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1. Introduction. The purpose of the present paper is to give as-
ymptotic expansions as t—c of the fundamental solution of a diffusion
equation in R".

Let

1.1) A= % a;4()0;0 + z=', b,(@)d; + c(@)

be an elliptic operator satisfying the following condition (A). Here §;=0/ox;.

(A.I) There exists a positive constant ¢, such that 3};.a;(2)&¢, =
¢, |&* for all x, £e R".

(A.II) The functions a;(x), b;(x), c(x) are real-valued bounded func-
tions on R" which are uniformly Holder continuous with exponent @
0<6=1).

(A.III) There exist positive constants o and M such that for all
re R

2 3]aa®) = dul + 3 @ |b@)| + @*le@)] < M),

where §,, is Kronecker’s delta and <{x) = (1 + |z[)**. Let U(t, x, y) be the
fundamental solution of the diffusion equation

1.3) 2.UC, a,y) = AU, x,y) in (0, <) X R*, U@, 2,9 = —1y),

where 0, = 0/ot and 06(z) is the delta function. For ¢ in R', we denote
by [o] the largest integer smaller than or equal to ¢. One of our main
results is the following theorem.

THEOREM 1.1. Let c¢(x) = 0 and U(t, x, y) be the corresponding funda-
mental solution. Then for any o with 0 < o < p/2 there hold the following
formulas for all t > 1 and (z, y) € B*":

(i) For m odd,

(1.9 U, o,9) = 56U, ) + Tt 2,9)
1.5) |Uite, )| < M@ + @),
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(1.6) 10:0,@t, x, ¥)| < Mt~ '(ay + <)), 1=0.
Here M; and M, are positive constants independent of t, z, and y.
(ii) For n even,

D Uy =3 5 il Uz, ¥) + Uilt, 2,9)

where U, satisfies (1.6) and U, satisfies the estimate
(1.8) | Up(, ¥)| = MK ) + yp)i*.

Furthermore, Uz, y) and Uy(x, y) are of the form X, fi(x)g,(y), where
S 18 a finite sum. In particular, Uz, y) for odd n = 3 or Uylx, y) for
even n 1s equal to a uniformly Holder continuous function Uy(y) satisfying
and determined uniquely by

9 A U= oneaw) - RopW) U@ =0 in B,
(1.10) U(y) = (4n)™"” + o(1) as |y[|—eo,
(1.11) U(y) > 0.
Here (1.9) must be considered in a distribution sense. For n =1, Uy(x, y)
18 equal to U(y) defined by
112)  Ufy) = 7"a(y) exp[rb(z)dz ](1 + exp[S’” b(z)dzD_l ,
” -0

where a(x) = a,(x) and bx) = —b,(x)/a,(x).

Theorem 1.1 will be proved in Section 4. Asymptotic expansions of
the fundamental solutions for the case c¢(x)%0 shall be given in Sections
5 and 6. We use the results there in [9] in order to solve a problem of
Simon [10].

Theorem 1.1 is useful in obtaining limit theorems for the diffusion
process X, with the infinitesimal generator A. Here we give only one
application.

APPLICATION 1.2. Let f be a bounded measurable function on R!
which has compact support. Then Theorem 1.1 shows that for any s > 0

(1.13) S:e”“e“ F@)dt = C,log(/s) + g(x) + (s, @) ,

where e*f(x) = SU(t, x, ¥ f(ydy, C, = EUO(y) f(y)dy, and for some 6 > 0

{x)~’g(x) € Lo , lgrol | {x)~%e(s, 2) ||z, = 0
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Thus Theorem 1 in [1, p. 447] and Theorem 1 in [5, p. 804] yield the
following limit theorems (i) and (ii), respectively.
(i) If f=0and C, > 0, then

(1.14) lim P{(co log t)-lg’ F(X)dr > r} —e, r>0.
—00 0

(ii) If C,=0and C, = gUo(y) F)9(y)dy # 0, then
(1.15)  lim P{(Cl log t)“‘”SZ F(X)dr > r} - 2-1g°°e—'u'du . reR.

Asymptotic behavior as t— of solutions of diffusion equations in R”
with ¢(x)—0 as |2|—o has been investigated to some extent. Concerning
the problem whether the diffusion process X, for A = 3 a;(%)d,0, +
>, b;(x)0; is recurrent or transient, some criteria of integrability near ¢=
o of the fundamental solution U(¢, =, y) were given in [3] and [4] (see
also references there). Simon [10] gave the rate of divergence of the
norm of e, A = 4 + ¢(x) in R*(n = 3), as a map from L. to L.. These
results are closely related to the problem of determining the leading term
of the asymptotic expansion as t—o of the fundamental solution. As
for the one dimensional case, the leading terms of the asymptotic for-
mulas were given by many mathematicians (see [2], [4], [5], [11], and
references there). Especially Eskin [2] gave the formula (1.12) for b = 0.
Little attension, however, seems to have been paid to the higher dimen-
sional case. The aim of this paper is to give complete asympotic expan-
sions for the higher dimensional case. The complete asymptotic expansions
given are new even for the one dimensional case.

The rest of this paper is organized as follows. In Section 2 we give
some lemmas for the free resolvent R (z) = (2 — 4)~'. In Section 3 we
investigate by modifying the method employed in [8] spectral properties
of the resolvent R(z) = (z — A)'. Using the results in Section 3 we
prove Theorem 1.1 in Section 4, where further properties of the funda-
mental solution are also given. The fundamental solutions for c¢(x) < 0
are investigated in Section 5. When n < 2, there is an essential difference
between the expansions in Theorem 1.1 and those for c¢(x) <0 (see
Theorems 5.4 and 5.5). Section 6 is devoted to the investigation of
the case that c¢(x) > 0 in a non-empty open set.

2. The free resolvent. We write D = (—%0,, -+, —10,) and (D) =
1 -4 Forrz,seR and 1 = p = oo,

2.1) Wt = A{f; 1f llwge = [[<2)* DY f @) |2, mm < oo}
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We write L, = W3*. For Banach spaces X and Y, B(X, Y) and C(X, Y)
denote the Banach spaces of all bounded linear operators and compact
ones from X to Y, respectively. We write B(X) = B(X, X). For0<d=m,
we put

(2.2) 2(©0) = {z€C; |argz| < ¢} .

Let A, = 4 and R,(2) = (z — A)™" for ze C\(—, 0]. We first recall
the well-known formula

2.3)  Ry(2)9(x) = (2ﬂ)‘"’ZS(Z"2|w = Y| K22 — yD9(y)dy ,

where 2'%|,_., =1 and K,,_,() is the modified Bessel function of the second
kind. That is, the function L = @x)=*(z"*/w)"*'K,,,_,(z"*w) is given as
follows:

(i) For n =1,

(2.4) L =kzf_‘,ld,,/zw"“z’”2 y ey = (=126 + 1)! .
(ii) For odd n = 3,
2.5) L = 3 dyso- e,
(—1)*/(4zk!) , n=3

dk/z = (_2)(%—3)/2(_1)k (n—3)12 .
(4c)»—Dr2f ) jl;]; k—-27+1), n

(iii) For n even,

\Y
ot

(2.6.1) L =n§2d,-w2"“‘"z" + f} e;w(log w/2 + f;)#¢
=0 j=n/2—1

n/2

+ Dl cwtizr At log 2z,
=0

(2.6.2) ¢; = (—4m)™"47j1(n/2 — 1 + I,

(2.6.3) d; = (4m)~ 2" H(—4)"I(m/2 — 2 — §)!/5!

(2.6.4) e, = (—4m) 2% kIn/2 —1+ k), k=j—n2+1,
_ _ _l k—l— n/2—l+kl

(2.6.5) f=r-HEL+78"1),

where 7 is Euler’s constant and log z|,-, = 0. Here and everywhere else
the convention is: > _;a, =0 when k < j.

The following lemma can be shown by usual calculations for pseudo-
differential operators. (For pseudo-differential operators, see [6].)
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LEMMA 2.1. R\(z) is a holomorphic function on 3 () to B(W5*, Wit™?)
Jor any 7,3€e R0 m <2 when 1 <p< o and 0 <m < 2 when p =1
or .

We have the following lemma for the operator E(t) defined by

@) E@)f (@) = Uxty| exp[~|o — y[/4t17 w)dy -

LEMMA 2.2. (i) E(@) can be extended to a holomorphic function on
3(z/2) to B(Wg*, W5*) for any 7,8€ R and 1 = p < . (ii) Let a be a
multi-index, 7 = 0,1 S p = o0,1/p'=1—-1/p,0 <06 <n/2,20 —n/p <s<
n/p’, and 0 < 6 < w/2. Then there exists a constant M such that for all
te X(0)

Mgzt~ [t >1

(2.8) | <DY*D*E(®) || 5(p;s,0-20) = {Mltl—uaurnz , t|<1,

where B(p; s, s') = B(Lj, Ly).

