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Introduction and Preliminaries. In Aubin [1], it was shown that
if M is a compact complex manifold with negative first Chern class, then
there is a unique Einstein-Kaehler metric on ikf. On the other hand,
manifolds with negative first Chern class belong to the class of algebraic
manifolds of general type. By the Kodaira embedding theorem, the
negativity of the first Chern class is equivalent to the ampleness of the
canonical bundle K, i.e., \mK\ gives a protective embedding for m large.
Now let If be a projective manifold of dimension n. M is said to be
of general type if the plulicanonical bundles have sufficiently many
sections in the sense that the dimension of the image under the rational
map given by the linear system \mK\ for m large is equal to the di-
mension of Λf, or equivalently

limsup dim H\M, έ?(mK))/mn > 0 .

The aim of this note is to extend Aubin's theorem to the case of
general type in dimension two. As an application, we give a differential
geometric proof of the Miyaoka inequality: 3c2 ̂  c2, for surfaces of general
type. Our proof implies that if M is a surface of general type whose
canonical bundle is not ample, then the strict inequality 3c2 > c2 holds.
Hence an algebraic surface of general type M is covered by the ball in
C2 holomorphically if and only if the equality 3c2(ikf) = c^M)2 holds.
Miyaoka also proved this result in [9] by showing that there are no
rational curves in M if Zc2(M) = c^M)2 holds, using algebro-geometric
methods.

In our proof, the following observation due to Kodaira is essential:
"If M is a minimal surface of general type, then the canonical bundle
K is ample if and only if there are no ( — 2)-curves", where a ( — 2)-
curve means a non-singular rational curve with self-intersection number
—2. Now let g7 be the union of all (—2)-curves in M. if is charac-
terized as the set of all irreducible curves in M which do not meet the
canonical divisor. Hence g* is an obstruction to the existence of a
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smooth Einstein-Kaehler metric on M. So the "Einstein-Kaehler metric"
we will show the existence of is singular along £f. We see an example
of this phenomenon at the end of this introduction. This example will
become a model for our later arguments. To make the later arguments
easy to understand, we give some examples of algebraic surfaces of
general type.

(1) Every non-singular hypersurface in Pz of degree greater than
or equal to 5 has ample canonical bundle. They are simply connected
and have Einstein-Kaehler metric with negative Ricci curvature. [10].

( 2 ) Every compact Kaehler surface of negative sectional curvature
has ample canonical bundle. Its fundamental group is infinite. One of
the examples is a compact quotient of the ball with the Bergman metric.

(3) Next, we give an example of a surface of general type whose
canonical bundle is not ample. Let M be a surface in P 3 given by the
equation Σί=o2ΐ5 = O. Let g:M->M be an automorphism defined by
g(z0: zt: z2: zs) = (zQ: ε^ ε4^: s8), where ε = exp(27rέ/5). Then the group G
generated by g is Z/5Z. The quotient variety N = M/G has 5 singu-
larities of type A4 (the minimal resolution of which is a chain of four
( —2)-curves) corresponding to (1:0:0: —εfc), 0<;&5g4. Let N be the de-
singularization of N. Then N is a minimal surface of general type with
£? = Σi=o ίfi9 £? ~ A4. [Proof: Let Ω be a volume form on M which is
invariant under the action of G whose Ricci form satisfies the following
properties; it is non-positive everywhere on M and vanishes in a small
neighborhood of each fixed point of G. By the arguments in the proof
of the Lemma 1 of Section 1, Ω projects down to be a smooth volume form
on N with non-positive Ricci curvature. Hence the first Chern class of N
is represented by a nonpositive and somewhere negative (1, l)-form. By
the adjunction formula: — c1(Λf) C + C2 = 2π(C) — 2,N has no nonsingular
rational curves of self-intersection number greater than or equal to —1.
Then Kodaira's classification of surfaces tells us that N must be a mini-
mal surface of general type.] By [1], M possesses an Einstein-Kaehler
metric which is invariant under automorphisms. Hence it projects to
an "Einstein-Kaehler metric" ώ on N singular along g7. The singularity
of ώ along £f looks like as follows. Pick a connected component A4 of
if. Consider a complex manifold Λf4 which is covered by five complex
planes (£/< = C2; uif vt)f 0 ^ i <; 4, with transition rules

