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Introduction. The purpose of this paper is to investigate the dimen-
sion of the spaces of the vector valued holomorphic automorphic forms
defined on the domain D = {(z, w) € C*|6(Z — z) — |w|* > 0}, where 0 is an
element of an imaginary quadratic field F' with 6 = —d(#0). Let I'(N)
be an arithmetic subgroup of G defined in §1. Let p be an irreducible
polynomial representation of GL,(C) of degree m + 1. Consider a C™*-
valued holomorphic function f(Z) on D satisfying

fN(Z)) = oI (7, Z)f(Z)

for every Z€ D and for every veI'(N), where J(v, Z) is the canonical
automorphy factor on I'(N) x D. Denote by S,(I'(N)) the space of all
such forms. In [3], Cohn calculated the dimension of S,(I"') in the case
where F = Q(1/—1), 6 =V —1, p(g) = det (9)* and I'" = Gy N My(D;) (see
§1 for Gg). In this paper we try to extend his results to the case
where F is an imaginary quadratic field of class number one, o is an
arbitrary irreducible representation and I'(N) is a principal congruence
subgroup of I'(1).

§1 is devoted to classifying the elements of I'(N), using several
methods of Cohn. In §2, we construct a good fundamental domain for
). In §3, applying the method of Selberg [8] and Godement [4], we
reduce the computation of dim S,(I"(N)) to that of certain integrals. In
the last section, using a method similar to those of Shimizu [9] and
Morita [7], we establish the following theorem:

THEOREM. Suppose that F is an imaginary quadratic field of class
number one and k= m + 6. Then

dim S,(T'(N))
= {2k+"“17r2(—i5)(2k+2m—3)! H(@k+2m—2))" S Cim—D)1I+k—3)! } -

=0

|I'/(N) I{(’m-&—l) vol (I'\D) +6*n,(|0*n})~*¢(2) vol (C/om)| E(F)|™

% g((k+j—1>(k+j—2))—l} .
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Various symbols used here will be explained in §4.

We note that we owe our results in §1 to those of Cohn. We also
note that Tsushima [11] has succeeded in computing the dimension of the
space of holomorphic vector valued Siegel modular forms of degree two,
and Kato [6] has derived the dimension formula of the space of holomor-
phic automorphic forms on SU(p, 1) of automorphy factor defined by
Jacobian.

The author would like to express his hearty thanks to Professor T.
Tannaka for his warm encouragements. He also would like to express his
hearty thanks to the referee suggesting some revisions of the original
version of this paper.

NOTATION. We denote, as usual, by Z, Q, R and C the ring of
rational integers, the rational number field, the real number field and
the complex number field. For a ring 4, we denote by A~ the set of
all n X m matrices with entries in A, and denote A?(resp. A") by A"(resp.
M,(A)). For zeC, we put e[z] = exp (27iz) with ¢ =1 —1 (Im+i > 0).

1. Classification of conjugacy classes. This section is devoted to
summarizing several facts which we need later. Throughout this paper
we denote by F' an imaginary quadratic field of class number one. Let
E(F') denote the unit group of F. Let 6 be a non-zero element of F'
such that 6 = —6 and Im 6 > 0, where the bar means the complex con-
jugate. Let

Go = {9€ SLy(F)|'gHg = H} (resp. Gr = {g e SL,C)|'gHg = H}),

0 0 o

where H =< 0 —1 O) and *g denotes the transpose of g. Then G, is
—0 0 0

a linear algebraic group defined over @, and Gy is its group of R-rational

points. Introduce a domain D in C* determined by

D={Z =" weCoF —2z) — |w?®>0}.
We note that Gg = SU(2, 1) and D = SU(2, 1)/S(U(2) x U(1)). Define an
action of Gr on D by

Z— g(Z) = ‘(alz + a,w + as bz + byw + b3>’
C2 + CW + ¢ €2+ cw + ¢

a; A Qg
where Z =%z, w)eD and g = b, b, b,]€Gg.
¢, C Gy
We say that the non-zero vector x € C® is positive, isotropic, or nega-

tive according as {x, x) is positive, zero, or negative, where <{x, y> = ‘yHx
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for %, ye C®. By Lemma 1 of Cohn [3, Chap. 111], we can classify the
elements of Gr = Gr — {aE,|a® = 1} as follows:

(i) an element g of Gy is elliptic if g has a positive eigenvector and
has no isotropic eigenvector,

(ii) an element g of Gy is hyperelliptic if there exists a two-dimen-
sional non-degenerate subspace W containing an isotropic vector such
that gWc W and gly = Mdy (W1, A =1),

(iil) an element g of Gr is hyperbolic if there exist linearly in-
dependent isotropic vectors v, and v, in C? such that gv, = v,v, (1 =1, 2)
with v, = 7,,

(iv) an element g of G is parabolic if g has an isotropic eigenvector
and is neither hyperelliptic nor hyperbolic. Here we note that an eigen-
value A of a non-isotropic eigenvector of g€ Gp satisfies |[A| = 1. The
following proposition can be proved by using the result of [3, pp. 21-22].

PROPOSITION 1.1. If g€ Gg 1s either elliptic or hyperelliptic, then
there exists 9’ € SLy(C) such that

Ay
g=9 Ny (@) with N =1 (1=1,2,38).
Ny
If g 18 hyperbolic, then there exists an element ¢’ of Ggr such that

a,
g=14d a, @H* with |la, =1 and aa,=1.

(26)

Proor. First we assume that g is elliptic or hyperelliptic. Then, by
[3, proof of Lemma 1 (p. 21)], g has eigenvectors =z, «, «, such that
C? = Cx, + Cr, + Cxyand x; (¢ = 1, 2, 3) are not isotropic. Then the eigen-
value A\, of g attached to x; satisfies [N;] = 1. Therefore we obtain the
first assertion of Proposition 1.1. Next we assume that ¢ is hyperbolic.
Then, by [3, proof of Lemma 1 (p. 21)], ¢ has a basis {v,, v,, v5} of C?
such that gv, = Mo, (v =1, 2, 3), v, is negative, v, (¢ = 1, 2) are isotropic
and v, v,€{v,}*. We may assume that (v, v, = —1. Assume that
{vy, v,y = 0. Then we have (v, +v,,v> =0 (1=1,2,3). So v, + v, =0.
This is contrary to the fact that {v, v,, v,} is a basis of C®. Therefore
we can choose vectors v,, v, such that <{v,, v,y = —d. Let h be an element
of GL,(C) satisfying hv, = e,, hv, = e; and hv, = pe,, where g is a complex
number with [¢| =1, ¢, = (1,0, 0), ¢, = %0, 1, 0) and e, = %(0, 0, 1). Then
we see that (hx, hy) = <{x, y> for all z, y € C® and



566 H. KOJIMA

)\'1
hgh™ = ( Ny ) .
Ng

Now we have det (k) =1 with a suitable g Therefore we obtain the
remainder of Proposition 1.1 and completes the proof.

Let O, be the ring of all integers in F. We consider a lattice L in
F?® determined by L = AQ%, where

0 1/6 —1/8
A=<1 0 0
0 1/2 1/2

For a positive integer N, put
I' ={9eGL(F)|¢g*Rg = R, gO% = 0%}, F(N)={geTl'lg= E(N)},

—1
where R =( —1 >,
1

I' ={geGylgL = L} and I'(N) ={g€Go|(9g — E)Lc NLY=AT(N)A™).

By the same method as that of Morita [7, Lemma 2], the following lemma
can be easily verified.

LEMMA 1.2. Let N Qe a positive integer N(=3). Suppose that { is
an eigenvalue of g of I'(N) and that { is a root of unity. Then  is
equal to 1.

Since R = A*HA, I'(N) = AI'(N)A~', the above lemma holds for
I'(N). Let g be an element of I'(NN) not belonging to the center of
I'(N). We assume that g is elliptic or hyperelliptic. By Proposition 1.1,
all eigenvalues of g are complex numbers of absolute value 1. So, by
Lemma 1.2, g is equal to E,. Therefore we have the following corollary.

COROLLARY 1.1. Under the same assumption as that of Lemma 1.2,
an element of I'(N) — {aE,|a® = 1} is hyperbolic or parabolic.

A vector v in L is called primitive, if a vector v belongs to aL with
a € O implies that a is an unit of Or. Now we can verify the following.