PrOOF. (i) is clear. We shall show (ii) only for « = 0,7 =0, and
0 < s < 20, since the proof for the other case is similar. With g(t, x, ¥) =
|(4mct)""* exp [—|x — y[*/4t]|, we obtain that for all t€ 3(9) and x e R"

Sg(t, z, Ydy = M, sup Sg g(t, x, <y "dy = MQA + |t))*,
k

where 2, ={y; 28 < (y) <2}, k=1, 2,---. This together with the
interpolation theorem (cf. [p. 89, Proposition 3.1, 7]) shows that for any
0 < r < n/2 there exists a constant M, such that

@9 |ot o @iy sma+ ), texo), sek.
With ¢’ = s — 20, we have by (2.9)

1B©F Iy < (sup{<er>at, 2, az)”

x (sup {gtt, 2, v) wy—aw)” (1w s @ray)
< ML+ 16D~ £z a.ed.

As for the asymptotic expansion of R,(z) as z — 0 with z¢€ 3(0), 0 <
0 < w, we have the following lemmas.

1/p

LEMMA 2.8. (i) For a multi-index a and o with |a|/2 =0 < (n +
la)/2 and |a| = 2, one has
a]—

2.10) D*Ry(2) = 5. #D"G, + 0" as z—0

=0
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with z€ X2(©0) in B(Wy*, Wi*), where ' — 7t <2 — |a] when 1 <p <
and 7' — 7 <2 — |a| when p =1 or «, and
20 —|la]l —n/p<s<n/p, §=s—20+|a|l, 1<p< xo;
20 —|lal —n/p<s<nlp, §=s—20+|al], p=1 or oo,
(2.11) o> lal/2 or |a]<2;
—np<s<nfp’, §<s, p=1 or o, c=la|2=1;
sfp—¢8p"=00r 20— |a|l—n, <s—20+|al, p=1or <.
Here and in what follows p’ is the conjugate of p:1/p' =1 — 1/p. Fur-
thermore, G; (0 =< j=<n/2—1) 1s an 1integral operator with kernel

d;lx — y[*"**, where the constant d; is given by (2.5) or (2.6.3).
(ii) For ¢ = (n + |a])/2, one has

[ol-1 fo_nj2]
(2.12) D*R\(z) = >, 2'D*G; + Zm 2"**i(log 2)*™ D*F'; + o(2°7")
3=0 =0

as z— 0 in B(W:*, W:*), where t, 7', p are the same as in (i),
(2.13) §s>20 —|a|l—n/p, < —20+|al+n/p,

e(n) =1 for n even and e(n) = 0 for n odd, 2*%,-, =1 and log z|,-, = 0.
Here F; is an integral operator with kernel c;lx — y|*, where the con-
stant c; 18 given by (2.6.2) for n even, and is equal to d,,_,.; given by
(2.4) or (2.5) for m odd; G, (j > n/2 — 1) for n odd is an integral operator
with kernel d;|x — y[*""*, where the constant d; is given by (2.4) or (2.5);
and G; (7 = n/2 — 1) for n even is an integral operator with kernel

e;|lx — y['(log | — yl/2 + 1),

where e; and f; are the constants given by (2.6).
(iii) Let 0 = (n + |a])/2, ¢’ = 0] for 08 Z and ¢’ =0 — 1 for 6 € Z,
e(n, 0) =1 for n even and o€ Z, and e(n, 6) = 0 otherwise. Then one has

a’— [o—n
2.14) D*Ryz) = S. #DG, + :]z"”‘”"(log 2™ DF; + 0(2°~(log )™

=0 i=

as z—0 in B(W:*, W5*), where ' — <2 —|a|,p =1 or «,
s=20—|a|l—n and § < —20+ |a] for p=1,
s>20—|al] and 8= —20+|a|l+n for p=co.

Proor. The formulas for G; and F; follow from (2.3)~(2.6).
We first show (i) for ¢ > [6] = 1. With the notation (2.7) we have

(2.15)

(2.16) Ry(2) = S“E(t)e-"dt
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for Rez > 0. Writing k = [o], we have
k"‘ (-]
@17)  R() = 526G, + S BOf . b)dt ,
3= 0

o k—1 -
G, = "BO(—tratiit, fuat) = e = T (—atyli1 .
For z = |z|e*** with |¢]| < 0/2 < /2 and 0 < |z| < 1, we obtain that
<D>r'-rDa§:°E(t)f,,(zt)dt

S J o

EIl+I2+I3'

By (2.8) and Taylor’s remainder estimate,

1L lagian < | ME=10 2 tyde < M2
0
Similarly,
| Elloginn < | M=o 2itydt < Mi2p= | mede < rjap.
On the other hand,
k_l . .
| Lllsgsan < |= Mt=o(1 + 35 (1216731 )at
11zl =0

g Mllzlo—lgmt—-(n—k)—ldt — Mlilzla——l .
1

Hence
rE(t)f,,(zt)dt — 0@z as z—0 with ze3()

in B(W3*, W5"*'). The same argument as above shows that
<D>r’—rDaneB(p; 8, 8') ’ j = 0) "ty k-1 ’
except for the case that /=0, — 7+ || =2, and 1 < p < oo,

In order to complete the proof of (i) for ¢ with ¢ > [¢] =1 it is
sufficient for us to show that

(2.18) {D)"~*D*G; € B(p; s, 8')
forj=0,7"—7+4+]a|=2,1<p< ~,and 2 — |a| — n/p < s < n/p’. But
let us show (2.18) for every 7/, 7, @, D, s, 8’ satisfying the conditions in (i)

with ¢ = 7 + 1, which is necessary for us to prove (i) for ¢ = [¢]. The
proof is somewhat long.
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Choose a Cg-function ¢ such that ¢(¢) = 1 in a neighborhood of zero,
and set

P=(1—¢D)D)"*D*G;, Q= g¢(DXD)"DG; .

Then P is a classical pseudo-differential operator of order ' — 7 + |a| —
2 — 24, and Q is a convolution operator with kernel which is a C=-function
majorized by a constant multiple of (& — y)¥*>-=+lad  Since (x)*P{x)~*
is also a classical pseudo-differential operator of order 7’ — 7z + || — 2 —
27 (£0if 1 < p < o, and <0if p =1 or ), the L,-boundedness theorem
for pseudo-differential operators (cf. [6]) yields Pe B(p; s, s’). Thus we
have only to show that there is a constant M such that

(2.18) (e —w—raay|  sMifly, reLs

where a =25 + 2 — |a|.

First we show (2.18') for p,s,s" with 1 <p =2,a — n/p <s < nfp’,
and s’ =s—a. With 2,={yeR"; 2/ < {(y) <2/*},5=0,1, .-+, we have
by Holder’s inequality that

| @l @ — sy

< <x>:"(§9j<x = wemrwyeroray)” (s wPdy)

Noting that p < »’ we have by Holder’s inequality that
1= @~(| @-werr@eroraprds
Qp 23

s (], @) ([, [, @@ = wer e dadyr

Split the domain of the above double integral into two parts: {|x — y| =<
ly1/2} and {jz — y| > |¥|/2}, use the fact that if |z —y| < |y|/2, then
ey < (y/2)7", and if |x —y| > |y|/2, then (o — yye ™ < (y/2) ™7,
and reduce the double integral to single integrals. Then we obtain that
I is estimated by a constant M* independent of 5 and k. Hence

(1,,| @, @ —wrway|a)” < u({ | rwray)”

where s = @ — n/p. Similarly, we get the above estimate for s = n/p’.
Thus the interpolation theorem ([7, Proposition 3.1]) yields (2.18") for
1 < p =< 2. This together with duality argument shows (2.18) for 2 <
p < oo. Second we treat the case that p=1,a >0,a —n < s <0, and
s’ =8 —a. Since {x — y)* ™ < |x — y|*", Sobolev’s inequality yields the
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estimate

]

I, @ = w=raa|

This implies that

S M(flle,, fel.

n/(n—a)

|, @=|{ - wrrway|ds < w1 £,

k

where M’ is a constant independent of k. On the other hand,
|, @] @ - wrwdy|de
2 RT

=, @da]_cw2y—Irw)idy

+ Ln(g |z|§|u|/2<x>a_ndx) w2 fWldy
= M| fll, -

Thus the interpolation theorem shows (2.18") for p =1 and a > 0, from
which (2.18") for p = « and a > 0 is derived. Third we treat the case
that p=1,a =0, —» <8< 0 and s’ <s. For any ¢ >0, we have by
Holder’s inequality that

sgp Ln<x>“ {x — Yy ™dx = Sm@c}'"“dx < oo,

This implies (2.18") for p=1,a=0,3=0, and s’ <0. On the other
hand, similar calculations yield (2.18') for p =1,a =0, and s = —n > §'.
This implies (2.18") for every s with —n < s <0 when p=1 and a =0
from which (2.18") for p = « and a = 0 follows. The estimate (2.18') for
the other cases can be shown similarly. This completes the proof of
(2.18"), and so the proof of (i) for ¢ > [o] = 1.

Now let us show (i) for 0 < ¢ < 1. Choose a Cy-function 4 such that
¥(0) =1 and Dgj(0) =0 for 1 < |a| <2n + 1, where  is the Fourier
transform of 4. Clearly, (1 — (D)){D)>*'*D*R,(z) € B(p; s, 8'). Elementary
calculatians show that the operator +(D){D)**D*R,(z) is a convolution
operator with kernel which is a C=-function majorized by a constant
multiple of

exp (—e|z["w — y))x — y)* ",

where ¢ is a positive constant smaller than ((1 + cosd)/2)>. Thus the
same argument as in the proof of (2.18) shows that

F(D){DY""D*Ry(z) = O(2°™") as z—0 with ze3(0)
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in B(p; s, s’) This completes the proof of (i) for 0 < o = 1.
It remains to show (i) for ¢ with 2 <0 =[0] < (n + |a[)/2. Note
that

@y D (R - £ #6,)5@)
= (—a @l re + el F@ends/@nr

for all Cy-function f. Thus the same argument as in the proof of (2.18)
shows that the above operator belongs to B(p; s, s”) for p, s, s’ satisfying
(2.11). This together with (2.18) shows (i) for ¢ = [¢] = 2. The proof
of (i) is complete.

