [ 1 (Will

i=0

where

y ί(a? + i/)y for d even ,
Py(«, y) = Π (( —l)dfcίc + 2/) = j rn ._rn

fc=1 I (a? + yrΊ\y — x)3 L τ J for d odd .

First, we consider the case where d is even. We distinguish two
cases:

Case (a): d = 0 (mod 4) or d = 2 (mod 4) and r odd,
Case (a'): d = 2 (mod 4) and r even.

Then one has

ί 1 in Case (a) ,

~ (-1 in Case (a') .

THEOREM 2. Let pr denote the symmetric tensor representation of
GL2 of degree r + 1. Then, when d is even, one has

prίi in Case (a)
,. . \ \x i. I

(26)
" π x

Pr\\-x - l ) ) ί n CaSe ^ "

PROOF. In Case (a), (25) can be written as

(l,y, ••-, v)UM(x) = ( (1 + χ y ) r , (x + y)(l + χ y ) r - \ ••-,(» + y ) r ) .

For r = 1, one has Uω(x) = (\ f). Hence one obtains (26). The proof

for Case (a') is similar. (Note that in this case r is even.) q.e.d.

COROLLARY 1. When d is even, the matrix U(x) is diagonalizable.

In fact, one has

χ\/i ΐy1 ίi + χ o

iΛi -1/

1W 1 <B\/1

XL -1/V-x - l j \ l - 1 / \1 + !B 0
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Hence, putting AM = Pr(\-ι _ i ))> o n e

(27) A^U

+ x 0

0 1 - » ,

+ xY
(1 + ^ ' - ' ( l - x)

0

0 rn

χ)r

or pr

0 1 - a ;

1 + x 0

0

( l - xY I

( l - xY \

0

in Case (a) ,

in Case (a') .

This proves our assertion. In Case (a'), the eigen values of U{r\x) are
(1 — x2)r/2 repeated r/2 + 1 times and — (1 — x2)r/2 repeated r/2 times.

We note that the matrix A{r) = (aiS) is determined by the identity

(28) z - yz)r = Σ L M V .

COROLLARY 2. When d is even, U{r)(x) satisfies the functional equation

(29) U{r\x)U{r)(—ί-) = (x- ±-Yj{r) ,

0

{T) = Pr
Ό 1

1 0

1 \

0 /

This follows from the relation

(1 x\( 1 -ζa; /0 1
r 1 = ^ X ~ X~%Λ Λ

((29) follows also from (5).)
The formulas (5) and (27) imply that, if one puts
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Φ'lf, «) = Σ atj03if, s)
j=0

then one has

(30) «;(/, s - i

χ (Φ'iif, s) in Case (a) ,

\Φ'r-i(ff -*) in Case (a') .

Next, we consider the case where d is odd. According to the clas-
sification theory, we have the following two possibilities:

Case (b): r = 2 and d odd (n = 2 + d),

Case (c): r arbitrary and d = 1 (n == — r(r + I n .

In Case (b), one has by (25)

'(—ζ"1 + xyXC'1 + xy) = 1 + #V (i = 0),

X-ζx + iθ(ζs + y) = x2 + y2 (j = 2) ,

where ζ = i/ — iΛ Hence Uω(x) is given by

/I a? a 2

(31) C7(2)(̂ ) = l 0 / ^ " ( l - x 2 ) 0

\ x2 x 1

Thus one see that Uω(x) is again diagonalizable with simple eigen values
1 + x2, 1 — x2, V — l n ( l — x2). This case was treated in [8].

The Case (c) is the one treated in [7]. The case r = 2 is contained
in Case (b), while the case r = 1 may be included in Case (a), because
for r — 1 the number d is actually undetermined. Hence U{r\x) is
diagonalizable for r = 1, 2. But, in general, it is not known whether
U{r\x) is diagonalizable or not.

It can be shown by (5) that, when d is odd, U{r\x) satisfies the
following functional equation

(32) W
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