on Uo Π ϋι = {u0 =N= 0} , v,i = uo~\ vx = v0u0

2 ,
on Uι{λU2 — {v1 =N= 0} , u2 = n{ΰ2

9 v2 = v^1 ,
on U2Γ\U3 = {u2^vO), u3 — uf1, v3 — v2u

2 ,
o n Z73 Π Σ74 = { ^ 3 ^ 0 } , u4 — u3v3

2, v4 — vf1 .
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The closure of coordinate lines of ϊ7/s in ikf4 forms the configuration A4.
By Brieskorn [3], A4 determines the complex structure around it. Hence
there is a positive number ε such that the neighborhood of A± defined
by

b.Γ \ η J 2 1 . , 8/5 _ _ 12/5

I
14/5

I
8/51

I
6/5

= . . . <e

is valid as local coordinate neighborhoods with coordinates (^, i^ 's around
A4 in ΛΓ. The quotient map followed by the blowing up, M-^ N, can be
expressed as λδ = v0, ^μ = uovQ, μδ = uo

δvQ\ in a neighborhood of A4, where
(uQ, v0) is as above and (λ, μ) = (zjzo, z2/z0). Hence

dXΛdX + dμ Λ dμ = \vo\
8/5duo Λ dΰQ + (4/5)ΰQ\v0\~2/5v0du0 Λ dv0

+ (A/5)u0\v0\-2/5v0dv0 A dΰ0 + (1/25)(|v01~8/5 + 16 |^ 0 | - 2 / 5 | u 0 | 2 )^ 0 Λ dv0 ,

which is equivalent to ώ near A4.

1. ^-volume form with negative Ricci curvature. In this section,
ikfisa minimal surface of general type and ^ the union of (—2)-curves
in M. According to the Hodge index theorem (Note that cL

2 > 0), and
the classification of Cartan matrices, the connected components of i?
are divided into the following types:

( 1 )

( 2 ) Dn ( n ^

( 3 ) E6

( 4 ) E7

( 5 )

where o denotes a ( — 2)-curve and o—o means that two ( —2)-curves meet
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transversely at one point. Let g* = Σv g^ be the decomposition of g7

into connected components. Each of the above configurations (l)-(5)
determines the complex structure around it [3]. The singularities pro-
duced by collapsing these are called the rational double points. By [3],
each rational double point is realized as a quotient singularity B/Γ,
where B is a small ball centered at origin in C2 and Γ is a finite group
consisting of elliptic automorphisms of the unit ball fixing the origin.
Hence there exists a neighborhood Uu of £fv such that Uv—'zfu = B — {0}/Γv.
Since each Γv is a subgroup of £7(2), the function 1 — \\Z\\2 on B projects
down to a bounded smooth function on Uv — g^, which is denoted by hu.
Then π?K = 1 - \\Z\\2 on B. Note that -log(l - \\Z\\2) is the Kaehler
potential of the Bergman metric of the unit ball B2 in C2. Now let Uu's
be chosen so that Uuf]Uμ = φ if v^^ μ. Let φv be a smooth function on
Λf such that φv\M — Uv = 0 and φu = 1 in some neighborhood of ifv. Set
h» = φjιv, which is a smooth function on M— gV Finally we set h(z) =
max {1/2, Σ* Wz)} ^ 1/2. By smoothing fe in a suitable manner, we ob-
tain a positive bounded function h ^ 1/3 which is equal to hv in some
neighborhood of g^ for each v.

We use the following.

PROPOSITION 1. Let M be a minimal surface of general type. Then
cλ(M) is represented by a real closed (1, 1) form 7 with the following
properties:

(1) 7 is positive definite on M — g% and l(Z, JZ) = 0 for all Z
tangent to g7,

(2) each π*Ύ\Uu has a smooth Kaehler potential in B.