We now proceed to the proof of (ii). Put

k
Ek+1(t) = E(t) - %t_nﬂ—jHj ’ k= 09 19 ctt

where H; is the integral operator with kernel |x — y|*/[(47)"*(—4)j!].
Then an argument similar to that in the proof of (2.8) shows that for
owithin + |a))2+k=0<(n+ |a]))2+ k + 1and s, s’ satisfying (2.13)
there exist positive constants ¢ and M such that for all ¢ € 3(9)

(2 19) ”<D>f’—rDaE (t)” < IMltl"a , Itl é 1
. k+1 B(p;s,s’) = {Mltl—a—g , Itl > 1 ,

where ¢ = max((z' — 7 + |a|)/2, n/2 + k). Let n be odd and n/2 + k <
0= (m+1)/2+ k. Then we have, in view of (2.17),

RB@) = 3, #6; = | B unlat)it

b (s By (8) (—a)r=0rts
S;“S =i eei(RUAEH; + 2(,,80 (=32 T 1 dt

+ | B wonn(atiat

This together with (2.19) shows (ii) for odd n and ¢ with#n/2 + k S 6 <
(m 4+ 1)/2 + k. In treating the case (m + 1)2+ k<o <2+ k +1, we
have only to decompose f_,..x(2t) into (—zt)"¥~2*/(n — 3)/2 + k)! +
fu—vrir(2t). This completes the proof of (ii) for n odd. Let » be even
and n/2+k=o<n/2+k+ 1. With E(t) = E(), we have

Ry(z) — "’zzfzsz,.

o (= ztyrri+i i (—zt)rr-1+i
_’Z%{SE()( /2_1+ )'dt + SIE1+1(t)(n/2_1+j)!dt}
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k 1 o
+ Zs { Sot—n/z—if,./ﬂj (Zt)dt + S t_n/z—jfn/2—1+j(zt) dt}Hj
= 1

+ (B ®fnalatidt

This together with (2.19) shows (ii) for »n even.
The assertion (iii) can be shown similarly. q.ed.

For Banach spaces X, and X, imbedded in a Banach space X, X, + X,
denotes a Banach space defined by

(2.20) X+ X =weX;e=0,+2,0€X,0,€X},
|| £z, = Inf {|l oo llo + 2, I 2 = 20 + 21},

where || - ||; stands for the the norm of X;. In the sequel we shall use
the spaces B(L:, L.) + B(L,, L3*) for s = 0.

LEMMA 2.4. (i) For a multi-index a and o with |a|/2 <o < (n +
|a])/2 and |a| < 2, one has

@.21) D*R,(2) — S, 2D°G, = O(z*~) as z—0
j=o

in B(L,, L,), where 1 < p < q =< < and
(2.22) nl/p — 1/q) = 20 — |a]| .

(ii) Let 0> (n + |a))/2, or 6 = (n + |a])/2¢ Z. Let e(n, o) =1 for
n even and o€ Z, and &(n, 6) = 0 otherwise, and ¢ = [c] for c¢ Z and
o' =0—1for o€Z. Then one has

[e—n/2]

(2.23) D*R,(z) — Elz"D"G,- - z"*ti(log 2)*™ D*F; = O(z°*(log z)*™)
7=0

i=o
as z—0 in B(L}, L.) + B(L,, L3*), where s =206 — n — |a|.

(iii) Let X ={feL; F,f =0}. Then Ry2)|x has a formula similar
to (2.28) in B(L:NX, L.) + B(X, Lz*"). Here x* = max(x, 0).

(iv) For an integer ¢ = (n + |a|)/2, (2.23) holds in B(W:°, W),
7 <.

Proor. (i) follows from (2.17) and the inequality
(2.24) | D*E@) |52,y = MIt|™, teZ(),

for p and ¢ satisfying (2.22). (ii) and (iii) follow from the decomposition
of E(t) used in the proof of Lemma 2.3 (ii) and the inequality (¢ — ) <
x> + {y). (iv) is shown by the inequality
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| D*E() || swyowse, < Mt 2min(|[“"2 1),  t€2(0). q.e.d.
We put
(2.25) R(2) = R(2) — G, for n=3,
R,(2) = R(z) — z**'(log 2)*F, — G, for n<2.
LEMMA 2.5. Let a be a multi-index with |a| =2 and ¢ > 1. Then

the following statements hold.
(i) For ¢ < (m + |al])/2, one has

- al—
(2.26) D*R(2) :[z_‘,lz"D“G,- + 0™ as z—0

wm B(W;*W5*), where v/ —t <4 — |a| when 1<p< o and o' —7<
4 — |a| when p =1or «,s =s — 20 + |a|, and s is a constant satisfying
(2.11).

(ii) Let m=1 for n =2 and m =0 forn =3, and 6 = (n + |a|)/2.
Then one has

~ [o]—1 [o—n/2]
@.27)  DRy2) = 5 #DG, + 3, 2 i(log 2y DF; + o(z"~)
j=1 j=m

as z— 0 in B(W:*, W3'*'), where ' —t <4 — |a| when 1 < p < o and
' —7t<4— |al when p=1 or «, and s, s’ satisfy (2.13).
(iii) Lemma 2.3(iii) holds with obvious modifications.

PROOF. Let ¢ be a C~-function on R" such that ¢(¢) =1 for [¢] = 2
and ¢(¢) = 0 for |¢| < 1. Then ¢(D)R,(2) is a pseudo-differential operator
with symbol —zg(&)[|£1*(z + |&)], from which the lemma is derived.

q.e.d.

3. Resolvent expansion. In this section we give some results on
the resolvent R(z) = (z — A)™*. Throughout this section the operator

A =jkzz=,la,-,,(x)3,~3k + ;b,(w)a,

satisfies the assumption (A). Main results of this section are Theorems
3.10 and 3.12 below concerning asymptotic expansions of R(z) as z—0.

We write 30, N) = {z€C; |arg(z — N)| < 6} and X(6) = X(5, 0). We
start with following lemma.

LEMMA 3.1. For any positive constant o, 0', S with 6 < w and 6’ < 6
there exist N = 0 and an operator-valued fumction R(z) on 36, N) with
the following properties:

(i) R(z) ts a holomorphic function on X(6, N) to B(W:*, Wit™*) for
any 7] <0,|s|=S5,0=m =<2 when 1<p< o and 0 <m <2 when
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p =1 or oo, which satisfies

3.1) (z— ARQR)f =f, feW;”,
3.2) Riz)(z— Ag=9, ge Witee

(ii) For any 1 < p < o there exists a constant M such that
3.3) I<D)"R(2) |lswzs = M|z|7*™*,  z2eZ(, N),

forall 0 =m <2, || <6, and |s] = S.
(iii) For any ¢ > 0 there exists a constant M such that

3.4 |I<KD)"R(@) |lswzs = M|z|tHmta2r - p=1 or o, 2z€30,N),
forall 0Em <2 —¢, || <@, and |s| = S.

Proor. Consider the operator A~ = ¥, ,az(x, D)o;0,, where aj(z, D)
is the regularizer of a;(x) (see [6]). Then A~ is an elliptic pseudo-dif-
ferential operator whose symbol is estimated from below by ¢,|£[*. Thus
we obtain by the standard calculus for pseudo-differential operators that
there exist N~ and R~(2) satisfying the properties in the lemma with
A, R(z), and N replaced by A~, R™(2), and N~, respectively. Since the
order of the operator A — A~ is less than 2, we can choose N so large
that for all 7 and s with |z| < #' and |s| < S, the norm of (4 — A™)R"(2)
in B(W5*) is less than 1 if z€ 3(6, N). Hence R(z) is given by

R(z) = i R (@A — AR @)Y

for ze X (o, N). q.e.d.
By virtue of this lemma the evolution operator ¢4 for A is represented
by
3.5) o4 = 1 S R@)evdz ,
27y Jry

where 7y ={N + re¥; —0c <r <0} +{N—1re®;0=r < «} for some
0<¢<72and N=0. Theorem 1.1 will be shown by deformation of
the contour in (3.5).

We write A, =4, V=A— A, and R,(2) = (z — 4,

LEMMA 3.2. R(z) is a meromorphic function on 3(r) to B(W*, Wrm*)
Jor any seR,0=m <2 when 1<p< o and 0= m <2 when p=1
or oo,

PrROOF. Lemma 3.1 shows that for any s and = with 0 < |z| <@
there exists N > 0 such that
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8.6) 1+ VRIN))1— VR(N)f =1 — VR(N)A + VRIN)f = f
for all fe Wi*. Since Ry(2) = Ry(N) — (z — N)Ry(z)Ry\(N),
3.7 1—VR(2) =0 — T()A — VR(N)),
T(z) = (z — N)VR,(2)R(N)(1 + VR(N)) .
By the assumption (A) and Lemma 2.1, T(z) is a C(L})-valued holomorphic

function on X(z). Since (1 — T(N))™* exists, this shows that 1 — T'(z))™
is a meromorphic function on 3(x) to B(L;). Hence

(8.8) R(z) = R(2)1 + VR(N))A — T(z))*
is a meromorphic function on 3(x) to B(W}p*, Wm*). q.e.d.

