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The purpose of this paper is to give an explicit expression for the
Fourier transform of the zeta distributions on a certain class of pre-
homogeneous spaces defined by Jordan algebras.

Let V be a formally real simple Jordan algebra over R. Let
dimV =nn and rk V = (for definition, see 1.1). We fix a (positive
definite) inner product on V defined by

(1) (z, y) = % tr(T,,) (x,yeV),

where T, denotes the linear transformation of V defined by T.(y) = xv.
The “structure group” of V, G = Str(V) (see 1.2), is then self-adjoint
with respect to { ), and hence is a reductive algebraic group. It is
well-known that the pair (G, V) is a (real) prehomogeneous vector space
in the sense of Sato-Shintani [6], i.e. if one denotes by G¢ and V. the
complexifications of G and V, respectively, G, iS transitive on the
Zariski-open set

V& = {xe V| N(x)+#0}

(see [6¢]). Here N denotes the “reduced norm” of V, which is an abso-
lutely irreducible homogeneous polynomial function on V of degree 7,
characterized by the property:

(2) N1)=1,  N(gz) = det(9)""N(x) (9eG°, zeV),

where G° is the identity connected component of G.
The set of real invertible elements V* = V' N V& is decomposed into
the disjoint union of » + 1 (open) G°-orbits:

V=TI,

where £, is the set of elements of signature (» — <, 7) ([6¢]). In particular,
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2, the G°-orbit of the unit element 1, is a self-dual homogeneous cone.
The gamma function associated to 2, is given by

(8)  Iafe) = |, e Nurdw)

= (2m)3t" ilill F(s - %(i - 1)> (Re s> %(,,. - 1)) ,

where d(u) is the Euclidean volume element with respect to ( > and d
is a positive integer given by d = 2(n — r)/r(r — 1).
Now, for fe.AV) (the Schwartz space of V), we set

(4) D(f, 8) = Soi SWINw['dw) O=i=s7).

Then, it is known ([6]) that this integral is convergent for Re s>0, the
analytic function @,(f, s) has a meromorphic continuation with respect
to s to the whole plane C, and the map f+ @,(f, s) is a tempered dis-
tribution on V, called a “zeta distribution”. Moreover, denoting by f
the Fourier transform of f, one has a functional equation of the follow-
ing form

(5) 0(F 8 = L) = @myre( L) 0o 3, us6)0(F, —9)

where u,;(s) is a polynomial in e(—s/2) of degree at most 7.

For the cases V = Her,(C) and Sym,(R), explicit expressions for
u;;(s) were obtained by Sato-Shintani [6] and Shintani [7]. For the case
r = 2, the functional equations of the corresponding zeta functions were
obtained by Siegel [8] (cf. also [2]). Other cases were treated by Muro
[4] by using the micro-local analysis (ef. [10]). Here we will give a
direct and unified way of computing the Fourier transform based on the
theory of Jordan algebras, generalizing the method of [6], [7].

REMARK. In the notation of [6], our wu,(s) and I’y (s) are equal to
(212:)‘%‘”"’11,”(3) and (271:)%‘""’"/<s — ﬁ), respectively. In our case, using
”

the relation N(grad)N(u)® = b(s)N(u)*™" (u€ 2,) and (3), it is easy to see
that the “b-function” is given by

T a,..
(6) b(s)—g(s+2(z 1)).
NOTATION. R, is the semi-group of positive real numbers. For ze C,
we set e(z) = exp (211 —12). For a linear transformation T of a (real)
vector space V and ae R, we set V(T,a) = {veV|Tv = av}. The real
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linear subspace of V generated by a subset {v,, ---, v,,} in V is denoted by
{v, -+, Vu}r. When V is endowed with an inner product { ), we write
S[v] = {v, Sv) (veV) for any symmetric linear transformation S. For
a topological group G, G° stands for the identity connected component

of G.
1. Preliminaries on Jordan algebras (cf. [1], [5a], [5¢c]).