LEMMA 1.8. Under the above mnotation, every primitive isotropic
vector v € L can be embedded in a basis {v, ¥, y} of L such that {v, ¥) =
Y,y =<7, =—1land y L v, 7.

PROOF. We observe that &, =40, 1, 0), &, = ¥1/, 0, 1/2), &, = (2/3, 0, 0)
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satisfy L = O.{€,, €, &} and det({(€,, €;).:;<s) = 1. According to [3,
Remark (3) (p. 24)], there is a vector v’ € L with (v, v) = 1. Since Oy
is a principal ideal domain and since (L, v) = {{x, v)|x € L} = O, there
exists a basis {x,, «,, x;} of L over O such that L = L N {v}* B {x;}. Set
vV =a+ nx, (e LN{v},neOy). Since (v, v) =1, n belongs to E(F).
Thus L = LN {»}* +{v'}. Since LN{v}* N{v'} =0, we have L =LN
{v}* @ {v'}. By [3, Remark (1) (p. 24)], we can verify L N {v}* = {v, x}.
Using [3, Remark (2) (p. 24)], we get

CACHRRCIEDIRCE )

det| (v, v'> v, v) v,z |=—{w,a)=1.

(@, ") (@, v (o,
Set v ="+ &, 2)x + bv (beOp). Then, &', v) =<, v) =1 and
V", x) =0. Let d be the discriminant of F. If d = 1(4) or d % 1(4)
and &', v") + &, )<z, ') = 1(2), we can choose an element b of Oy
satisfying <v"”,v"> = —1. We set y =2 and ¥ = —v". If d £ 1(4) and
vy + <, xdlx, vy = 0(2), we can choose an element b of O, satisfying
", "y =0. In this case, we set y =x + v and ¥ = —v"” —x. Thus
{v, ¥, y} is a required basis of L. This completes the proof.

Now we can prove the following proposition.

PROPOSITION 1.2. Let g be a parabolic element of I'. Then [g]r N

% * *
P, # ¢, where [g]r ={797'|7el} and P, = {(0 * *> € F}. Further-
0 0 =x

more, every eigenvalue of g 1s a root of unity.

PRrROOF. Since g is parabolic, there are only the following two cases
(see [3, proof of Lemma 1 (p. 21)]):

(i) ¢ has no positive eigenvector but has a negative eigenvector;

(ii) Every eigenvector of ¢ is isotropic.
By the same method as that of [3, Lemma 1 (p. 24)], we see that every
eigenvalue of a parabolic element of I" belongs to O. Therefore, since
I' = AT'A, every eigenvalue of g belongs to O, and every component
of g belongs to F. Let {\;}5_, be the set of all eigenvalues of g. Then,
there exists an isotropic eigenvector x of g belonging to F°. Indeed,
there is an eigenvector x of g in F® If x is isotropic, x is a required
vector. So we suppose that every eigenvector x of g in F® is negative.
By the first remark, x is negative. Set {x}; = {y € F?®|{x, > = 0}. Then,
{x}# is a 2-dimensional vector space over F. Since (x, x) = {gx, gx) =
{7, 52y = |7,]*Cxe, x), we have 7; = 0. So it is easily seen that g{x}s C
{x}5. Therefore there exists an eigenvector «’c{x}# of g such that
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2’ 1L 2. By [3, proof of Lemma 1 (p. 21)], «’ is isotropic, which contra-
dicts the assumption on 2. This shows the existence of the required
isotropic vector . We can choose ne€F — {0} such that v = nxe L
and v is primitive. By Lemma 1.3, we can write L = Og{v, y, 7} with
B,v) =<y, 9y =<0,9> = —1 and y L 9,v. Let h be an element of
GL,C) satisfying he, =y, hé, = ¥, hé, = v. Then, a simple calculation
shows that <ax, hy) = {x, y> holds for every x, yeC® h(L)= L and
h™'gh e P,. Set v = det (k). Then, v belongs to E(F') because h(L) = L.

1 0 0
We put h’=h<0 Y O). We see that h'~'gh’'e P, and h'el’. Set
0 0 1
o, * *
htgh’ =<0 a, *) Since every eigenvalue of g belongs to O, «;
0 0 a,

(t=1,2,3) belong to Or. Since det(9) = ay,ax; =1, «, is a root of
unity. Thus our proposition is proved.

