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0. Introduction. In the preceding paper [2], square-integrable holo-
morphic n-forms on an n-dimensional complex manifold are studied, and
invariants f,, are introduced. The purpose of this paper is to examine
how y,, are expressed when the manifold is a circular domain in the
n-dimensional complex Euclidean space C*, and to provide several examples
concerning these invariants.

Let D be a circular domain in C™ which is not necessarily bounded.
Let H(D) be the Hilbert space of all square-integrable holomorphic funec-
tions on D, and for every integer m, let H,(D) be the subspace of H(D)
whose elements are m-homogeneous on D (see Definition 1.1). Then H,(D)
are mutually orthogonal. If D is proper, then H,(D) = {0} for m <0,
and all elements of H,(D) for m = 0 are actually homogeneous polynomials
of degree m. Now, suppose that D is proper and has a finite volume
V(D). Let K(z, w) = >yu_, K,(2, w) be the Bergman kernel of D, where
K, are homogeneous polynomials of degree m with respect to each of
the variables z and w. Then it is shown that

to,m((3,)0) = V(D)(m!)YKy(v, v)
for veC", where 0,,...,n = >,;v? 0/02' (Theorem 2.2). Furthermore, if
D is bounded, then every polynomial K, is written as follows (Corollary
2.4):
K, (2, @) = (21, +++, 220G (wh, « -, w¥)*,

where (I, -+, I) <N = <n + m - 1)) is a numbering of the indices of

the set {(4, ---,%.)€Z% 4, + +++ + 1, =m} and G = ((2", 2%9)),; is the
Gram matrix of the system (2’4, ---, 2’¥) of monomials with respect to
the inner product on H(D).

It is well-known ([7], [10]) that when a domain carries a Bergman
metric g, the holomorphic sectional curvature of g does not exceed 2.
In §8, we see the following from examples:

(i) There exists a domain D in C* with positive, finite dimensional
H(D). Moreover, there exists a domain in C* for which the holomorphic
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sectional curvature of the Bergman metric is identically 2 (Proposition
3.2).

(ii) For Reinhardt domains in C", there is no relationship between
the existence of Bergman metrics and the hyperbolicity in the sense of
Kobayashi [11] (Propositions 3.1 and 3.3).

(iii) For every interval [a, B]C(— 0, 2), there exists a bounded
pseudoconvex Reinhardt domain in C? for which the image of the holo-
morphic sectional curvature of the Bergman metric contains [a, 8] (Pro-
position 3.5).

1. The Hilbert space H(D) for a circular domain. Let D be a
domain in C". The set of all functions f holomorphic on D such that

£ = S | fI*dy, < +oo is denoted by H(D), where dy, is the Lebesgue
D
measure on C". The space H(D) is a separable Hilbert space with inner
product (f, 9) = S fgdv,. Let {h,} be a complete orthonormal system of
D P —

H(D). Then the function K(z, @) = >, hu(R)h.(w) ((z, W) € DX D) is called
the Bergman kernel of D and the functlon k(z) = K(z, Z) is called the
Bergman function of D.

Now, suppose that D is circular, i.e., e?DcCD for every §c R. We
denote by 7: C* — {O}— P~ the canonical projection defining the complex
projective space P"'. Take a mapping + from P to the unit sphere
St in C* such that mo+r = lp.—1, and consider a domain V = {({{, r) e
P 'xR.; ry()eD}in P 'X R,, where R, = {r e R; r = 0} endowed with
the relative topology. The set V is independent of the choice of +, and
D is reproduced in terms of V as follows:

1.1) D = {re“y((); C, e V,0eR}.
Conversely, for every domain V in P"'x R,, the set D defined by (1.1)

is a circular domain in C". We call V the representative domain for
the circular domain D.

DEFINITION 1.1. Let m be an integer. A holomorphic function f on
D is called m-homogeneous if f(nz) = A™f(z) for all e C and ze D with
|7\.|eI(z), where I(z) denotes the connected component of the set {re
— {0}; rz € D} containing 1 for z€ D. Denote by H,(D) the space of

al] functions of H(D) which are m-homogeneous.