LEMMA 8.83. Every z with Rez=0 and 2#0 is mot a pole of
R(?).

PrROOF. We have only to show that if » in L satisfies u = T(2)u,
then w = 0. By the imbedding theorem, u e W;»* for any 7, and p, with
7, <6 and 1/p, > 1/p — (2 — 7))/n. Similarly, u € W;2* for any 7, and p,
with 7, < § and 1/p, > 1/p, — 2 + 7, — ©;)/n, and so on. Thus, ue W2
for any 0 < ¢’ < 8. Then we have by (A. III) that we Wi-tr, Next,
we Wi+t and so on. Hence we obtain that we WZ* for any v > 0.
Putting v = R,() 1 + VR(N))u, we have that veC*(R"), v(x) = o(1) as
|x] — o, and Av = zv. Setting w(t, x) = exp(\t + ipt)v(x) with z =\ +
1, we have that

W = (Z, @100, + >, bﬁ,)w , w0, z) = v(x) .
iE 7

Since » = 0, the maximum principle implies that » =0 if » #0. (For
the maximum principle, see, for example, [3].) Since z 5= 0, we have that
¢+ 0 and w@n/y, ) = w0, ). On the other hand, since v(x) goes to
zero as |x| — o, Rew(0, ) attains the maximum or minimum at some
point 2°. Thus the strong maximum principle for parabolic equations
yields that Rew(t,x) = 0. Similarly, Imw(, ) = 0. Hence v(x) = 0,
which implies that » = 0. q.e.d.

LEMMA 3.4. 1 — T(z) =1 — T(0) + o(1) as z — 0 with ze 3(0) in B(L%)
for any 1= p =< o and 1 — n/p < s < n/p’ + p, where
T(0) = NVG,R(N)(1 + VR(N)) .

Proor. Since D*F, =0 for |a| = 1, the lemma follows from Lemma
2.3.

LEMMA 3.5. (1 — T(0))™ exists in B(L3), where
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3.9) l—n/p<s<n/p+p when 1<p= oo,
l1-n=s<p when p=1.

ProOF. Since T(0) is a compact operator by Lemmas 2.3 and 2.4,
we have only to show that 1 — T(0) is injective. Let u € L} satisfy
(8.10) u = NVG,R(N)1 + VR(N))u .

The same argument as in the proof of Lemma 3.3 shows that uwe W2
for any 0 < 6’ <6 and r < n + p.

We first treat the case n = 2. Putting v = G,(1 + VR(N))u, we have
that v € C¥R") and Av = 0 on R". Furthermore, as |x| — o

(8.11) vx) = O(lz|*™) for » =38,
(3.12) v(x) = Nlog || + ¢+ 0o(1) for n =2,

where A and g are constants. Thus the maximum principle for elliptic
equations shows that » = 0 when n = 3, which implies that v = 0. This
completes the proof for » = 3. Next we consider the case n = 2. Since
the coefficients of the operator A are real-valued, we may assume that
v is real-valued and ), £ € R'. The maximum principle shows that for any
& > 0 there exists r, > 0 such that for all r = r,

Mogr+p—e<ov@ <nlogr+ p+e, | < 7.

This implies that v(x) = g, from which we have that u = (1 — VR(N))Ak =
0.

Finally we treat the case n =1. Putting v =21 + VR(N))u and
w = (d/dz)Gw, we obtain that ve W2 for any ¢’ < § and » < n + p, and

3.13) w@) = —+{" swdy + L vwiy,
(3.14) w'(x) — bx)w(x) =0 .
Here we have used the notation: A = a(x){(d/dx)* — b(x)(d/dx)}. By (3.13),

limw@) = £n, A= —%Sm v(y)dy .

z—too

On the other hand, (3.14) yields w(x) = —\ exp B b(y)dy:l. Thus

A= —\ expD:b(y)dy] .

This implies that \ = 0, for b(y) is real-valued. Hence w = 0, from which
we have that u = (1 — VR,(N))w'/2 = 0. q.ed.
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We write K =1 + VR(N))A — T(0))"*. Obviously,
= (1 — VGy) e B(L;, W;*)

where 7=0 when 1 <p < o0,7<0 when p=1 or oo, 1—n/p<f<
n/p’+ o when 1< p=<o,and 1 —n<=s<p when p=1. With Ryz)
defined by (2.25) we obtain the following lemma by Lemma 2.5.

LEMMA 3.6. For any z in X(0) with |z| sufficiently small
(3.15) 1 - VE®EK)™" = 3 (VR@K) in BLY,

where 1 < p < o0 and 1 —n/p < s < n/p’ + p.

By virtue of this lemma R(z) near z = 0 is given by
(8.16) R@) =3, R,(2)K(VR,(2)K)’
i=0

in B(L;, W;*), where 1= p=<o, 1—n/p<s<n/p+p,7=2 forl<
p< o, and <2 for p=1 or . In order to get the asymptotic
expansion of R(z) as 2z — 0 we need more precise information on (1 —
VR, (2)K)™.

When v = 1, K is given by

3.17.1) Kh(z) =%—b(x){ﬂexp[g’ b(y)dy]—Si epr b(z)dz]héy;dy}

@.17.2) H= S: expB b(z)dz] h(y)dy / + exp[g_mb(y)dy:'} .

Here we have used the notation: = a(x){(d/dx)* — b(x)(d/dx)}. Since
the formula can be shown by elementary computations, we omit the
details. Using (38.17) we get:

LEMMA 3.7. When n =1, Ke B(L:) for any p and s satisfying (8.9).
LEMMA 3.8. Let n=1. For 0 < ¢ < p/2 and r < p one has

3.18) (1 — VR@DK)" — 1 =3 2"C; + 0@") as z—0

in B(L¥, L?) + B(L,, L7™*°) (cf. (2.19) and (2.20)). For 1 < p < =, (3.18)
holds im B(L;, L;) + B(L,, Ly™), s > 20 + 1/p', with O(2°) replaced by
o(z°%).

ProOF. We have
(3.19) VRy(2) =1 — a(x) + [2(a(®) — 1) — a(x)b@)(d/dx)]|R\(2) .
Thus, VEy(2) = 2(a(®) — 1)R,(2) — a(®)b@)(d/dx)(R,(2) — G,). Choosing 7 so
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that 0 < 7 < min (g, 1/2), one has, in B(L¥, L) + B(L,, L7™%),
| (VRo(z)KL[a/Z.:,]H( VR@K) = o) as z—0.
On the other hand, inductive argument shows that for any j =1
(3.20) (VE,(2)K): = fg”lzwcﬂ =0@) as z—0

in B(L¥, L)+ B(L,, L;~*). This proves (3.18). The estimate for 1<p<
is derived similarly. q.e.d.

LEMMA 8.9. Let n be odd and 0 <6 < m. Then the following state-
ments hold.
(i) For 0 <o < (0+m—1)2, one has
~ 20]
3.21) 1 —VR,@K)" — 1= 32"C; + 0@z*) as z—0
i=1
with ze X(0) in B(L3, L}), where C; = 0 for j odd and j/2 < n/2 — 1 and
(8.22) 1=p=<L,8>20+1—1n/p, r<p — 20 + min(s, n/p’) .

Furthermore, when p=1,s =20 +1—n, and r < p — 20 + min(s, 0),
(8.21) holds with o(z°) replaced by O(z°).
(ii) For 0 <o <mn/2, one has
[20]

(3.23) (1 —VR()K)™" — 3,27C; = 0(z°) as z—0

with ze 2(0) in B(L,, L;), where C, =1,n(1 — 1/q) = 2 and r < p.

(iii) For m/2=<oc<(0+m—1)/2, one has (3.23) in B(Li L.) +
B(L,, L), where s =20 —n and r < p.

Proor. (i) follows from (3.15) and Lemma 2.3 along the line given
in the proof of Lemma 3.8. (ii) is derived by (2.21) for |¢| =2 and a
similar estimate for D*R,(2), |a| =1, in B(L,, L}*), 0 < e £ 1. (iii) is shown
similarly. q.e.d.

THEOREM 3.10. Let n be odd. Let 0 < 6 < w and a be a multi-index
with |a| £ 1. Then the following statements hold.

(i) For 1+ |a]))2< o< (0+n+ |a])/2, one has

o]—
(3.24) DR() = 3, #9°D"B,, + 02" a5 2—0

j=—1
with ze 3(©0) in B(L, L), where
(3.25) B,,.,=FK, Bj,=0 for j odd and j2<m/2-1,
826) 1<p=<o, $>20—|al—n/p, r<min(s, n/p) — 20+ |a].
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Furthermore, (3.24) holds with o(z°~*) replaced by O(z°~") in the following
cases:

(1) A+]a))2<o<n+|al))2,r=38— 20 + |a|, and s satisfy-
ng: 20 — |lal —n<s<0 when p=1,20 — |a| <s=n when p= o,
20 — la| —n/p <s < n/p when 1 < p < oo,

(2) m+]a)2=sc<(e+n+|a))2,p=18=20~|a|—n,7r<
—20 + |al.