Applying Lemma 1.3 and the method used to prove Proposition 1.2,
we can prove the following (cf. [3, p. 26]).

ProPOSITION 1.3. The group Gy coincides with I'P,.

2. Fundamental domain for /. For (a,n)eF x Q, put [a,n] =
1 a n+ daa/2
<O 1 %) . We define two groups ' and I'? by I = {[a, n] € '}
0 0 1
and I'Y =I'NP,. Put m={aecF|[a, n]el. for some nc Q). We note

that [a, n]e . if and only if a€(2/9) and n + daa/2 € (4/6). Therefore
we have the following lemma.

LEMMA 2.1. Let the notation be as above. Then, m is an ideal in
F. Moreover, if [a, n] and [a, n'] belong to I'«, then m — n’ belongs to

(4/0) N Q.

Let L be a positive number. We can take the following set F-
(resp. §%) as a fundamental domain in D for I'. (resp. I'Y):

Feo = {(z, wy e D|Re (2) €(4/0) N Q@ and w e Clom},
B& =1{(z, w)e D|Re (2)€(4/0) N Q@ and w e (C/om)/E(F)},
Vo(L) = {Z€Bw|0z — 2) — |w|* > L},
V(L) = B2 N V(L)
and
F={ZeL||j(v,Z) =1 for every vel},
with
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x ok %
JO,Z)y=(cg+cw+ )= = =|el].
C: C Cg

By Proposition 1.3 and by Borel’s reduction theory of algebraic groups
defined over @, we can obtain the following (cf. [1, 2]).

PROPOSITION 2.1. Let notation be as above. Then § is a fundamental
domain for I' and F satisfies the relation Vo (L')C % V(L) for some L
and L'.

3. Automorphic forms and the Selberg trace formula. First we
summarize the fundamental facts about the representations of GL,(C) on
finite dimensional vector spaces. We denote by p,(9) the symmetric
tensor representation of degree m of GL,(C), i.e.

(0D )2y 25) = flaz, + cz,, bz, + dz,)

for every fe V, and for every g = (g’ 3>eGL2(C), where V, is the

vector space of homogeneous polynomials of degree m in (2, 2,). Put
fiulzy, 2) = VEI(m — E)! ) 2k2r* (0 <k <m). We represent p,(g9) with
respect to a fixed basis {fi(2, 2.)}5—, in V,, and denote the corresponding
matrix by the same symbol. For each positive integer k, put po(g9) =
(det (9))*0.(9) for every g€ GL,(C). It is well known that any irreducible
polynomial representation of GL,C) is given in the above way. For
each f and f’in V,, define an inner product {f, f"> = S, kl(m — k)!a,b,
with f(z,, z,) = D0, a2tz and f'(z,, 2,) = D, byzkzr—*. It is easily seen
that {0.(9)f, f> = {f, on(g*)f"> for each fand s’ in V,, where A* = ¥(A).
Therefore we have

o@)* = p(g*) .

For each ge Gr and for each Ze D, we define an automorphy factor
J(9, Z) by

— - = — - a; @ 0

b, — 07'b, 1/6)b 1/0)b,

J(gy Z) = <_(_:(.)-<:_ E,':A}J ( / )53 _-:: éi ) z> ’ where g = (b1 bz b3)
2 1 3 1 01 cz 03

and Z = (2, w). For each (Z,Z)eD x D, put

T

0
M(Z, Z) = (_w . i”z,>

with Z = (2, w) and Z' = (2’, w’). For each ge Gr and for each C™"-
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valued function f on D, we define a C™*'-valued function f|,g on D by

(Flog)Z) = p(J(9, Z2))7f9(Z)) .

We call a C™"'-valued holomorphic function f(Z) on D a cusp form of
wetght o with respect to I'(N) if the following conditions are satisfied:
Q) eV —=i'M(Z, Z))f(Z)|| is bounded on D,
(i) fl,7 = f for every YeI'(N), .
where ||Y(a,, @y -+, Qni)|l = G0 @)Y, We denote the space of all such
functions by S,(I'(N)).
For each (Z, Z')e D x D and for each g€ Gg, put

K, (2, Z") = p("M(Z, 9(Z"))"'p(J(9, Z)*)"'0('M(Z', Z")) .