Let v be the volume element on P"' induced from the Fubini-Study
metric, and set U = {r(z); 2= (2", ---,2") e C", z" = 0}, w/({) = z//z" for
C=n@)eU, and u = (u*, -+, u"*): U—>C". Then, letting |u|* = > [u? [}
we have
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Vg = QA + |u)"urdy,_, .
Let a be the mapping from U into S**~! given by
a=QA+ |u])"(u,l).
We get the following by elementary calculation.

LEMMA 1.2. Let D be a circular domain in C* with representative
domain VCP" *xR,, fe H(D) and ge H,(D). If1l +# m, then (f, g) =0,
while if | = m, then

(f, 9) = 2x | Fra@)gira@yr>—v@ Adr .

€, rev, el

We also note the following.

LEMMA 1.8. Let f be a holomorphic function on a circular domain
D. For every zeD, let D\,.czfu(@N\™ be the Laurent expansion around
0 of the function {\ € C; |\| € I(2)} 2 n—f(\2) € C (see Definition 1.1). Then
the function f, is holomorphic on D and m-homogeneous for every m,
and the series >, . converges to f uniformly on every compact subset
of D.

By virtue of Lemmas 1.2 and 1.3 we can show the following by the
same argument as in Skwarczynski [13; Theorem 0.8].

PROPOSITION 1.4. Let D be a circular domain in C* and B, complete
orthogonal systems of the space H,(D) for meZ. Then the union U, B,
18 a complete orthogonal system of H(D).

A circular domain D is called proper if D contains the origin O. By
definition, we immediately get the following:

LEMMA 1.5. For m = 0 (resp. m < 0), every m-homogeneous function
on a proper circular domain D is the restriction to D of a homogeneous
polynomial of degree m (resp. is 0). In particular,

=0, m <0
dim H,(D n+m-—1
D) = ( ) , m=0.
m

When a circular domain D is starlike, i.e., A"DcD for all A €]0, 1],
there exists a unique (0, + ~]-valued function R defined on P"' such
that the representative domain V of D is given by

V={¢nreP'xRy;r<RQ}.

The funection R is lower semi-continuous, and D is represented in terms
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of R as follows, where we let |-| be the Euclidean norm on C™:
D={zeC" - {0}; |2] < Rom(2)} U{O} .

Moreover, it is convenient to consider the upper semi-continuous function
® = —log Rom(+,1) + log (1 + |-]»** on C"*, which is plurisubharmonic
for pseudoconvex D (cf. [1]).

PROPOSITION 1.6. Let D be a starlike circular domain inm C", and
P the function defined above. Then for f, g€ H,(D) with m = 0, we have

(o) =—Z—| _ f¢, D3 Demrrdy,
m + n Jer—t

where [ and g are regarded as polynomials (see Lemma 1.5).

Proor. By Lemma 1.2 we have

(f, g) = —Z g foageaR ™y |
m + n Ju

Since aon(-,1) =@ + |-»7(-,1) and =(-, D)*v|y = A + |-]»)"dv,_,, the
change of variables yields the desired formula.

Finally, let D be a Reinhardt domain in C*, i.e., D is a domain in
C" such that (e'z!, ---,e“"2")e D for all (, ---,2")eD and #?c R. Of
course, D may be unbounded. Let £ be the real representative domain
of D: 2 ={(z"|, ---, |z*]); (&' ---,2")e D}CcR*. We recall the following
two properties of D:

(R, For a pair of functions 2%, 27 € H(D) (I, J € Z"), one has (2%, 27) =
0,if I#J, whileif I=J=(, ---,1,), then

(2%, 2") = (2m)" Sg (rFtt o ()Rt A e Ad

(R,) Every holomorphic function on D can be expanded in a Laurent
series around O, which converges uniformly on every compact subset of
D.