PROOF. Let N+ 1 = dim H°(M, έ?(mK)). By Kodaira [6], the linear
system \mK\ has no base points for m large. The plulicanonical map
ΦmK has the following property: it is holomorphic^and
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if zeM — i f

„ I I Z t : <|3 v L_ & ,

moreover, ΦmK\M — if: M — &-^ΦmK(M— g7) is a biholomorphic mapping.
Now define Ύ = (l/m)ΦmK* (the Fubini-study form on P*) then 7 has the
required properties, where the Fubini-Study form onP^ is (i/2π)dd\og\\Z\\\
which represents the Chern form of the hyperplane bundle over PN.

q.e.d.

Combining Proposition 1 with the above observation, we obtain the
main result of this section.

PROPOSITION 2. There exists a smooth volume element Ω on M and
a positive number p such that the volume form Ψ = hpΩ (which is con-
tinuous on M and smooth outside of g7) has the following properties.

(1) a) = — Ric(?Π is a Kaehler metric on M — if, and πΐ(ω\Uv) is
uniquely extended to a smooth form in B.

(2) f = log{?7( — Ric?F)2} is a bounded continuous function on M
which is smooth outside of & and π*(f\Uv) is uniquely extended to a
smooth function in B for each v. (We call this Ψ an ^-volume form.)

For the proof of Proposition 2, we need some facts.

FACT 1 (Brieskorn [3]). Each rational double point is expressed as
B/Γ, where B is a small ball centered at the origin of C2 and Γ is a
finite subgroup of SU(2) as follows.

(1) type An: Γ = (if, n )\ where ξ is a primitive (n + l)-th root
\\U ζ //gen.

of unity,
(2) type Dn: Γ — the binary dihedral group, ®2(π-2)>
( 3 ) type Eβ: Γ = the binary tetrahedral group, St4,
(4 ) type EΊ: Γ = the binary octahedral group, ©4,
( 5 ) type EQ: Γ = the binary icosahedral group, 8C5.

DEFINITION. Let M be an ^-dimensional complex manifold and ω a

holomorphic %-form. We say that ωe U(M) (square-integrable) if I ω/\ώ

is finite.

FACT 2 (See, for example, Laufer [7]). Let A be a codimension 1
analytic subset in an ^-dimensional complex manifold M and ω a holo-
morphic %-form defined in a deleted neighborhood U — A of A. If
o)€L2(U — A) then ω can be extended across A to be a holomorphic
w-form on M.

LEMMA 1. Let π: (X, A) —• (X, x) be the minimal resolution of a
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rational double point. Then there exists a neighborhood U of x such

that the canonical bundle of X is trivial in π~ιU.

P R O O F . There is a neighborhood U of x such t h a t U = B/Γ as in

Fact 1. Let (λ, μ) be t h e s tandard coordinate of C 2. Then dX A dμ is

invar iant under the action of SU(2) = \ ( ^ ζ\; \a\2 + \β\2 = l}j, because

d(aX + βμ) A d(-βX + άμ) = ( |α | 2 + \β\2)(dX A dμ) = dX A dμ. Hence if
p is the quotient map B-+U, ώ = p*(dX A dμ) is a non-vanishing holo-
morphic 2-form on U — {x} and is square-integrable. By Fact 2, it is
extended to a holomorphic 2-form ω on π~ιUzDA. The zero divisor of
ω is written as Σ« \Aif where λ/s are non-negative integers and A/s
are irreducible components of A. By the adjunction formula and A/ =
—2, K Aj = 0 for all j . On the other hand, the intersection matrix
(Aj'Ak) is negative definite. Hence 0 ^ Σ W ^ Afc = ^ΣJXJKΆJ — 0,
and all λ/s must be zero. q.e.d.

PROOF OF PROPOSITION 2. We take a volume form Ω on M such
that 7 = — Rici2 satisfies (1) and (2) of Proposition 1. Since h — hv in
a neighborhood Uv of ifw there is a positive number 29 such that the
minus of Ric of Ψ = /^ώ defines a Kaehler metric on M — if. For the
proof of (2), it suffices to verify that π*Ω is smooth and non-vanishing
in B. By the proof of Lemma 1, there is a non-vanishing holomorphic
2-form Ύjv defined in Uv with π*ηu = dX A dμ. If we set Ω = g-η A η>

π*Ω — {goπv)-(dX A dμ) A (dX Adμ). Now take a smooth Kaehler potential
g, of πί(y\UJ) in B. Since ddgu = ddlogigoπj), goπ» is also smooth in
B. q.e.d.