(3) m+lal)2=oc<(e+n+ |a])/2,p=c,8>20—|al,r=—20+
la| + n.

(ii) Let (m + |a])2<o<(@+n+ |a)/2, or a=0 and o= n/2.
Let s =20 — n — |a|. Then one has, in B(Li, L.) + B(L,, L3®)

8.27)  D'R@) — 3. 27DB,, = 0@ as z—0, z2e30).

j=-1

(iii) For ¢ = (n + 1)/2 and |a| = 1, (8.27) holds in B(L,, W5°), where
<0 forn=8and <0 for n=1.

PrOOF. The theorem except for » =1 and o = (1 + |«a])/2 follows
from (3.16), Lemmas 3.8, 3.9, 2.3, and 2.4 (ii & iv). Let us show (ii) for
n=1and ¢ =1 + |a])/2. By the resolvent equation,

(8.28) R(z) = Ry(z) + Ry(2)(1 — VRy(2))'VR\(2) .
(3.19) yields
(8.29) VR(2) =01) as z—0 in B(L, L))

for any r with 0 < r < p. By Lemmas 3.8 and 2.4(ii),
DeRy(2)(1 — VR,(2))™ = O(z'«!-22) ag 2z—0 in B(L], L) .

This together with (3.28) and (8.29) implies (ii) for n =1 and ¢ = (1 +
|a|)/2. A similar argument shows the last half of (i). q.e.d.

We now proceed to investigate the case n is even.

LEMMA 8.11. Let n be even. Then the following statements hold.
(i) For 0 <o < (0+ mn—1)/2, one has

[o] [25/n

~ 11 1 .
(330 (- VE@K)™ —1=3, 3 #ilog*2Cy + o)) as 20
j=1 k=

wn B(L, L), where p,s, r are the same as in (3.22). Furthermore,
(8.30) holds with o(z°) replaced by Oz°) for p=1, s=20+1—mn,
r<p0—20+min(s,0), 6 —n/2+#0,1,---, 0< g < (0+n—1)/2; qnd for
c—n/2=01,.-- <(0p—1)2

33) (A-VE@K " -1=3% "5 2logtzC, + 0 log 2)

=1 k=(j—0o+1)t
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as z— 0 tm B(Ly" ™, L), r < p — 20. Here and everywhere else x+ =
max(z, 0).
(ii) For 0 < 0 < m/2, one has

(8.32) (1 - VR(DK)" — 51#C, = 0@) as 2—0 in B(L, L),

where Cp, =1, n(1 — 1/q) = 20, and r < p.

(iii) Let nf2=<o<(0+n—1)/2, u(e) =0 for c¢ Z and p(o) =1 for
oc€Z,NMx) =1 for £ =0 and \z) =0 for x < 0,8 =20 —n, and r < p.
Then one has, in B(L:, L%) + B(L,, L%™),

333) (1 -VR@K" -3 k“:z'"] 2 1og* 2C;, = O(2*(log 2)~7)
3=0 k=2(j—0)
as z—0.

PrROOF. Except for (ii) and (iii) for ¢ = n/2 the lemma can be shown
in the same way as Lemma 3.9. In order to prove (ii) and (iii) for o = n/2
we have only to note that Lemma 2.4 (ii) implies that for |a| =2

(3.34) I:D“Ro(z) —ﬂng“G,-]RO(N)(l + VR(N)) = O(z""log 2)

as 2 — 0 in B(L,, L). q.e.d.
Lemma 3.11 yields the following theorem.

THEOREM 3.12. Let m be even. Let 0 <o <mw and a be a multi-
index with |a] < 1. Then the following statements hold.

(i) For A+ |al))2<e<(0+n+ |a])/2, one has

[o]=1 [(25+2)/n]
(3.35) D*R(z) = g‘,) kg,) 2’ log *2D"By, + 0(z°™)
as z— 0 with ze 3(0) wn B(L:, L;) with p, s, r satisfying (1) or (2) with
0¢Z or (8) with d¢Z in Theorem 3.10(1); and for an integer o and
P, 8, T satisfying (2) or (3)
o—1 [(27+2)/n]

(3.36) D*R(z) = >, >, +z" log* 2D*B;;, + O(z°~" log z)

7=0 k=(j—a+2)
as z— 0 in B(L}, Lj).
(ii) For any ¢ > 0 one has, in B(L,, W5*°),

(3.37) R@) — S 2B, = 0@ logz) as z—0
i=o

with z e X(5).
(iii) Let m+ |a)/2=eo<(0+n+ |al])/2, o+ n/2, uo)=1 for
o€ Z and (o) =0 for 0¢Z. Then one has
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(3.38) DR@) -3 S 2ilogt 2D*By, = 0" (log 2)*)
7=0 k=[j—o+2]t
as z— 0 with ze€ X(6) in B(L:, L.) + B(L,, Lz*), s=20—mn — |a].
REMARK 3.13. Let us introduce the assumption

(A III'): {x)P(a () —05), <x)?*'b,(x), and {x)***c(x) are bounded functions
on R" which are uniformly Holder continuous with exponent 4.

- If we strengthen the assumption (A.III) to (A.IIT'), then Lemmas
3.2-3.9, 3.11, Theorems 3.10 and 3.12 hold also with L in the lemmas
and theorems replaced by W7° for any |z| < 4.

REMARK 3.14. If an exact formula for K = (1 — VG,)™ is obtained,
then the coefficients B; in Theorem 3.10 and Bj; in Theorem 3.12 are
determined exactly by (3.16).

For n =1, K is given by (8.17). For A = a(x)4, we have that K =
a(x)™.

4. The fundamental solution. In this section we prove Theorem 1.1
and investigate some properties of the fundamental solution U(¢, z, ¥):

0.U(t, x, ) = (Ej,kajk(x)ajak + Ejbj(x)aj) ut, =, v ,
U, z,9) =o —y) .

THEOREM 4.1. (i) U, =, y) is a Holder continuous function on
(0, =) X R*™ which is infinitely differentiable in t and twice differentiable
mx. Forany k=0, |a|<2, and t>0, 0%02U, x, y) ts uniformly Holder

continuous in (x, y) € B*.
(ii) For any t >0, seR', and m <2 + 6, there exists a constant

M such that

(4'1) ” U(t) *y y”W'{"” = M<y>‘ ’ Y€ R .
(iii) U@, z, y) > 0.
(iv) SU(t, 2, 9)dy = 1 for all (¢, )€ (0, ) X R* .
(v) gU(t, x, Y)dx 18 bounded on (0, o)X R" .

ProOF. Choose N so large that Lemma 3.1 holds for N replaced by
N — 1. Since (N — A)R(z) = (N — 2)R(z) + 1, we have by Lemma 3.1 that
for t >0

42 Ut o y) = _2_}5 ST ¢*(N — 2" R)(N — A)6 — y)dz ,

(4.3) Yy ={N + re?; —c0o <r <0} +{N—1re™;0=1r< o},
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where ¢ is a number with 0 < ¢ < #/2. This implies (i).
Since for any ¢ > 0 and s€ R' there exists a constant M’ such that

10C¢- =) lwpes = M'<y)*, yeR",

Lemma 3.1 and (4.2) show (ii).
By the maximum principle for parabolic equations, U(t, z, ¥) = 0 for
t, x, ¥) € (0, ) x R». We have that for and 0 <z < ¢

Utt, z, y) = SU(t — 1,2, 2)U, 2, y)dz .

Since there exist z€(0,¢) and an open ball B such that inf {U(z, 2, ¥);
zeB}=¢> 0,

U, =, 9) = CSBU(t — 7, %, 2)dz .

The strong maximum principle shows that the right hand side of this
inequality is positive, which proves (iii).

(iv) is clear, since 1 is the solution of the equation: (0, — A)u(t, x) =
0 and (0, x) = 1.

It is known (see [3, Theorem 4.5, p. 141]) that for some positive
constants m and M

4.4) Uk, =z, 9) = M exp[-m|x —y[/t], 0<t=1, @ yek™.
Thus (v) follows, if we show that
(4.5) le*llpzy = M, t>1,

since for every fixed ¢ > 0 the function SU(t, x, Y)dx is a positive Holder

continuous function of y. We first show (4.5) for n = 2. By the resolvent
equation,

(4.6) R(z) = B(2) + R(R)VR(x)KQ1 — VE,(K)™".
Lemmas 3.9 and 3.11 show that for a sufficiently small positive number ¢
(1— VR(@K)"—1=0(@) as z—0 in B(L,).
By Lemma 2.4(1), VR,(2) — VG, = O(z°) as z— 0 in B(L,). Thus
R(z) — Ry(?)(1 + VG,K) = O(z™'**) as z—0 in B(L,).

Since VG,K € B(L,, W;¢), this implies (4.5) for n = 2. Next let us show
(4.5) for » = 1. Lemma 3.8 implies that for a sufficiently small positive
number &

1—-VR(2)"*—K=0() as z2z—0 in B(L¥ L) .
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This together with (3.19) and (3.29) yields
(4.7 R(z) — R,(2)[1 + K1 — a(x))] + S(z) = O(z™***)

as z— 0 in B(L,), where S(z) = R,(2)Ka(x)b(x)(d/dx)R,(2). We have that
Ry(2) and (d/dx)R,(z) are integral operators with kernel

(42)"* exp [—2"* |z — y|]
and
(1/2 — H(x — y)) exp[—2"*|x — ¥|] ,

respectively, where H(w) =1 for w = 0 and H(w) = 0 for w < 0. Calcu-
lating the kernel of the opertor

STOS(z)e"dz/Zrci
by using (8.17) and the formula
Sro(4z)“/2 exp [— 22\]e*dz/2nt = (Amt)~"* exp [ —M\*/4t]
for any A =0 and £ > 0, we get

|

This together with (4.7) implies (4.5) for » = 1. The proof of (v) is now
complete. q.e.d.