Define a measure dZ on D by dZ = (i(—é'|w|* + Z — 2))*dedydudy with
z=x+ 1y, w=1u-+ . It is well known that dZ is a G invariant
volume element on D. We consider the Hilbert space $%(D) consisting
of all holomorphic C™*'-valued functions f on D satisfying

|, o0/ =707, Z))(2) ['dZ < == .
Now we can prove the following lemma (cf. [4]).

LEMMA 3.1. Let the notation be as above. Then
A2) = e0) | oCM(Z, 2) 0 M(Z', Z)RZ)AZ

holds for every fe®3(D) with c(o)™" = 2™ g*(—16)2k + 2m — 3)!!
(2k + 2m — 2)1)7' > Ciim — DI + k& — 3)!, where (2n — 1)!! means
1:3---@2n —1).

Proor. Put f(Z) =40, ---,0,((—20)"t — 2)~**™), We can easily
check that fe 9%(D). By the same fashion as in Godement [4], we can
show that

AZ) = (o) SD o("M(Z, Z')"'o("M(Z', Z')f(Z"dZ'

for every fe 9%(D), where ¢(0) is a constant not depending upon a choice
of f. Therefore we have

f(Zy) = ¢e(0) SD o(*M(Z,, Z')) " o("M(Z', Z")[(Z"dZ'
with Z, = (—1/20,0). Thus we obtain

3.1) c(p) SD 0CM(Z,, Z")) ' o' M(Z', Z")f(Z"dZ'
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= c(p)g ¥, eey X 0w+ 6(2 =22 =7 [(—1/20) —Z'| ™) d 2
D
= o) (=2mip ) | QU (g 12 )
y—lwl“>0
X dxdydudv .

A direct calculation shows that

_2mi3k+m+1s (22/ — lw[2)k—3ym(x2 + (y + 1/2)2)“"+’”’dxdydudv

2y—lwl2>0
= iy 1T @ + e+ @ ol e
X dxdy' dudv
= —igrrmsigenoin” [y 4ot + @+ 0+ D) dedydr

= —qottmiigktmig lZ:) 2Cm =D 2Kk +m)—2)""2(k+m)—3)""-- - (2(k+m)

—2—(m—1)~" S:’ YR (y 1)k R =D S: (@ +1)~*+mdg
Observe that
Sl 1 + 2% ™dy = B1/2, k + m — 1/2)
and
Sw Yy 4 1)"CkEmti0gdy — Bl + k — 2,k + m)

where B(x, y) is the beta function. Thus the value of the integral (3.1)
equals '

—qoktmiigktm—in ng,(m DIk +m +1—-3)!1(@2k +m —2))™
X B1/2,k+m —1/2) Bl +k —2,k +m) .
Therefore we get the explicit value of ¢(p).

Now we prove the following lemma.

LEMMA 3.2. Let E and E’ be compact subsets in D. Suppose that
k —m=6. Then the series

gp o M(Z, ¥(Z") (Y, Z')*)7|
converges absolutely and uniformly on (Z,Z')e E X E', where |A] =
V'tr (A4%).
Proor. We can verify that
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(3.2) loa(M(Z, Z")7|| lon(V —0'M(Z", Z) )|
=S¢ — 22 4 0792 — o)™
for every Ze E and for every Z’'e D, where ¢ is a constant not depend-
ing upon Z, Z'. Let r be a sufficiently small positive number such that
E"={Z"e¢FE|3Z'eE and V'|z"" — 2| + |w" — w']? < r} is contained in D
with Z” = (2", ") and Z' = (z', w'). We fix Ze E. Then we have
(0CM(Z, Y(Z")™)* (Y, Z)™)s,

=c SE (o =" M(Z", Z")p(-M(Z, 1(Z"))*J(V, Z")) ;1 dZ"

= | 10CMZ, 7@ o0/ =FIET, Z oI, 271 dZ2"
where ¢ and ¢’ are constants. Put { = Y(Z"). Then

¢ M2, @) *I0, 270, = 8] 100/ =TBIE, D)l | MZ, O)dL .

E

By virtue of (3.2), we obtain
[, 1100/ =FIE D) Il o hrcz, ) dt < o=

for any k = m + 6. Hence for any ¢ > 0, there exists a compact subset
A in D such that

[, o0/ =T D) | oM, ) d < e .