2. Equation Δωu — u = v. In this section, we consider the Kaehler
manifold (M — g% — Ric?F) introduced in Proposition 2. Set ω = — Ricf,
and Δω the Laplacian with respect to a). In this note, the sign conven-
tion is Δ = Σ gίjd2/dzidzj. In our proof of the existence of an Einstein-
Kaehler metric in some sense, we need to solve the equation Aωu — u = v
in a suitable function space.

Now we define a function space fitting our purpose. Let (M, 5f) be
as in Section 1.

DEFINITION. A continuous function / on M is said to be g7 - C* β

if and only if / is Ckt0C outside of g7 and πΐ(f\Uv — gfj is extendable to
be Cki0C in B, where k is a non-negative integer and 0 < a < 1.

EXAMPLE. If £f consists of only one (—2)-curve, the corresponding
singularity is B/Γ, Γ = {/, —I}, where / is the (2, 2) identity matrix.
There is a neighborhood of this (— 2)-curve isomorphic to a neighborhood
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of the zero section of T*P\ Cover T^P1 by two complex planes (u, v)
and (V, vf) such that ur = u~\ vr = u2v. Then π v is written as λ2 = v =
%'V, Xμ = uv = u'v', μ2 = u2v = v'. The function /(%, v) = |v |(1 + \u\2) =
W 1(1+ \nf\2) is continuous in *7 but not C2>a near g7. ττ*/(λ, μ)=/(λ 2, μ/\) =
|λ| 2 + |μ | 2 is a C°° function in 5, i.e., / is <g - C°°.

Let M = Uv ί̂ v U (J« ί̂ r be a finite open covering of M such that Z7/s
are as in Section 1 and \J Ua Π & = 0.

DEFINITION. Let / b e g 7 - O α . The g7 - Cfc'α norm of / is defined

by

= sup {sup Σ \dw+Mf{z)ldz/dza

q\

+ sup Σ # \z- z'\-«\dkf{z)ldza*dza< - dkf(z')/dza"dza

g\} ,

= sup {sup Σ |3"l+lίlίr*/(ζ)/3ζ'3ζ |

+ sup Σ IC - C l"α 13W(0/3ζW - dkπΐf(ζ')Jdζpdζ" |} .

DEFINITION, g7 — Cfc>α is the set of all if — O α functions on M. It
is a Banach space with respect to the norm || !!»-,*,«•

This definition of if — O α is independent of the choice of {Uv} and
{ί7α}. The norm arising from a different choice of {£/„} and {Ua} is
equivalent to the old one.

DEFINITION. A singular Riemannian metric g on M is g* — O α

Riemannian metric on M if and only if g is positive and CktCί outside of
&> πϊ(9\Uu — &u) is extendable to be positive and Ck>oc in B.

Let g be an g7 — O α Riemannian metric on M, with fc ^ 1. We
consider the equation

( 1 ) Agu- b(x)u = f(x) ,

where Ag is the Laplacian of g, and we suppose that b(x) and f(x) are

if - O α .

PROPOSITION 3. If b(x) > 0, equation (1) foαs α unique solution be-
longing to & — Ck+lt". If in addition g is g7 — Cfc>α Kaehler, the solution
belongs to & - Ck+2>\

PROOF. This can be proved in the almost same way as in the
Theorem 4.18 of [2]. The outline is as follows. We use the direct
method in the calculous of variations to produce a weak solution. We
define a Hubert space ^ — HI with respect to the fixed if-Riemannian
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metric g as the completion of & — Cι with respect to the norm Il/H*-*

\ \f\2dvg + \ \df\2dvg. Firstly we assume that g, b,f are g7 - C°°. Con-

sider the functional J(φ) = \ (\dφ\2 + bφ2 + 2fφ)dvg for 0e if - fi?. By

the argument in p. 104 of [2], there is an element φ of if — H\
that minimizes /. ^ satisfies the Euler-Lagrange equation of J, i.e.,