=M, t>0.

ST S(2)et*dz[2m1
0

B(Ly)

To prove Theorem 1.1 we need the following well-known lemma.

LEmMMA 4.2. (i) For ¢ >0 and t > 0,

4.8) 1 ST e”2° ' dz = rn'sinon I'(o)t™°,
0

271

where I'(o) is the gamma function.
(ii) For t > 0 and monnegative integers j and k,

I S P S iy m k d \*™sinorw
49) - Sr.,e zilogtzdz = 3% t~(~log ) (m (%) EBIE L(0) gmirn

ProOr OoF THEOREM 1.1. Lemmas 3.1, 3.3, Theorems 3.10, 3.12 and
4.1 yield

4.10) UG, o, y) = ?}; ST (N — 2){(N — A)"R(2) Uz, =, y)dz

for t>1,0<7<1,1=0, and N> 1.
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Let n be odd and n/2 < r < (0 + n)/2. Then Theorem 3.10, (4.1),
(4.8), and (4.10) show that

@W1)  Ule,9) = 3% m(—D" P )2 + )t — o)
=0

X [Bn/2-1+k U(Ty x, y)] + Wr(t’ T, y) ’
(4.12) (W@, 2, 9)| = Mt (<x) + <) ™.

This yields (1.4)~(1.6). Since B,,_,,, are clearly of finite rank, Uz, y)
is a function of the form J,f,(x)g,(y). We have from (4.11) that

Uz, y) = z7(—1)*2'(n/2)B,,_, Uz, z, ¥) .

By 3.25), B,,_, = F,K with K= (1 —-VG,)™*. Since F,=4d,,_,{-,1) and
e = (4nt)"2{-, 1) + o(t™*?), we have that

(=12 (n/2)d,-, = (47)™" .
Hence Uyz, ¥) = U,(y) with

(4.13) Uw) = Un) | KU, 2, y)da

for any 0 < 7 < 1. This together with (8.17) yields (1.12). Next let us
show (1.10). Since K =1 + VG K, we have by (4.13) that

(4.14) dn)Uyy) = SU(Z', z, y)dz + S VG.KU(z, z, y)dz .
We claim that

(4.15) HU(‘L', z, y)de — 1‘ <M, 0<t<1l, yeR".
With [a*(¥)]; . = [ax®)]5}: and a(y) = det[a?*(y)]; ., put

(4.16) H(, z, ) = a(y)*(4xt)~"" exp[—j%a""(y)(w,- — Y@ — Yiu)/4t] ,

(4'17) J(t; z, y) = (at - Az)H(t’ X, y) .
Then elementary calculations show that
(4.18) Ht,z,y) >o(x—y) as t—0,
(4.19) SH(t, &, y)de =1,
(4.20) S[J(t, 5, y)|de < Mi*, 0<t<1l, yeR.

By (4.17) and (4.18), we have that
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Uz, x,y) = H(z, x, ¥) — Sr S Uit — t, x, 2)J(&, 2z, y)didz .
0
This together with (4.19), (4.20), and (4.4) show the claim (4.15). Given
€ > 0, we can choose 7 > 0 so that

4.21) ISU(r,w,y)dx—1{ <e, yeR.

Since VG,K € B(W*, L,) for some m >0 and s with max(1—n, —p) <s <0,
(4.1) shows that for any y with |y| sufficiently large

\SVGOKU(r, z, y)dx\ < M) <e.
This together with (4.21) and (4.14) shows (1.10). We have that for any
¢ € Cy(R™)
| v aswiy = tim [ Ut, 0, 1) Apw)dy = lim t70,649(@) = 0 .

This proves (1.9). Since U(t, z, y) = SU(t —7,%,2) U, 2, y)dz for t > 7>
0, we have that

(4.22) v = | U@ UG 2 vz

By (1.10), there exists N > 0 such that Uy(z) > (4x)™" for all z with |z| >
N. Thus (4.22) shows that

U@ > @n| U,z 92> 0,

which proves (1.11). It remains to show the uniqueness: if uniformly
Holder continuous functions U,(y) and Uy(y) satisfy (1.9) and (1.10), then
U(y) = Uly). Put w(y) = U(y) — Us(y). Then, A*w(y) =0 on R" and
w(y) = o(l) as |y| —» <. We have
(4.23) dw(y) — G, V*w() =0 on R".
Choose 0 < & < @ and ¢,(¢) in C*(R") such that ¢y(&) =1 for|&|= N+ 1
and ¢5(&) = 0 for |¢]| = N. With @,(y) = a;(y) — 0;; we have that

G, V*w(y) = % $x(D)G0,0,{D)°[{D)~* @ ;n(y)w(y))]

+ 200 — 6n(D)GDAu@s(y)w(¥)) + Z] Gd;(b(y)w(y)) -

Given ¢ > 0, we can choose N so large that the L.-norm of the first
term of the right hand side of the above equality is smaller than e,
for
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on(D)G0;0,{(D)* =0(1) as N— oo in B(Ls).

Since the second and third terms belong to L7 for some 0 <7 <
min (o, n — 1), we get

|G, V*w(y)| < 2 for |y|>1.

Hence w(y) — G,V*w(y) = o(1) as |y|— o, which together with (4.23)
implies that w = G,V*w. Since 1 — VG, is a bijection on L{***”2 and L.C
Lyt this shows that w = 0. That is, U,(y) = Ui(y). This completes
the proof of Theorem 1.1 for odd =.

Let n be even and #/2 < r < (0 + n)/2. Then Theorem 3.12, (4.1),
(4.9), and (4.10) show that

[r—n/(2] [27]n]

(4.24) Ut 2 9) = > 2 (t— )7 (~log(t — 7))*

3=0
[24/n]+1

X lcjlen/2—1+jl Ui, z,y) + W, x,9),

=%+

l d \'*sinzr
Cjkl - (k >('l_i?> T F(r) r=n/2+j !

where W.,(t, z, ¥) is a function satisfying (4.12). Since Uy(x, y) = Uy(y)
with U,(y) defined by (4.13) holds also for n even, (1.9)~(1.11) have been
shown already. It remains to prove (1.8). We have by (38.16) that the
operator B,,_;.; is a sum of operators of the form

-1 m
FKTIVF.KIIVGK 20, p21,921,mz0,
i=1 i=1
(n/2—1)l+#+#1+ + v+ +vm=n/2——1+j,

and operators of the form
GEIVF,KIVGKv20,121,%,21,m=0,
M2 =D+ m+ -+ vy + v, =n2-1+7,

and operators which we obtain by changing the order of products in the
above ones with fixing F',K and G,K. Note that the maximum of the above
indices g, v, fty, +++, vy, =+, Y, i8 7 — (I — 1)n/2, which is less than or equal
to j —nk/2 if | =k + 1. This together with (4.24) implies (1.8). q.e.d.

REMARK 4.83. By Remark 3.13, if we strengthen the assumption
(A.III) to (A.IIT"), we can calculate the asymptotic expansion of U(t, x, y)
by the formula more direct than (4.10):

1

(4.25) Ui, z,y) = o

Sr ¢*R(2)0@ — y)dz .
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Hence the formulas (4.11) and (4.24) hold with ¢ — z and U(z, z, ¥) replaced
by t and é(x — ), respectively.

REMARK 4.4. By (4.11), (4.24), and Remark 3.14, the functions Uj(z, ¥)
and Uj(x, y) are determined exactly if an exact formula for K is given.

EXAMPLE 4.5. (i) for n =1, U/(y) is given by (1.12). (ii) Let A =
a(x). Then we see from the characterization (1.9)~(1.11) of U,(y) that
U(y) = (dn) " a(y)™. (ili) For A = 3};,0,a;,®)d:, U(y) = (4rx)™".

The following theorem can be shown in the same way as Theorem 1.1.

THEOREM 4.6. Let a be a multi-index with |a] =1, and 1/2 = 0 <
(0 + 1)/2. Then the following asymtotic formulas as t — o hold.
(i) For m odd,

[o N
(4.26) DU, v, 9) = 3y t*-DsUy(a, ) + D20t 2, ) ,
(4.27) | DsUy(w, 9)| < Mo + @),

4.28)  |8D:U,@E, %, y)| < Mt ((x) + <pd), 1=0.

(ii) For n even,
o] [27[n

] ~
(4.29) DiUG, =z, y) = 2, 2t logitD; Uz, y) + DU, 2, ) ,

J=1 k=0
where DU, (t, x, y) satisfies (4.28) and
(4.30) | DsUs(x, )| < My(Ca) + Cyy)im .

THEOREM 4.7. There exists a constant M such that for any multi-
mdex a with |a| <1l and 1<p<qgE

(4.31) HD“e’A”B(LPLq) < Mt-wr-vonr-lals £>0.