1.1. Let V be a formally real simple Jordan algebra of dimension
n. We choose and fix a set of primitive idempotents {¢, (1 =1 = 7)}

such that

-
Z{ei =1, ee; = 0,56, ;
i=

the cardinality #» is uniquely determined and is called the “rank” of V.
The linear transformation T,, has eigen values 0, 1/2, 1, and one has
V(T.,, 1) = {eJr. We put

W(T,, 1) if 1=17,
Vi = V(T 3) V(T 2) i i35
Then, dim V,; (7 # j) are all equal, and one has the Peirce decomposition:
(7) V= gVﬁ .
Hence, putting d = dim V,; (¢ # j), one has
(8) n=7'+—d2—'r(r—1).

It follows that (e, ¢;) = 0,;.

1.2. Following Koecher, we use the notation

xQy=1T,, + [T, T,] for z,yeV.
By definition, the structure group G = Str(V) is an algebraic group
given by
G={9eGLV)|gl@Ty)g™ = (g2) O ('g7'y) (&, yeV)}.
Then G is reductive, and it is known that
g=LieG={x0y (x,ye V)l

(see e.g. [ba]). Let K = Aut(V) be the automorphism group of the
Jordan algebra V. Then one has K°={ge G°|'¢g'=g} and K° is a maximal
compact subgroup of G°. Let g =f + p be the corresponding Cartan
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decomposition. Then one has p = {T, (xeV)}, and
a={T,, =i =7}
is a maximal (abelian) subalgebra in p. Thus 7 coincides with the (real)

rank of g.
We put V = >,.; V,; and, for ¢ = >, x; (x;;€ Vy;), put

(9) TV =3 e0x;, I =3 e¢0x; (='T5").

i<g i<j
Then
W= (T (weV)}, n={T7 (xeV)}

are (mutually opposite) maximal nilpotent subalgebras of g normalized
by a. Let A, N, N’ denote the analytic subgroups of G corresponding
to a, n, ', respectively. Then one has Iwasawa decompositions G° =
K°-AN = K°-AN'.

1.3. Let & denote the set of all r-tuples consisting of +1. For
e = (¢;)€ &, we denote the cardinality of {j|e; = —1} by n(e) and set
&, =1{eec&|n) =1}.

By definition, £, is the G°-orbit of —>i_, e; + S e;. For e = (6,)e &,
we denote by 2. (resp. 2.) the AN-orbit (resp. AN’-orbit) of 37, ¢;e;.
Clearly, one has 2, 2. C @, if ee &..

LEMMA 1. (i) The 2; (c€ &) are mutually disjoint and ..., 2. is
a Zariski-open subset in 2Q,.
(ii) For each ec &, the map

R XV — Q.
(tyy -+, t,) X2+ (XD T;*’)(i tjs,-e,-) =
i=1
18 a (bijective) homeomorphism.
For a proof, see [6c]. We have also an analogous lemma for £..

The correspondence in Lemma 1, (ii) is given explicitly as follows:

10) v =3 (st + T Setita@ e + + 3 (1,60 + 3 utisu(@)in(@))
i=1 k> 2 i< k>

where, for x = >,.;2,;€V, we set

j—i
) = —_— Lo X cee s o
Ew( ) ,,Z='1 V! t<k1<-§ky_1<j iky Vkikg ky—13

It follows that for the corresponding (Euclidean) volume elements one has
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d(v) = zr—n(ﬁl t;-"'“"dtj>- d(z) .

i=

Since N(v) = II5-,(t;€;), the G-invariant volume element on V* is given by

(11) | N@)[rd(w) = 2r(IT =24 dt; ) -da) .

i=

1.4. We set
Ve = 3 Vi, Vi=2>Vau.
k i<k

Y H
Then V® = V(T.w,1) is a (simple) Jordan subalgebra with the unit
element 1% = 3%  e;. We denote the reduced norm of V* by N®,
Note that the restriction of the “standard” inner product (1) to V* is
that of V®. It is known that V*®V,,, C V,,, and the map

0x() : V¥ 501> 2T, Vyyi € End(Viy)

is a (unital) Jordan algebra representation of V*. ForwveV®, ze V,,,,
we put

v[z] = %pk(v)[x] = (x, vz) .

LEMMA 2. (i) For veV™, one has
(12) det(0,(v)) = N®(v)*.
(ii) For ve V, v = >,<; vy, we wrile
vy = £ v® = Mzg,k Vij v = %”ik .
If v 4s invertible (i.e. if N*V(v* 1) £ 0), one has
(13) N®@¥) = N @e) (e, — 0% [o,]) .
(For k =1, we make a convention that v =1, v, =0.)