By making use of the facts (R,) and (R,) we obtain the following improve-
ment of [13; Theorem 0.8]:

(R;) The set {z’; I€¢ Z"}N H(D) is a complete orthogonal system of

the space H(D).

2. Invariants 4,, of a proper circular domain. Let D be a domain
in C* with the natural coordinate system (2!, ---,2"). Set 0; = 0/0%’
G=1,---,m),and o' =04 --- 0%, |I| =4+ --- + 1, for I = (3, -+, %,) €
Z", where 0} means the identity operator acting on functions on D.
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Every holomorphic tangent vector X e T,(D) at ze€ D is written as X =
0,),, where 0, = >,;v%9; with v = (v, ---,»")eC". For every meZ,,
z€D, and X = (0,), € T.(D), set
A,(z) = {f e HD); 3*f(z) = 0 for all Te Z? with |I| < m},
tn(X) = max {|3,)"f(2) [, feAn), | Il =1} (ef. [2]) .
For 7 = 0,1, we consider the following conditions ([10]):
(B.j) For every ze€D and every non-zero (n 3
vector (&;);=;, there exists a function f e H(D) such that >}, £,0°f(z) # 0.
Now, the Bergman kernel K of D is characterized by the following
reproducing property: K(-,z)e H(D) and f(z) = (f, K(-,%)) for all ze D
and fe H(D). The reproducing property of K implies the following (cf.
[2], (4], [B]): If zeD, Ie€Z?, and f < H(D), then 3’K(-, Z) € H(D),

-1 -dimensional

(2.2) @,)"f(2) = (f, @,)"K(-,7) and
(2.3) 1@)"K(-, D" = @,)"@)"k(2)

for veC" and m e Z,, where k is the Bergman function of D. It follows
form (2.1) and (2.2) that

(2.4) An(2) = {(0'K(-, 2); Ie Z3, |I| < m}*,

(2.5) Ua(X) = max {|(f, @)"K(-, 2) [} feA.2), I fll =1}

for meZ, and X = (0,), € T.(D).

If D satisfies the condition (B.0), then for every positive integer
m € N, the function g, , = #./tt, on the holomorphic tangent bundle T(D)
is a biholomorphically invariant Finsler pseudometric on D of order 2m
([2; §4D.

From now on, we suppose that D is a proper circular domain. We
first note the following.

LEMMA 2.1. Let D be a proper circular domain with Bergman kernel
K. Then
H,(D) = spanc {0"K(-, O); Ie Z}, |I| = m}
for meZ,.

ProOF. Let B, be a complete orthonormal system of H, (D) for every
meZ,. By Proposition 1.4 we have

oo

(2.6) K(z, @) = Y, >, h()h(w) .

=0 hEBj
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Let IeZ® with |I| = m. It follows from (2.6) that

0

2.7 0'K(-, 0) = “zB hR(0) = 3, I'hh,

= €B; heB,,

where I! =4,! ---4,! for I=(, ---,1,) and h(w) = >,; h;w’; therefore
9'K(-, 0)e H,(D) so that spanc {3’K(-, O0); |I| = m} is contained in H,(D).
To prove the opposite inclusion, we fix a numbering (h, ---, hy) of the
elements of the set B, and a numbering (I, ---, Iy) of the indices of
{IcZ?; |I| =m} (note that L < N). Write h;(z) = 2\, 02" (=1, -+,
L), and set f; = 0"K(-, 0). Since {h;} is linearly independent, by a change
of the numbering (I;), we may assume that the matrix (a;).<;:<; is non-
singular. From (2.7) it follows that f, =3k Llazh; (=1, ---, L).
Since (a@;i).s;:<z is non-singular, every h; is a linear combination of
{f, +++, fi}. Hence the proof is complete.

The following is the main theorem of this section.

THEOREM 2.2. Let D be a proper circular domain in C™ with finite
volume V(D) with respect to the Lebesgue measure on C", and B, complete
orthonormal systems of H,(D) for meZ,.. Then D satisfies (B.0), and
the invariants t,, on the space Ty(D) are given by

tom((9n)0) = V(D)D) 3 [h(w)f, vel".