PROOF. We first treat the case @« = 0. The inequality (4.31) for p =
q = o follows from Theorem 4.1(iv), and that for p = ¢ = 1 follows from
(v). Thus the interpolation theorem shows (4.31) for1 < p =q <. The
estimate for p =1 and ¢ = ~ follows from (4.4) and Theorem 1.1 for
o = 0. Hence the interpolation theorem shows (4.31) for a =0 and 1 £
p=q= . In the same way as in the proof of Theorem 4.1(v) we
obtain that

(4.32) §|D:U(t, z, y)|ds < Mt~ §|D: Utt, x, y)|dy < Mt~

for |a| =1, where M is a constant independent of (¢, z, %) in (0, o) X R*
(in proving the second inequality of (4.32), we use B(L.) instead of
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B(L,)). Thus (4.31) for |a|=1 is derived in the same way as above. q.e.d.

THEOREM 4.8. Let n be odd. Then the following statements hold.
(i) Let a be a multi-index with |a| <1 and |a]2 <0 < (0 + |a])/2.
Then, for all t>1 and f e L¥

(4.33) | Dies @) — St DsU e, @Iy
= M (@ + @ f@)ldy -
(ii) Let0 =0 < (0 + 1)/2. Then, for allt > 1 and f € L¥ satisfying
(434 |uw @iy = o

(4.83) for a = 0 holds with ({x) + <{¥))* replaced by (x> " + (y)¥.

PrOOF. (i) follows from Theorems 1.1 and 4.6. If f satisfies (4.34),
then it follows from (4.13) that

SKB Utz, 2, ) f(y)dy]dx —0.

Using (4.10) and (8.16) we thus get (ii) for ¢ = 1/2. Since (ii) holds for
o = 0 by (i), the interpolation method shows (ii) for 0 < ¢ < 1/2. q.e.d.

The same argument as above yields:

THEOREM 4.9. Results similar to Theorem 4.8 hold also for m even.

5. The case that c¢(x) <0 and c(x) £0. Let A=3);,0a;(®)0;0, +
> b;(®)9; + c(x) be an operator satisfying the assumption (A) and the
condition

cx) =0 and ec(x)#0.

Let U(t, x, y) be the fundamental solution for A.

THEOREM 5.1. U(t, x, y) has the properties (i), (ii), (iii), (v) in Theorem
41 and (v): SU(t, 2, y)dy <1 on (0, =) x R

PROOF. (i)~(iii) is shown in the same way as Theorem 4.1 (i)~ (iii).
The comparison theorem together with (iv) and (v) in Theorem 4.1 yields
@iv’) and (v). q.e.d.

THEOREM 5.2. The inequality (4.31) for a =0 holds forany 1 < p <
q = oo,

PROOF. The comparison theorem and Theorem 4.7 show the theo-
rem. q.e.d.
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THEOREM 5.3. For any 0 < g < p/2 there hold the following formulas
for all t > 1 and (x, y) € R*™:

(i) For odd m =3, (1.4)~(1.6) hold. Furthermore, Uiz, y) is a
finite sum of fumctions of the form f(x)g(y). In particular,
(5.1) Uy, ¥) = X(@)X(¥)

with A(x) and X,.(y) satisfying and determined uniquely by (X) and (X,),
respectively:
X) X(x) s a C*function such that
0<ix) <11, AX(x) =0 on R,
2x) =14+ O(|z]*™ as |x]—> .
X)) X« (®) 18 a uniformly Holder continuous function such that
Xi(y) >0, A*X,(y) =0 on R",
X)) = (4m)™" + 0o(1) as |y|— .
(ii) For even n = 4,

[o] [25/(n—2)]

(5.2) ut, z,y) = % ’Z‘,) t==4 log*t Uy (x, y) + U, @, x, 9) ,
63) | U, )| = M;({zy +yp)i— 2k,
(5'4) 135 ﬁ,(t, x, y)l = M,lt_"/z_”"l(<x> + <y>)20 , 1>0.

Furthermore, Uy(x, y) 18 a finite sum of functions of the form f(x)g(y).
In particular, Uy(x, ¥) = X(@)X,(y) with X(x) and X.(y) having the same
properties as in (i).

PrROOF. The proof is similar to that of Theorem 1.1. The results
analogous to Theorems 3.10 and 3.12 hold, and the -coefficient of
2**(log 2)*™ is equal to

1= GV)'FQ1-VG)™;
from which (5.1) is derived. Here and in what follows
V = JE/‘ (a_,;k(x) - 3_,-,,)3,—3;, + ; b,(x)a, + C(x) . q.e-d.

THEOREM 5.4. Let n =2 and 0 < g < p/2. Then one has

[a] . o
(5.5) Ui, =, y) = Z:) " l)gl(j " 790, U, ) + U@, 2, v) ,
IG,0) ={k, 1); 0=k =4,0=1<7+1}\{0,0)} for j<o,
I(jra):{(krl);oékéjy0§l§j+1,k—l22} fm’ j=0,

for all t >1 and (x,y)€ R*™. Here U,t, x,y) is a function satisfying
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(5.4), Up(x,y) 18 a finite sum of functions of the form f(x)g(y) and
satisfies the estimate

(5.6) |Usa(®, )| < M(<x) + {y))**1=" log 2(x) log 2(y) ,
and

5.7 @..(1) = zie*Im[(logt — logz —d + wi)!(—log t + log z + m)"]dz
6D 05ul) = S zl(log t —log z — d)* + «']

68 d=2v+(4n— 7 SV Blogl —yly X(y)dy]dx)(gc(y)dy)“ ,

2

where v is Euler's constant and X is a C:-function on R* satisfying and
determined uniquely by

(5.9) : X(x) >0, AX(x)=0 on R?,

(5.10)  A(x) = 7 *(log |x|/2 + 7) — (47)™*d + o(1) as |x|— o .
Furthermore,

(5.11) U, ) = X@)Xi () ,

where X,(y) 18 a uniformly Holder continuous function on R satisfying
and determined uniquely by

(5.12) Xey) > 0. A* Ay =0 on R*,
(6.13) Xu(y) = *(og [y1/2 + V) — (4n)"d, + o(1) as |y|— o,

(5.14) d, =27+ (47: - 71"”2“0(00) log m———=1L @ = yl VX *(y)dxdnyc(y)dy)_l

REMARK. If d =0, @,,,(t) =0 for any j and k, and @,,,(t) = O(log*~*~'t)
as t — oo,

The proof of this theorem and the following one will be given after
the proof of Theorem 5.6.

THEOREM 5.5. Let n = 1. Then the following statements hold.
(i) For any s with 0 <s <1 and s < (0 + 1)/2 and a nonnegative
integer | there exists a constant M such that for all ¢ > 1 and (z, y) € R*"

(5.15) [oiU(t, 2, )| < Mt™*"'m,(z, ¥) ,

where m,(x, y) = min (&)*, Y*) for 0 =s=1/2 and m,(2, y) = &) +

)~ min ($xp, ¥)) for 1/2<s = 1.
(ii) For any ¢ with 0 = o < (0 —1)/2, t > 1, and (x, y) € R*",

[o] s
(5'16) U(tr z, y) = z:l) t_8/2_j Uj(xr y) + Ua(t’ , y) ’
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(6.17) U, ¥)| = M) + <p)){x)<y) ,
(6.18) [T, %, 9)| £ Mt~ (&) + <y))y*'min (Cx), <¥)), 120,

where M; and M, are constants independent of t,x,y. Furthermore,
Uiz, y) is a finite sum of functions of the form f(x)g(y). In particular

(5.19) Ui, ¥) = (4r)72(X(@)X«(y) + v@)vs®) >0,
where X(z) 18 a C*-function on R' satisfying and determind uniquely by
(5.20) AX(x) =0 on R',

6.21) @) = 2-(|z| + d) + (x/2[x])SyVX(y)dy o) as |@]|— oo,

622 d=—(2-27|[V.l2 - vV x@dedy fewray)”,

L) 18 a uniformly Holder comtinuous function satisfying and deter-
mined uniquely by

(5.23) A, y) =0 on R',

628 L) =27y + d) + WR1YD|eVL@ds + o) as [yl o,

625  d.=—(2 -2 {[e@ls — v V0@ dody)(fewray)

(@) 18 a C*-function on R' satisfying and determined uniquely by (5.20)
and

(5:26) ¥(@)=2""0+@/2|2) |y Vy@dy+4 |1 Vedy+od) as [z] =,

and . (y) 18 a uniformly Holder comtinuous function onm R' satisfying
and determined uniquely by (5.23) and

(5.27) «;r*(y>=2-lf2y+(y/z|y|>§xV*«p*(x)dx+§—SX(x> V*ade+o(l) as |yl oo .

THEOR}EM 5.6. Let a be a multi-index with |a| =1. Then {x)dsU,(x, y)
and Sx)&:U,(t, z,y) for odd m = 3 satisfy the same estimates as Uj(x, y)
and U,@t, z, y).

The same statement holds also for even n = 4,n =2, and n = 1.

Proor. With A, = 3, ,a;@)0,0, + >;b,(x)0; and R,(2) = (z — A)™,
we have that
(5.28) R(z) = R,(z) + R.,(2)c(x)R(z) .

This together with Theorems 5.8~5.5, 3.10, and 3.12 implies the theorem.
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q.e.d.

The rest of this section is devoted to the proof of Theorems 5.4
and 5.5.