ProoF. To prove (12), we may assume k = r — 1. Then, for any
ve V1, there exists ge K such that

ge, = e, , gV = TZ_lt,-e,- with ¢,e R
i=1
([5¢]). Then g leaves V, invariant, and one has
0ra®) = @IV 0, (St )0 V) -

Hence

det(o,_,(v)) = det<p,_1<:§,—:tiei>> - <ﬁ ti>d — N-2(p)e



474 I. SATAKE AND J. FARAUT

which proves our assertion.
To prove (13), we may again assume k = » — 1. Then, in our nota-

tion, one has
v=0"" 4+, + ¢ge,
= exp(e, D)™ + &e,) ,
where
x=20,,0"") ", ,
=& —v"""vl
(see [5c]). It follows that
N(v) = N + &e,)
= NTV(prg, , q.e.d.
We denote the projection map v — v*' by P, and, when P,_,(v) = v%*
is invertible, set
(14) Xi(v) = NP(Py(v))/N *(Pp_,(v))
=& —v* " v .
(We set X,(v) =¢& for any v.) Then, when all P,(w) =v*® 1<k
are invertible, one has

(15) N@) = 11 %) .

Similarly, the projection map onto V(T,w), 0) is denoted by P, i.e.
P,(v) = Dl jskr1 V. We denote the reduced norm of Pi(V) = V(T.m, 0)
by N*®' and, when P,(v) is invertible, set

Xi(v) = N (P,_)'(v))/N*"(P(v)) .
Then, in the notation of Lemma 1, (ii), it is clear that, for ve 2!, one has
Pi(v) = exp(T)( 35 tees)
i=k+1

whence follows that
N®'(Py(v) = I]:l (te) and Xp(v) = tigy .
i=k+1

Thus one has ve 2/, if and only if all P;(v) (1 <k < ») are invertible and
the sign of X,(v) is ¢, ([5¢]). One has also an analogous result for 2., P,,

and X,.

1.5. For ¢ = (6,)€ C", one defines the gamma function of 7 vari-
ables associated to 2, by
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[af0) = SQ e‘“"”(,f:[l X},(u)"k>N(u)‘"/’d(u) .

0
Then, by changing variables as in Lemma 1, (ii), it can be shown that
this integral is convergent for Reo, > %(r — k) and

oo T o
(16) I'oy(0) = (2m)3" )Elr(”k L k))

(cf. [3], [6b]). If we identify se C with the »-tuple (s,s, ---, s), then
(3) becomes a special case of (16).

2. Computation of the Fourier transforms.

2.1. In the following computation, f is a function in $AV) whose
support is compact and contained in the union of the sets 2, (ce &).
For 0 = (0,)e C" and ¢ = (g,) € &, we put

an o=\ oL ),
a8 o=\, fo) 1% de) (Reo, > Lr—1) - 2).
2; k=1 r

Then, if one identifies s€ C with the #-tuple (s, ---,s), one has by
Lemma 1, (i)

(19) 0(f,8) = S U(f,8),  OLf,9) =3 U

eey;

Hence, by computing the integral W:( Fs— ﬁ) and using Theorem 1 in
7

[6], we will obtain the functional equation of the zeta distributions.

2.2. By Lemma 1 and (11), writing ve Q. in the form v =
(exp TS tuewer), one has for Reo, > %(r — k)

v(fo-2) =1, Jo) [ 1B INo)-dw)
= 2= [ | rwe( <, exo 705 tisien )y Jaw) |
x JT (t+ 04ty dw)

where the integral is taken over ¢{,e R, 1<k <), 2eV and ueV.
We write
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u :,‘:Ezllékek +1§fu“ y &€R, uyeVy,
tu(®) = @i , =3 o,
k<l
Up = D2 Uy L = >, Ty
i<k i<k
Then, by (10), one has d(x) = d(a’) = [[;-, d(x;). Also, one has
() = 3 et + 2wy, 2> + +Pes()ot]) -
k=1 2 4

Following the method in [6], we define @, = Q.(u, §, ¢;) € End(V,) with
0 >0 by

Q=01-Y oo (P ) @sks.