Let E be a compact subset in B. Put p™(E) = {geGrl|l9(Z,) € E}.
Then p~%(F) and B = U,.,-1z 9(A) are compact. Since [’ is discrete,
S={vel7YE"YNB=* @} is a finite set. Put n=#{vel|7(E")N
E" = @}. Then

3 I@CME, T2, 2,
5 |, o0/ =FIE D) | lo¢MZ, O)|de

rer—8

7 |, loCMZ, 0y o0/ =TT Ol d

A
N

IA
N

=z oM, ) o0/ =TT, D)de

A

n

gp_AHP(‘M(Zo, N0 ="M@, DN} lo( —i*M(Z, Z))™||dL’

néeM ,

where Z=9(Z) and {=g(') and M = max,.; |00V —¢MZ, Z))™.
Hence we have proved the assertion:

c
¢

A
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Put
Ki(Z,Z") = c(p) > K,(Z,2").
7Y€l (N)

Applying Lemma 3.1 and Lemma 3.2 as in Godement [4], we can show
the following (3.3)-(3.5):

(3.3) #2)=\ KNz 29R2)az

holds for every fe€ S,(I'(N)), where %(N) is a fundamental domain for
I'(N);

(3.4) |KZ(Z, Z)|] is bounded on $(N) ;

(3.5) dim S,(I'(N)) = S& tKI(Z,2)Z .
By (3.5), we have
dim SAT(N)) = e(0) | >, Sﬁ S tr K, (2, Z)dZ

er|I'(N)

where ¥/ = 87'v83 and Y runs over I'(N).
Now we have the following lemma.

LEMMA 8.8. Let L be a sufficiently large positive number. Then
Jor every Ze V(L) we have

S Itr Ko (2, 2)|= J(—2t0y —|w])~* "+ (det (J(V, 2)*)(M(Z, Z)))*™ ,

[a,n]el o

where J 1s a constant not depending upon a choice of Z and 7.
Proor. A simple calculation yields that

tr K, (Z, Z) = tr (o("M(Z, 7(Z))"'o(J(7, Z)*)"'0('M(Z, Z))) .
Set 0,(9) = det (9)*™ and p,(g9) = det (9)"0.(9). Then p(g9) = 0.(9)0.(9).
Thus |tr K, (Z, Z)| = |K,,,(Z, Z)||tr (K,,((Z, Z))|. Put Z = g(Z,). A direct
calculation shows that

tr Ko, (Z, Z) = tr{0.(J(97'79, Z,)*)"0.("M(Z,, Z))0.(*M(97Y9(Zy), Zo)*)} .

Note that |0,V ABA™)|| > j(e)||on(A™)]| for all positive Hermitian
matrix B satisfying B > ¢F,, where ¢ is a positive number and j(¢) is a
function of ¢ satisfying j(¢) > 0. So we obtain

tr K,,.(Z, Z)| < cllo(J(g7* 79, Zo)* | |0L M(g79(Zy), Z)) 7"
< 0. M(g779(Zy), Zy))7 ||| 0.0V =" Mg~V 9(Z), 9779(Zy)) )|
where ¢ and ¢’ are constants depending only upon Z,. Therefore, by (3.2),
sup {|tr K,, (Z, Z)||Ze D, Y € Gg} < oo .
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Thus

Itr K, +(Z, Z)| < M(|det ("M(Z, v(Z))" (7, Z)**M(Z, Z))))* ™
for every 7 € Gr and for every Z ¢ D, where M is a constant not depending
upon Y€ Gg and Ze D. By the same fashion as in Cohn [3], we can obtain

S, |tr Ko ta,r(Z, Z)] = C(—200y — [wl)™ " det (J(v, 2)* 7' M(Z, Z))I* ™ .

[a,n]el e

By Lemma 3.3, we can prove the following.