To prove this theorem, we use the following well-known fact (cf.
[2; Lemma 3.8]).

LEmMMA 2.3. Let {x, -+, x,} (m = 0) be a linearly independent system
of a pre-Hilbert space H over C, and %,., € H. Then the maximum of
the set {|(Y, Zpr) | ¥EH, (Y, ;) =0 =1, -+, m), ||yl = 1} cotncides with
G,y -+ Tpui)/Gy, -+, x,), where G(x, +--,x,) denotes the Gramian of
the system (x,, «--, x}), that is, G(x,, -+« -, z,) = det((x,, 2,));,; with the con-
vention G(@) = 1.

Proor oF THEOREM 2.2. By Lemma 2.1 and (2.4) we have A4,(0) =
(U B)*. Since U7y B; is an orthogonal system, Lemma 2.3, together
with (2.3) and (2.5), yields the following:

Ua(35)0) = || @)"K(+, O) |I* = (3,)™(3,)"k(O) .
On the other hand, (2.6) implies

k(z) = 2 > ).

heB;

For I, Je Z? with |I| = |J| = m, we have
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FEKO) = 3 11Tk,
eBm

where h(z) = >; h;2", so that we get
0,)™(0,)"k(0) = (m!)zu Sy v 07970k(0)/I) J! = (m!)zhz;, [R(W)|? .

I=lJ|l=m

Thus, £,(0,)0) = (M!)* Xsez, |R()|>. Furthermore, B, consists only of a
constant function V(D)™ so that (B.0) holds and p,((3,)e) = k(0) = V(D).
The proof is now complete.

When a proper circular domain D is bounded, the set of all monomials
of degree m forms a basis of H,(D) for every me Z.. In that case, we
have the following.

COROLLARY 2.4. Let D be a bounded, proper circular domain in C™.
For every meZ,, set
Km(zi ’IT)) = (zll, ttty zIN)G_l(wII’ tt %y wlN)* )
where (I, -+, Iy) ts a numbering of the set {I€ Z}; |I| = m} and G 1is

the Gram matrixz of the system (2™, ..., 2'%). Then the invariants
on T,(D) are given by

to,m((0,)0) = V(D)(m!)K,(v,v), veC".
ProorF. By Theorem 2.2 the proof is reduced to the following lemma.

LEMMA 2.5. If(f, +-+, fv) s a linearly independent system of H(D),
and {g, +++, gy} 18 an orthonormal basis of the subspace spanned by

{ﬂr . 'ny}’ then
]Z:gj(Z)gj(W) = (fi@) -+, [y @)G(Fi(w), - -+, Fuw))*
where G is the Gram matrix of the system (f, +++, fx)-

PrOOF. Let g; =3, a,f; (j=1,---,N), and set A = (a;). Since
(9:, 9;) = 8,5, we have I ='AGA; therefore I = A'AG, or I= AA*G.
Hence we have

JZZ‘,l 9,(2)9,(w) = (9,(2), *++, gu(2)(G:(w), *+ +, gw(w))*

= (fi®), «+, [y@)AA*(fiw), « -, [y(w))*
= (fi2), +++, [y(@)G (i), -+« -, Fu(w))* .
3. Examples. When a domain D satisfies the conditions (B.0) and

(B.1) in §2, it is called B-hyperbolic. In that case, there exists a unique
Hermitian metric g (called the Bergman metric) on D such that g, ,(X) =
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g(X, X) for Xe T,(D), and the holomorphic sectional curvature HSC(X)
of the Bergman metric in the direction X e T,(D) — {0} satisfies the fol-
lowing ([2; Theorem 4.4], [7; p. 525)]:

3.1) HSC(X) =2 — p1,,(X)/9(X, X)* .