Then one has

l/;:i lai_{? {5 kz:,l t(1 + <&, 21>) — 2V =1 (u, v)}

(u, vy =
—_— V:_i : r 1 ’ 1 ’
== lim 3, £,(0 — 21 —Te& + Qulxr] — vV —1ew(uy, 7)) ,
where we make a convention that @, =1, u, = 1 = 0. Therefore, one

obtains

v(fo-2) =z tim | s Yol £ 66 - 2/ TTes, + Qi

— V=T, @) [T (6478, )d(w)d(w)

=2 | r@(lim 1|7 it v, 9 dt)dw)

k=1J0

where one puts

Fyty, u, 9) = e( ‘/;_i t,,<5 — 2 e, + -i—Q;l[u,,]»

X gyt k=nd=n/r S e( Vv —1 thk[xllc - V-1 stl:luk]>d(x;c) .
Vi 2 2

Since the last integral over V, is equal to det(¢,Q.)%, one has

S:’Fk(t,,, u, 8)dt, = det(Qk)‘1/2F<ak — %(r - k))

><<7L'<3 — 21V =1es, + %Q;l[uk]>>—ak+%(r—m .
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Now assume that we 2,, » = (). Then, when ¢ tends to zero, one
has by Lemma 2 and (14), (15).

det(Q,)"* = N® (51“" - 1/;1 8,,Pk_1(u)>_d/2

=T (o~ L leamin)) ™

— 4509 o Lo )| N O Py |+
and

—_— —op+ L ir—p)
(6 - 2‘/—1815510 + -i—-Q;Tu,,]) gy 2

-—ak+g (r—k)

— 2—ak+%<r—k>e<711-ek77k<0k -~ %(”r - k))lxk(u) I)
By (15) one has
T (%) N* (P )| ) = 1.
Hence one has

lim T S‘” Fy(te, u, 0)dt,

-0 k=1 JoO

= @R unlo) [ (@0 (30 )1 (00 = S0 = B) 1))

-

where one puts

20)  olo) = e<%<lz & — 3 anlr — k)) + % PR 1)0,,) .

<k

Thus one has by (16)
@ v}, 0 = L) = @y =ve( 5 3 00) 20) 5, val ol F, —0) .

28. When g0 =8=(s, -+, s), it is clear that 3., u.(s) depends
only on the sign of 7. Hence we set

(22) u;(8) = >, us(s) for ne &;.
ce®;
Then one has

dh(f, s — ﬁ) =3 ’Fi(f, s — %)

r €¥y
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- —reg( 1 (o _
= @nye(%8)la® 5 (wste) 3 75, —9)

_ (Zn)—rﬂe<%s>Fgo(s) % wis(8)0,(f, —3) .

Thus we have shown that, if one defines w,(s) by (20) and (22), the
formula (5) holds for any function f in A(V) whose support is compact
and contained in |J 2.. Hence, by Theorem 1 in [6], the same formula

holds for all f in SAV).
Taking 7 = (-1, ---, —1,1, ---, 1) (—1 repeated j times), one has

e,(r — 2 + 25 + 1))
s

=j+1

@) w®) = 5 o S(Setr — 2+ 1)

EE€ELE

+ %(—ésk + i‘, & — r>s> .

k=j+1
Thus we have proved the following

THEOREM 1. Let V be a formally real simple Jordan algebra. Then
the tempered distribution fi— @f, s) defined by (4) satisfies a system of
functional equations

0(F s = 2) = @y "e(Ls)lafe) S use)0,f, —5) O=i=7),

where g, and w; are given by (3) and (23).
REMARK. It can be shown that
(24) Vexr—exple Ox,) --- exple, D x,)EN
is a bijection of V onto N (cf. [3], [9]). One can give an alternate proof

of Theorem 1 by using this parametrization instead of Lemma 1, (ii) and
by proceeding by induction on 7.

3. Properties of the matrix U (x). In what follows, we put x =
e(—s/2) and write w(x) for wu,(s). Then wu,(x) is a polynomial in x of
degree at most ». We consider the matrix U(x) = U7 (x) = (u;;(x)).