LEMMA 3.4. Let k= m + 6 (resp. L, > 0) be a positive integer (resp.
a sufficient large number). Then
S S tr K, (2, Z)|dZ < o
Vi Ly T
where ¥ runs over BI'(N)B3 — ' N B '['(N)B with Bel".
PrROOF. Put I'=R"'I'(N)R—T¥NR ' ['(N)E, I"'=T¥npE*I'N)B
and I =T N B'['(N)B. It is seen that

S(Z) = 2 lte K, Z, )l = > 3 v Ko (2, 2)]

rer/r' [a,n]el"’
It follows from Lemma 3.3 that
SZ)=C FZF (—2i0y — |w|) ™"+ |det (J(v, 2)*)'M(Z, Z))|*™
rer|r’

=C 3. V(=2dy — wP)* "/ [det CM(Y(Z), V(@)

rerir'

:<: CL—(k—m)/2+2 Z ]/ldet (tM(7(Z), 'Y(Z)))Ik—m .

relr|r'

Since V(L) is a Siegel domain, {v e I'|7(VL(L)) N V(L) = @} is a finite
set. Thus we obtain

S > VAt CM(Z), W2 "dZ

Vi(L)rellr

<C S VA6t CORZ, 2™ dZ .
U T(V(L)
rer|r'
Note that Urerir Y(Vo(L)) = {(z, w) € ['-\D| —2¢6y — |w|* = L}. Therefore
we have the desired result.
Next we show the following lemma.

LEMMA 3.5. Let k= m + 6 (resp. L,>0) be an integer (resp. a
sufficiently large number). Then

T s—=0 7

SV St K, 7, 2)dZ =lim 5, SV tr K, (2, Z)(—2idy — |lwP)"dZ ,
oot (L)
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where ¥ runs over I'Y N B~'['(N)A.

By Lemma 3.3, we have

> S, trK,.(Z Z) £ e(—2i0y — |lw])*
yrer’/r'’ fa,n]el’’’
with a constant c.

Since (—2t0y — |w») ™ < L*(Ze V.(L)) and
S (—2i6y — |w)"*dedydudy < o ,
V(L)

it follows from Lebesgue’s convergence theorem that

S tr K, (Z, Z)(—2idy — |wP) "~ dadydudv
rer” Jvi (D

- S S tr K, (Z, Z)(—2idy — |wP)-dedydudy .
Vi(L) 7€l
By Proposition 2.1, (3.4) and Lemma 3.4, we have

|, 15 e K2, 2)ldZ < = .
ViL) Tel’
It follows that

1im§ S tr Ko oZ, Z)(—2idy — |w])+—*dedydudv
8—0 V"”(L)rer’
- S S tr K, (Z, Z)dZ .
V(L) rer’
Consequently our lemma is proved.

By Proposition 2.1, (3.4), Lemma 3.4 and Lemma 3.5, we have
ProposiITION 3.1.

Suppose that k= m + 6.
dim S,(I"(N))

Then,

=), 3 || wKon2 2007 + 3| 60 K, o2, 2002
el | (N) F T &

+limS {S tr K, poirs(Z, Z)AZ + S tr Ky pir3(Z, Z)
80 1/ F—Voo (L) Veool(L)

ool

X (—210y — ]w]Q)""dZH ,
where Y(resp. Y') runs over {Ye I'(N)| B~ "vB & 'Y} (resp. {Y' e '(N)|BY'Be
re —{E}).

4, Explicit calculation of integrals.

Put Hy={vel'(N)|7 is
hyperbolic} and Uy = {v € I'(N)|7 is parabolic}. By corollary 1.1, we have
I'(N) = Hy U Uy U {E;} (disjoint union). It follows from Proposition 2.1,
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and Lemma 3.4 that
[, =t Koz, 2010z < oo .
FreHdy
So
(4.1) 3 L tr K,,(2, Z)dZ = %, Sp tr K,,3(Z, Z)dZ ,
7 7

rel(N)

where ¥ runs over {(Yy e I'(N) |7 = g~*"vR¢ 'Y}, ¥ runs over all I'-conjugacy
classes in Hy and $%; is a fundamental domain for the group
{vel|v¥ =97}

To verify that the series (4.1) vanishes, it is sufficient to show that
S tr K, (Z, Z)dZ vanishes for ve Hy. For any veI, put G, ={ge
i
FTg’Y =79} and C® = {g€ Gr|gY = 7Yg}. Assume that 7 belongs to H,.
Then we can write

Ss, tr K, (7, 2)az =\ dz|

C\Cy

- tr K, (Z, Z)dZ*,
D

N\

where dZ'(resp.dZ?®) is the restriction of dZ on Cj(resp. the induced
measure on CA\D) (cf. [56, Chap. X (p. 369)]). It is enough to show