( [(dφ, dψ) + bφψ + fψ]dvg = 0 for any f e g 7 - #?. Hence the regularity
theorem (p. 85 of [2]) guarantees that φ belongs to if — C°° because τr*0
is a weak solution of the equation Aπ*gu + πΐb(x)u = π*f(x) in 5. On the

other hand, I Agf = 0, is valid for any g7 — Cfc'α Riemannian metric and

& — C2 function /. It follows that φ satisfies the equation (1). In the
general case we approximate gy 6, and/ by g7 — C°° functions with respect
to the & — Ck'a norm. The remainder of the proof is the same as [2]
except that we use Ua's and B (a small ball in C2) to apply the interior
Schauder estimates. If k ^ 1 and g is g7 — O α Kaehler, the coefficients
in (1) with respect to holomorphic coordinates are & — O α . By the
above argument, u belongs to g7 — Ck+2>a. Now we can use the maximum
principle to obtain the uniqueness of the solution of (1). q.e.d.

3. Existence of an Einstein-Eaehler metric. In this section we
prove the following.

THEOREM 1. Let M be a minimal surface of general type with non-
empty & where g7 denotes the union of all (—2)-curves on M. Then
there is a unique £f — C°° Einstein-Kaehler metric on M with negative
Ricci curvature up to a constant multiple.

PROOF. By Proposition 2, there is an ^-volume form ψ on M such
that ω = — Ric ψ is an ^-Kaehler metric. We deform ω into ω + iddu = ώ
such that ώ is if-Einstein-Kaehler. So the procedure of the proof is
almost the same as [11]. Consider the equation (α> + iddu)2 = exp(w +/)ω2,
where exp (/) = ψ/ω2 which is g7 — C°° by Proposition 2. If u is a
solution of this equation belonging to g 7 - C°°, then ώ is an g7 - C°°
Einstein-Kaehler metric. Hence Theorem 1 is the special case of the
following

THEOREM 2. Let Mbe as in Theorem 1. Let ω be an g7 — Ckt0C Kaehler
metric on M with k ^ 5. Then for any <f — Ck~2'a function f, there is
a unique solution u to the equation (ω + iddu)2 = exp (u + f)co2, belonging
to & - Ck'a.

_ PROOF. Let Φ: <£ - Ck>a ->ίf - Ck~2>a be defined by Φ(u) = log{(α> +
idduflω2} — u. To solve the equation
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(2) Φ(u)=f

it suffices to prove that the subset A of [0, 1] defined by A = {te [0, 1];
φ(u) = tf has a solution in g 7 - Ck>a} is non-empty, open and closed.
Clearly OeA. Openness comes from the inverse function theorem. In
fact, the Frechet derivative of Φ at u is a linear map of Ck>a into Ck~2y0C

given by Φ'(u)h = Δzh — h, which is an isomorphism by Proposition 3.
Closedness is proved by C°, C2 and C2>a α-priori estimates of the solution
of (2), which goes as in [11] provided we lift everything up to B using
πv\ B-+Uv and represent everything in terms of the Euclidean coordinates
(λ, μ) of C2 in a neighborhood of if. q.e.d.

4. Miyaoka-Yau inequality. In [4] Chen and Ogiue proved that if
(My ft>) is an Einstein-Kaehler manifold of dimension n9 then the following
pointwise inequality: (nc2 — 2(n + I))c2)ωn~2 ̂  0 holds and the equality
occurs if and only if (M, ω) has constant holomorphic sectional curvature.
Yau [10] makes use of the existence of Einstein-Kaehler metric to prove
that if M is a compact complex manifold with ample canonical bundle
then ( — ly^nc" — 2(n + l)c2C!n"2} ^ 0 and the equality occurs if and only
if M is covered by the ball in Cn holomorphically. On the other hand,
Miyaoka [8] [9] proved that if M is an algebraic surface of general type
then 3e2 ^ c2 holds and that if the equality happens the canonical bundle
is ample. In this section we give a new proof of the Miyaoka inequality
making use of our ^-Einstein-Kaehler metric. This is an extension of
the arguments in [4] and [10] to the case of minimal surfaces of general
type.