We say that a manifold M is K-hyperbolic if M is hyperbolic in the sense
of Kobayashi [11]. Every bounded domain is both B- and K-hyperbolic,

and satisfies HSC < 2.
We first consider the following one-parameter family of unbounded

proper Reinhardt domains in C*.
EXAMPLE 1. D,={#,2)eC% |2'| <1, |2)P< @ — 2]} (s < 0).

By Lemma 1.5 we have (2)"(z*)"¢ H(D,) for m,n € Z with m < 0 or
n < 0. By (R) in §1 we have

H@VWWP=ni1$wu—waa m,neZ,,

so that if m, ne Z, then
3.2) @)™)"e HD,) =n < —1/s — 1.
In particular, H(D, = {0} if s < —1. Suppose that —1 <s < 0. Put

N(s) = —[1/s +2](€Z,). Then n < —1/s —1 if and only if n =< N(s);
in this case, one has

T* m!
n+1@6n+1)+m+1)---(n+1)+1)"

(@)™ * =

By the formula

(l—x)“":i (a—i—m—-l)(am—}!-m—-Z)---ax,,.’

(3.3)

o

m=

lz| <1, aeR,

the Bergman kernel K(z, w) of D, is written as
N(s
Kz, @) = 71 — 2997 3, 0., Ule, D" ,

where a, = n’s + n and U,(z, w) = (1 — 2'w")~*z*w’. It is easily shown that
the image of the function U, on D,xD, is the whole C; therefore the
Bergman kernel K vanishes at some point in D,x D,. On the other hand,
the image of the function wu,(2) = U,z,%) on D, is the interval [0, 1).
Therefore, making use of (3.3) again, we obtain the following expression
for the Bergman funection k(z) = K(z, z) of D,:
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F,(u,(2))
(1 — |2 )1 — w,(2))
where F, is a polynomial given by
Fuw)=6+1 +(—Du—ayu"" — 2s — ayy, — ay)u™* — ay u*®
with N = N(s).

Now, all the domains D, are K-hyperbolic by virtue of the following
theorem formulated by Sibony [12; p. 366] and essentially due to Kiernan
[9]:

(K-S) Let E, M be two complex manifolds, and f a surjective holo-
morphic mapping from E onto M. Suppose that M is K-hyperbolic and
admits an open covering {U,} such that f~'(U,) is K-hyperbolic for all v.
Then E is K-hyperbolic.

It is well-known that the domain C — {0, 1} is K-hyperbolic ([11]) and
not B-hyperbolic (in faect H(C — {0,1}) = {0}). We have found such an
example among Reinhardt domains.

k(z) =

PROPOSITION 3.1. The domain D, with s £ —1/2 is K-hyperbolic, but
not B-hyperbolic.

Example 1 suggests the existence of a Reinhardt domain D in C*
with positive finite dimensional H(D). The following is such.

ExXAMPLE 2. D,, = D,U{(z", ?%); (¢ 2")e D} (s,t <0). From (3.2) it
follows that
(8.4) ()"(2")" e HD,)=m< -1/t -1, n< —1/s—1
for m,neZ,.

PROPOSITION 3.2. If —12<s=< —1/3 and —1/2<t< —1/3, then

the domain D,, is B-hyperbolic, and the holomorphic sectional curvature
of the Bergman metric is identically 2.

ProoF. In view of (8.4), the assumptions for s and ¢ imply that
the space H(D,,) contains all polynomials of degree < 1, and contains
no polynomial of degree = 2; therefore the properties (B.0) and (B.1)
hold and g, = 0, so that g¢,, =0. By (3.1) we get HSC = 2.

ExamMpLE 8. D* = D, U{(z', 2 eC% |2'|=1, |2*|=1, (2] — 1)
(|22~ — 1) < 1} (s < 0). Similarly to (8.4), we have
(8.5) @™ e HD) =m,n < —1/s — 1
for m,nec Z,.