From (23) one has

)

wy@) = 3 e(i‘l—(zl__*;i(r—zk+1)—ki; 1_;_6"(1»—2k+2j+1)>

ey V4 \i=1 S
_8(&1+ e 5 1—g, ))
2 <kz=l‘1 2 + kgjrl 2

J

= z( ((__l)dlcl/?id(r+1)x)%(1+ek) fI ((__1)d(k—j)]/‘_—1—d(r+1))—;-(1+ek)x§(1—ek)> .
ce&; \k=1 k=3+1
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Hence, putting ¢ =1/ —1°"*", one has
@) Suws@ =T (D% +9) T~ + ),
which can also be written as
(25) 3 vtu@) = T PG, )P, (1, Lay) ,

where
(x + y) for d even,

P, 9) = [T (~D%z +9) = { [4] i-[4]
k=1 (@ + iy —2a) 2 for d odd.

First, we consider the case where d is even. We distinguish two
cases:
Case (a): d=0 (mod4) or d=2 (mod4) and 7 odd,
Case (a/): d=2 (mod 4) and » even.
Then one has
C—{ 1 in Case (a),
" |=1 in Case (a').
THEOREM 2. Let p, denote the symmetric tensor representation of
GL, of degree r + 1. Then, when d is even, one has

pr<<l x>> in Case (a) ,

z 1
(26) U (x) =
1 x .
p,(( )) in Case (a') .
—x —1
Proor. In Case (a), (25) can be written as
(]-y Y, =y yr) U(r)(x) = ((1 + xy)r, (.’B + y)(l + xy)r—l’ Tty (w + y)r) .
For » =1, one has U%(x) = (910 916 . Hence one obtains (26). The proof
for Case (a’) is similar. (Note that in this case 7 is even.) q.e.d.

COROLLARY 1. When d is even, the matrix U(x) is diagonalizable.

In fact, one has
1 1\/1 2\/1 1\7' [1+z 0
<1 —1><x 1><1 —1) :< 0 1—x)’
1 1)/ 1 21 1t /0 1l-g
<1 —1><—x —1)(1 —1> _<1+x 0 )
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Hence, putting A = p,((i _i)), one has

(27) A(r) U(r)(x)A(r)-l

o P R By

Q+ x)
A+ &)1 — ) 0
B in Case (a),
0 " .
_ (A - ay
1 -
0 1+ 2)1 — z)
. in Case (a') .
. 0
1+ =)

This proves our assertion. In Case (a’), the eigen values of U‘(x) are
(1 — 2 repeated /2 + 1 times and —(1 — 2*)™* repeated »/2 times.
We note that the matrix A™ = (a,;) is determined by the identity

LA .
(28) A+y+2z2—y2) = iﬁéo <J,>ai,-y‘zf .
COROLLARY 2. When d is even, U (x) satisfies the functional equation
(r) (r) _£_ — — _1_)1- (r)
(29) U@ U( x) € L),
where

0 1
01 -
(r) — —
7o=elly o)) -

This follows from the relation

1 o\ 1 —G NS
(Cx C)(—x“ ¢ >—C(m—x )<1 0>'

((29) follows also from (5).)
The formulas (5) and (27) imply that, if one puts
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0/f,9) = Sa0f,9) O0=is7),

then one has

@) offs-2)

- (o) + o -59) ((30) - -59)
D (f, —3) in Case (a),
{@L_i( f, —s8) in Case (a’) .

Next, we consider the case where d is odd. According to the clas-
sification theory, we have the following two possibilities:
Case (b): r=2and d odd (n =2 + d),

Case (¢): » arbitrary and d =1 (n = —é—r(r + 1)>.
In Case (b), one has by (25)
(= +apCt+ay) =1+ (=0,
S vu@) = (=l + (- +aey) =+ LA -y +ayt (G=1),
(—+yC+y)=2"+9y (G=2),
where { =1/ —1". Hence U®(x) is given by

1 X x?
(31) U?@) =0 vV—=1"Ad—2>) 0
x? x 1

Thus one see that E @(x) is again diagonalizable with simple eigen values
1+4+2° 1—2% 1 —1"(1 —2?). This case was treated in [8].

The Case (c) is the one treated in [7]. The case = 2 is contained
in Case (b), while the case » = 1 may be included in Case (a), because
for » =1 the number d is actually undetermined. Hence U (x) is
diagonalizable for » = 1,2. But, in general, it is not known whether
U'(x) is diagonalizable or not.

It can be shown by (5) that, when d is odd, U (x) satisfies the
following functional equation

(32) U@ UDC 2 = @ + o) @ — oy lElyo
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