PROPOSITION 4. Let M be a minimal algebraic surface of general
type and & the union of all ( — 2)-curves in M (possibly empty). Let ώ
be the ^-Einstein-Kaehler metric in Theorem 1. // ct denotes the i-th
Chern form of the Hermitian connection of ώ, the following equalities
hold.

(3)

(4) ( c 2 = ( c2 - [Σ {n(n + 2)/(n + 1)} x #(type An)
JM JM n

+ Σ {(3/2) + (27/8) + (27/8) + (m - 3)(3m2 - 5m - l)/4(m - 2)}

x#(typeDm, m ̂  4)

+ {(3/2) + (27/8) + (49/6) + (49/6)} x #(type Ee) + {(3/2)

+ (27/8) + (49/6) + (231/16)} x#(type#7) + {(3/2) + (27/8)

+ (49/6) +111/5)} x#(type£78)]
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PROOF. We use the same notations as those in Proposition 2. Since
ά> — co + iddu, ω = —RichpΩ = — RicΩ + iddloghp and h, u are ĝ  — C°°,
the equality (3) follows from the Stokes' formula. To prove the equality
(4), we need to describe how to resolve the rational double points.

The resolution of the rational double points [3] (Summary). Let
P — (Pt O) be a regular polyhedron in JS3, where (p, q) means that each
face is p-gon and each vertex is the intersection of q faces. The posi-
bilities of (p, q)'s are (n, 2), (3, 3), (3, 4), (4, 3), (3, 5), (5, 3). Each regular
p-gonal face of P can be divided into 2p triangles by lines joining the
center of the face to its vertices and mid-points of its edges. Pick a
concentric sphere S and cut S by planes containing the center and these
lines. Then we get a triangulation Δ of S by geodesic triangles. The
polyhedral group G(p, q) consists of rotations which preserves Δ and
whose axis are lines joining the center ane vertices of Δ. If P = (p, q),
G(p, q) consists of elements of order p, q, 2 (See Figure 1).

FIGURE 1

LEMMA 2. There is an exact sequence

l-*Z2^SU{2) -> SO(S)

where φ is given by

SU(2)s' ° 0 "S2 + β)/(-βu + a)e Pι->S2"
s

where s is the stereo-graphic projection. The lifting of polyhedral groups
are binary polyhedral groups stated in Fact 1.

Let Γ be a binary polyhedral group and G the corresponding poly-
hedral group. The action of Γ on C2 induces the action of G on Er =

T*P\ The action of φ(g ^ ) is given by E'B(U, v)\-+((au + β)/(-βu + ά),
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v(-βu + a)2) e E' or E' 3 (u\ v') ι— ( ( - £ + άu')/{a + βu'), v\a + βuj) e Ef

where v' = vu2, uf = u~\ If (u, v) = (0, 0) is fixed by ώ( % rί) then
\ — p a j

β — 0 and the resulting action is (u, v) ι-> (ζu, ζrιu) where ζ = a/a. From
this expression, the quotient variety E = E'/G has the three singularities
of types

Al9 Alf An_z if Γ = © 2 n ,

A A A If Γ - §

•"•19 **-29 **-3 11. 1 — \^4 ,

Δ A A i f P — 9ί

corresponding to the order of the isotropy subgroups of the vertices of
the triangulation Δ. Let C" be the zero section of E' and C the quotient
curve C'/G, which is P1 by the Hurwitz formula. By [3], the ex-
ceptional divisor of the desingularization E of E consists of ( —2)-curves
and looks like as follows:

2 or 3 or 4

if Γ = ®2(n_2)

where denotes the component of the exceptional divisor of E->E.
Moreover, o denotes the proper transform of C which is also a ( —2)-
curve.

LEMMA 3. Let ώ' be a Hermitian metric on M — g7 such that
ττ*(ώ' I Uv — &u) can be extended to a smooth metric of B which is equal
to the flat metric \d\\2 + \dμ\2 in a neighborhood of the origin; (Such
a metric exists by the Fact 1). Let c2' be the second Chern form of the

Hermitian connection of ώ\ Then 1 c2' — \ c2.