PROPOSITION 8.3. The domain D = D*U{(z!, 2) € C*% |2'| < 1, |2*| < 2}
with —1/2 < s < 0 is B-hyperbolic but mot K-hyperbolic.
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ProOF. The assumption for s and (3.5) imply that all the polynomials
of degree = 1 belong to both H(D*) and H(D); therefore D satisfies (B.0)
and (B.1). Furthermore, since D contains a complex line Cx {1}, it is
not K-hyperbolic.

By Propositions 3.1 and 3.3 we see that for Reinhardt domains there
is, in general, no relationship between K-hyperbolicity and B-hyperbolicity.
It is noted that if a domain is B-hyperbolic, and if the holomorphic
sectional curvature of the Bergman metric is bounded from above by a
negative constant, then the domain is K-hyperbolic (cf. [11; p. 61]).

REMARK 3.4. The following domain ([14; p. 415]) also satisfies the
same property as D in Proposition 3.3:

D = {(z, 2)eC% |2 < exp(—[2'["*)} (s>0).
Indeed, all polynomials belong to H(D), and the Bergman kernel is given by
— 1 - (n + 1)'(m+l)+l 1,71\ m( 42,5,2\n
K(z, ) = — wr ) ,
& ®) = 2 s Tsm £ Iy & ) EP)
while D contains a complex line Cx {0}.

Finally, we give an example of a bounded pseudoconvex Reinhardt
domain for which the holomorphic sectional curvature of the Bergman
metric possesses a positive value. Let D be a bounded proper Reinhardt
domain in C* with a real representative domain 2. For m,neZ,, set

(3.6) aun = (| ymrymsidr ndr)

Then the formula (3.1), together with Theorem 2.2, implies the following:
(R,) The holomorphic sectional curvature HSC of the Bergman metric

on D at the origin O is given by
HSC((8,)0) = 2 — 4ay(ay®® + 0,0y + @y (e + agy) ™

for v = (@, v®) € C* — {0} with = = |2'|}, ¥y = |V*].
Ry) If ay = ay, Ay = ay, and 2a, < a,, then

niion HSC((&,,)O) =2 — ay(2ay + a'n)/ago
max HSC((d,)0) = 2 — 4auay/ai, .
v£0
EXAMPLE 4 ([8]). The domain D(N) = {(z, 2*) € C* |2'|"" + |2*|"" < 1}
(N e N) is pseudoconvex, and the values a,, of (3.6) for this domain are

4m +n + 2)Nm +n + 2) — D!
NWNm + 1) — DI (N(» + 1) — 1)!

Amn =
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Since 2a,, < a,,, by the formula in (R,) we have

min HSC(@)) <2 - £ 11 (1 + 577=) <2 - 5{3)

e s0020 =2~ 22 (1 () 2~ 4(2)"

From this we get the following.

=1

PROPOSITION 8.5. For any interval [a, B]C(— o, 2), there exists a
bounded pseudoconvex Reinhardt domain in C* for which inf HSC < a
and sup HSC > g.

REMARK 3.6. It is well-known that there exist homogeneous, bounded
domains for which max HSC = 0. For example, the Siegel domain DJq]
in C**9, ¢ = 3,4, .-+, considered in D’Atri [6; §4] satisfies min HSC =
—2/3 and max HSC = 1/8 — 2/(q + 3).

Now, let C be the Carathéodory metric on a bounded domain D.
Then the following is well-known (Hahn [8], Burbea [4], [5]):

(8.7 C*< p,, on T(D)— {the zero section} .
Moreover, the following is also known ([4; Theorem 2]):
(3.8) 4C* < (2 — HSC)p:, on T(D) — {the zero section}.
The assertion (3.8) is equivalent to 4C* < g, by (8.1). As a corollary to
Proposition 3.5 we get the following assertion concerning the opposite
inequality of (8.7):

COROLLARY 3.7. For any a > 0, there exists a bounded pseudoconvex
Reinhardt domain in C* for which C* Z ap,,.

Proor. It follows from (3.8) that

inf C(X)*p, (X) < 27%2 — sup HSC)"*.

XeT(D),X+#0

Hence, the desired assertion follows from Proposition 3.5.
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