\,e, tr KorlZ, 2)42° = 0.,
C\D

T
Here we may assume

a, 0 O
=10 a O )(]a2] =1, aa, =1 and a, # «y)
0 0 a,

(cf. Prop. 1.1). A simple calculation shows

a, 0 0

CR = (0 a, O)GGni and {(v + ¢, v") e D}
0 0 a,

is a fundamental domain for Cf in D. Consequently

S K, (2, Z)dZ*
\D

T

=¢ S:m dv’ S°_°°° (v, VYo((v + 7 — |a (v — 7)) + (@)@} "dw |

where ¢ is a constant and (v, v") is a polynomial of degree m in (v, v').
Since
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Sw viw+aydv=0 (a¢R,j—3j=2),

S L WK, (Z,2)dZ* =0 .
C,\D

T
Therefore we conclude that
(4.2) § S tr K, (Z, Z)dZ = 0,
7

where 7 runs over {(ve(N)|7' = pgvge 'Y}
Next we calculate the integral

(4.3) lim Sﬁtr Ko.(Z, Z)(—2idy — [w)*dZ
8—0 T
=lim X | _trK,;(Z, Z)(—2idy — lwp)~dZ
8—0 ‘; _,{}7:

where 7 runs over {Yye I'(N)|V = g*vge 'Y — {E,}}, ¥ runs over all I-
conjugacy classes in Uy and $; is a fundamental domain for C;. By
Lemma 1.2 and Proposition 1.2, we may assume that ¥ = [a, n].

First we treat the case where ¥ = [0, n]. A simple calculation yields
that §; = Y (cf. Lemma 2.1). Since

tr K, 3(Z, 2) = 3, (—2idy — [w")/(—2idy + on — [w})=,

the integral in the sum of the right hand side of (4.3) is equal to
lim S da (=38 3 (= 208y — [w]H)++s

s—0 Jo S —2i3u—|w[2>0 =0
we (Clom)|E(F)

X (—210y + én — |w|?)*I(—2t0y — |w)**dydudv
= lim (=07 3, n(—~2i0)" vol (C/om)/ BF) | g1y + bm)~+-idy
J=0 0

= (—407%)"" g‘ano(—%(?)" vol ((C/om)/E(F)){|ion|t* ks tetd =1 =1

XE+7—0U"+7—2) 6kl + 7)ks)
X exp (—{sgn (m)mi((k + Nks(k + 7)) + 2)}/2),

where vol ((C/om)E(F)) = g dudv(w = u + 1), (4/6)NQ = (n,) (n, >0)

(Clom)E(F
and ¢(s) — 1(s — 0). e
If ¥ = [a, n](a # 0), then, by a simple calculation, we can show that

the integral
Sr tr K, ~(Z, Z)(—2idy — |w[)-+dZ
T
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vanishes. Consequently we have established the following theorem.

THEOREM. Let F' be an tmaginary quadratic field of class mumber
one. Suppose that k=m + 6 and N=3. Then

dim S,(I"(N))
= {2k (—10)( 2k +2m —3)! 1 ((2k +2m —2) )~ liomC,(m—l) 10+k—3)1}
| TJT(N) {(m+1) vol (P\D)+ 8,13 n)¢(2) vol (Cfom) | E(CF)|~
% 3, (Ue+d =Dk +5—-2)7

where vol (I'\D) = Sﬁ dZ, vol (Clém) = Sm dudv(w = u + ), QN (4/9) =
(1), QN (4/0) N (N) = (n)(ny, my, > 0) and {(s) is the Riemann zeta func-
tton. The volumes of I'\D and C/om are given as follows:

1 if F#Q1 =3

3 if F=Q('-3),
where L(s, X) = {x(s)/{(s) and (z(s) is the Dedekind zeta function of
F (see [6, 12]), and

vol (I'\D) = 27%{o[*(t67")"} """ L(—2, X){(—1) % {

AV d| if d=2, 34)
WVd| if d=134),

where d is the discriminant of F.

vol (C/om) =
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ADDED IN PROOF. The referee has informed the author that H. Koseki
calculated the traces of Hecke operators acting on the spaces of automor-
phic forms on SU(1, 2) and SU(3).