PROOF. By pp. 400-406 of [5], there is an if - C°° 3-form η such that

gy — c 2 = dη. By Stokes, I c / — I c2 = ~Σv \ V- There-

fore we obtain the desired result by choosing Uv smaller and smaller.
q.e.d.

Now we prove the assertion (4). We pick a smooth Hermitian metric
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ω of M and denote by θ and θ the connection form and the curvature
form of the Hermitian connection of ω. Let θ be the connection form
of ώ' By pp. 400-406, [5], there is a smooth 3-form on M — g7, η such
that 87 — c2 = dη, and since ώ' is flat near £f, 77 is written as

(iΦ - θ)ϊβπ iφ - θ\ιl2π\

iΘ2

2/4π

d e t
β \iφ - θ)2βπ iφ - θ)2\2π

in a small neighborhood of £f. Since I c2 — I c2 = I 87 — \ c2 =

η, the difference of Chern numbers is obtained by computing
each term of the right hand side of this equality.

( 1 ) The case of Aι\ We cover the configuration At by (ί + 1) co-
ordinate neighborhoods (ui9 vt) (0 ^ i ^ I) with transition rules ut = ^60"

1,
ι;1 = V0UQ, U2 = u^i, v2 = ^i"1, . The quotient map πu: B -^Uv is ex-
pressed as

V = ̂  V " 1 = = uι-k+1vι~k

If we write the flat metric |cίλ|2 + |cZ^|2 in terms of (u, v) as hvVdvdv +
hyUdudv + hΰυdvdΰ + huududΰ, then

(ί + l ) 2 / ^ - | ^ | 2 f c / α + 1 > | 2 ( f c + 1 ) / ( ί + 1 ) - 2 ( f c + I ) 2

+ ^ | 2 α - f c + 1 ) / α + 1 ) | i ; | 2 α ~ f c ) / α + 1 ) " 2 ( ϊ -
(I + l ) 2 fe π = {\u\2knι+1)-2\v\2(k+1)/il+1)-2k(k + 1)

+ |up«-*+i)/«+i)-*|v|*«-*

(i + l ) 2 f e w = \u\2k/a+1)-2\v\2{k+1)/a+1)k2

| | | | _ Ic + 1)2 ,

Hence the connection form is given by

- k)(k + l)(2Jfc - l -

= (i- k)(k + 1){(Z - 2A + l)d%/i; + (Z - 2k - l)udv/v2} ,

1 ~ 2k)dv/v -k(l-k

where β/ = Σ& hίkdhkj. Therefore the contribution of Aι to the integral
over M of c2# — c2 is as follows:
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-(1 + 1)~ 2 Σ ft -(I - k)(k + l)(2fc - I - l)(i/4π)Θu\ΰdu A dΰ
k=o (Jpi

+ t -(Z - k)(k + 1)(Z + 1 - 2k)(i/4π)Θu

υ

Uΰdu A dΰ
JP1

- \ (I - AJ)(& + 1)(Z - 2k + iχi/iπ)Θu\ΰdu A dΰ
JP1

+ \ fl- *)(* + 1)(« - 2fc - l)(i/4π)(udΘu\ΰ/dv)du A dΰj

On the other hand the following equalities are valid on the submanifold
given by v = 0: d(θu

u

udu) = Θu

u

uΰduAdΰ, d{θv\du) = θv

v

uτduΛdΰ, d(θu\du) =
θu%sίi^ Λ rite, d{u{dθu

vjdv)du) = u(dΘu

v

u^/dv)du A dΰ.

LEMMA 4. // θu

u

udu is considered to be a (1, 0)-/orm (m | t t | < °°,
i; = 0, then θu

u

udu + 2du/u is smooth at uf = 0, where v! — 1/u. Hence
it defines a connection of type (1, 0) of TP1 on the rational curve given
by v = 0.

LEMMA 5. If θu

v

vdu is considered to be a (1, 0)-/orm on |w| < °°,
v = 0, fftew θu

v

vdu — 2du/u is smooth at u! — 0, where ur = 1/u. Hence
it defines a connection of type (1, 0) of T^P1 on the rational curve given
by v = 0.

LEMMA 6. // u(dθu

vjdv)du is considered to be a (1, 0) form on u,
v = 0, £Λ,ew u{dθu

vjdv)du + 6dw/w is smooth at uf — 0, where u' = 1/u.
Hence it defines a connection of type (1, 0) of 6H on the rational curve
given by v = 0, where H is the line bundle of degree 1 over P1.

PROOF OF LEMMAS. These Lemmas are shown easily by substituting
v = 0 (or v' = vu2 = 0) in the transition rules of these connection forms
under the base change (d/du, d/dv) h-> (d/du\ d/dv') with uf = 1/u, vf = vu2.

q.e.d.

By Lemmas 4, 5, 6, the above integral equals

(1/2(2 + I)" 2 Σ {(I - k){k + l){2k - I - 1)(2) + (Z - k){k + l)(ί + 1 - 2fc)(-2)
k=0

+ (l- k){k + l)(i - 2k + 1X-2) - (Z - Λ)(fc + 1)(Z - 2k + 1)(6)}

= -Z(Z + 2)/(Z + 1) .

( 2 ) The other cases: In this paragraph, we consider the ex-
ceptional divisor of the resolution E-+E. We may assume that this is
of type Ae. We must rewrite the flat metric 33{|λ|(l + \μ\2) in terms
of (uf v) with λe+1 = ukvk+1, μe+1 = ue~k+1ve-k (See example in Section 2).
The result is the same as that of (1) provided we replace I by 2β + 1.
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Hence the connection form is given by the following

2(e + Vfθv

v = -(2e-k + 2)k(e - k)du/u -(2e-k + l)(k + l)(e - k + l)dvjv ,

2(e + lfθn

v = k(2e - k + 2){-(β - k)dv/u - (e - k

2(β + ϊfθ. = (k + l)(2β - fc + l){(e - k + l )dιφ + (β - k)udv/v2}

2(β + 1)X" = (2e - A; + 1)(Λ + l)(β - Λ + l)d«/f + (β - Jfc)(2e - fc

lί k = e, then

5/ = (-l/2)dv/v , θ = (l/2)du/v , θu" = (l/2)dv/v .

As in the paragraph (1) (case of At), the contribution of such Ae is

+ 1)" 2 Σ {(2e -k + l)(k + l)(e - A;

+ (2e-k

= -e(3e2 + 13e

This number is -27/8 if e = 1, -49/6 if e = 2, -231/16 if e = 3, -111/5
if e = 4. The contribution of the proper transform C of C is ( — 1/4)
{2 - (-2) - (-2)} = -3/2.

(3) Conclusion: If we set δ = \ c2 — I c2, then ^ contributes to

make the value δ negative. More precisely,

8 = - E k(h + 2)/α» + 1) + Σ {(3/2) + (27/8) + (27/8)

+ (Z, - 3)(3Z/ - 5lμ - l)β(lμ - 2)} + Σ {(3/2) + (27/8) + (49/6)
6

+ (49/6)} + Σ {(3/2) + (27/8) + (49/6) + (231/16)}
7

+ Σ {(2/3) + (27/8) + (49/6) + (111/5)}] ,
8

where Σ* means the summation over the connected components of ^ of
type Alp, Σ/x over components of type D, , Σ β over components of type
EQ, ΣZ over components of type E7, Σs over components of type Es.
This completes the proof of Proposition 4. q.e.d.

THEOREM 3 (Miyaoka, Yau). If M is a minimal algebraic surface
of general type, then the inequality 3c2 ^ cx

2 holds. The equality occurs
if and only if M is covered by the ball in C2 holomorphically.

PROOF. SC2 — c* = 3c2 — c* — Sδ ̂ > 0, because δ is non-positive and
negative if there is a ( — 2)-curve on M, and 3c 2 — c x

2 ^ 0 by the argu-
ments in [4] and [10]. q.e.d.
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REMARK. One blowing up decreases c:

2 by one and increases c2 by
one. Hence the inequality 3c2 ^ cx

2 is valid for all surfaces of general
type.

REMARK. The equality case 3c2 — c* = — 3δ in Theorem 3 occurs if
and only if the universal covering of the smooth part of ΦmK(M) for m
large is the complex hyperbolic 2-ball minus the discrete set of points.
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