DEFINITION 5.7. A C-function % on R" is said to be a generalized
eigenfunction for A when u#0, Au(xz) = 0 on R*,

(5.29.1) u(x) = O(Jz|*™) as |x|—> o, for =3,

(5.29.2) u@x) =x+o0l) as |x|—> o, for =2,

(5.29.3) u@) =N + pxf|lz| +01) as |[z] > o, for n=1,

where A and p are some constants, and D*u € L: for any 1 < |a| < 2 and
n—2—n/p+|a (n = 8)

—n/p+ |a|+min@,p) *®=2).

The importance of generalized eigenfunctions is seen from the following
theorem, which is shown in the same way as Theorem 7.2 in [8].

(5.30) 1<p< o, s <

THEOREM 5.8. There are no generalized eigenfunctions for A if and
only if
Rz =01) as z—0 with ze€3(©0) in B(L;, W5"),
where 0 < 0 < 7,7 =2 when 1 < p < o and 7 <2 when p=1or «, and

2—np<s<n/p and r<s—2 when n=3,
s>2/p" and r< —2/p when n=2,
s>2—1/p and r< —1/p when n=1.

LEMMA 5.9. There are no generalized eigenfunctions for A.

PrROOF. The maximum principle implies that if u(x) — 0 as |x| — oo,
then w = 0, which shows the lemma for n = 3.

Let n = 2 and u(x) be a C’function on R* satisfying (5.29.2) and
Au(xz) = 0 on R®. We may assume that » = 0. Since u(x) does not attain
the positive maximum or negative minimum, we have that 0 < u(x) < .
With the same notation as in the proof of Theorem 5.6,

u(x) = R,(2)(c@)u(x)) + 2R, (2)u(x) = log zF,K(c(x)u(x)) + OQ1)

as z — 0 with ze (). By (4.13), SUo(y)c(y)u(y)dy = 0. This implies that
w(y) = 0 on {y; c(y) # 0}, since U,(y) > 0, c(y) <0, and u(y) =0. Thus,
Au(x) =0 on R®. Hence, u(x) =\, from which we obtain by (5.1) that
u=0.

Let n =1 and u(x) be a C*-function on R. If u(x) =0 or u(x) <0
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on R, the above argument shows that » = 0. Thus we may assume that
U(—oo) =A—p <0< N+ gt =u(w). Let z,=supf{y; u@x) =0 for any
# < y}. By the uniqueness theorem, u(x,) = 0 and #'(x,) > 0. We may
assume that v” — bu’ 4+ cu = 0 on R'. We have that for z > z,

u'(x) = u'(x,) — S exp (S:b(s)dS)c(y)u(y)dy ,

u(x) = S:ou'(y)dy .

Since ¢(y) < 0, we obtain that for any z = x,
w@) = u'(x) >0, ul=ulr) e —x) .
This implies that #(c) = «, which is a contradictions. qg.e.d.
We now proceed to the proof of Theorem 5.4. Recalling (3.7), put
(5.31) Tyz) = NV(log zF, + G)R,(N)(1 + VR(N)) .
Then Lemma 2.3 yields:

LEmMMA 5.10. 1 —T()=1— T,(2) + o1) as z— 0 with z€X({) in
B(L;), where 1 < p <  and 2/p’ < s < 2/p" + p.

We get by Lemma 5.9 the following lemma in the same way as
Theorem 7.2 in [8].

LEMMA 5.11. For any z in 3(0) with |z| sufficiently small
(5.32) A — Ty2)" = ki log—*2C, in B(L3),
=0

where 1 < p < < and 2/p’ < s < 2/p" + p.
With S(z) = —log 2VF, + 1 — VG,, we have that
(5.33) S =1 +VRN)A — T(2))™* in B(L;, Wg*),
where 1 S p < 00,2/p' <8< 2/p"+p,7=<0 when 1 <p < oo, and 7 <0
when p =1 or . More precisely, we obtain:

LEMMA 5.12. Let d be the comstant given by (6.8) and J = —(.,
XX, where X and X, are the functions determined by (5.9), (5.10), and
(5.12), (5.13), respectively. Then, for any z in () with |z| sufficiently
small

(5.34) S =K — (logz + d)"*VJ,

where K is an operator satisfying the equality F,K = 0 and the following
equalities in B(Ly),1 < p < « and 2/p' < s < 2/p’ + p:
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(5.35) VF,VJ + (1 -VG)K =VJVF, + K1 -VG,) =1,
(5.36) KVF,=VJ1 - VG)K = K1 —VG)VJ =0 .

Proor. By (5.32) and (5.33), S(»)~' = X.%,log™72S;. Since S(z) =
(1 — Ty@)A — VR,(N)), S)S(z)* = S(z)7*S(z) =1 in B(L:). Thus

(5.37) VF,S, = S,VF, =0,
(5.38) —-VF,S, + 1 -VG)S,= —S,VF, + S,1 - VG) =1,
(5.39) —VFS; + (1 —VG)S;., = —8,VF, + S, A —VGy) =0 for j=2.
Calculating
S[—VF,S; + A = VG)S;_,] + S)[—VG,S;:, + 1 —VGy)S,],
we obtain that S; + S,1 — VG,)S;_, = 0 for j = 2, which yields

(5.40) S(z) = S, + glog"’z[—sl(l = VG)FS, .

Similarly, S,1 — VGy)S, = S,1 —VG,)S, = 0. Putting

(5.41) J=—FsS, -GS, ,

we have by (5.39) that S, = —VJ. Thus (5.35) and (5.86) have already
been shown with S, = K and S, = — VJ. The equality F,K = 0 follows

from the equality 0 = VF K = ¢(x)F,K. It remains to prove (5.34) and
the properties of J. By (5.35), (6.36), and F,K = 0,

(5.42) F,VJVF,=F, and VJ=VJVF,VJ,
which implies that rankVJ = 1. Thus we can write
J= =, X%

It follows from (5.41), J* = —S¥F§ — S¥Gy, and S, = — VJ that X € W2,
VXe Ly, and X, € L; for and 1 < p < o0, r < 2/p/, and s < —2/p. Since
F,= —drn)-, 1), we obtain by (5.42) that

VK, 1){V1, Xy = 4m .

Consequently we can choose X and X, so that

(5.43) SVX(x)dx = Sc(y)x*(y)dy = —(dn)”.
Since S, = — VJ, we have, for some constant d’,
(5.44) -8, = 8,1 -VG)S, =d'S, .

This together with (5.41) and (5.43) implies that
(5.45) X(x) — G, VX(x) = —(4r)~d’ .
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Since G,f(x) = —(2n)—1§(7 +log |x — y|/2)fW)dy, (5.43) and (5.45) imply
that d’ = d. This together with (5.40) shows (5.34). Furthermore, (5.43)
and (5.45) yield (5.10). The equality (5.45) also shows that AX(x) = 0 on
R?, which implies that X is a C?*-function. Since AX(x) = 0 and X(x) — o
as |x| — oo, the maximum principle shows that X(x) = 0. We have that

L(x) = SU(t, x, YX(y)dy for any t > 0, which implies that X(x) > 0 because

U@, xz, y) > 0. This completes the proof of (5.9) and (5.10). The pro-
perties of X,.(y) can be shown similarly. q.e.d.

PROOF OF THEOREM 5.4. With R,(2) defined by (2.25) we have by
(5.32) and (5.33) that

(5.46) R(2) = R(2)S(2)™ i (VR(2)S(z))

provided |z| sufficiently small. This together with (5.34), (5.41), and (5.44)
yields

(5.47) R(2) = G,K — F,VJ 4+ (logz + d)* (-, X,0)X + O(z°) as z—0

for some ¢ > 0. Thus the same argument as in the proof of Theorem
1.1 shows Theorem 5.4. The uniqueness of X follows from Lemma 5.9
q.e.d.

For n =1, we have the following lemma.

LEMMA 5.13. Assume that 0> 1. Let d be the constant given by
(5.22) and J = (-, X, DX, where X and X, are the functions determined
by (5.20), (5.21), and (5.23), (5.24), respectively. Then the following state-

ments hold.
(i) Put Siz) = —2z?VF,+ 1 —VG, Then for any z in 2(0) with
|z| sufficiently small

(5.48) S() = K — 2*(1 + dz"*)'VJ
wn B(L),1 < s < p, where K satisfies (5.35), (6.36), and F, K =0. Fur-
thermore, K belongs to B(L}) for any r with 1 <r < p + 1.

(ii) Put S'(z) = —z7*F,V +1 — G, V. Then for any z in X(6) with
|z| sufficiently small

(5.49) S'(z) = K' — 2**(1 + dz")~JV
in B(W%*), —p < s < —1, where K’ is an operator satisfying
(56.50) FVJV+1-GV)K'=JVF,V+ K(1-GV)=1,
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(6.51) KF,=0,F,VK'=JV1-GV)K'=K(1 -G, V)JV=0.
Furthermore, K' belongs to B(WZ2") for any r with —p —1<r < —1.

Proor. The first half of (i) is shown in the same way as Lemma
5.12; instead of (5.43) we choose X and X, so that

(5.52) [Vi@as = ety = -2,

for F,=2"%.,1). Since K=1+VG,K — VF,VJ and F,K = 0, we obtain
that Ke B(L]) for any r with 1 =r < p + 1.
(ii) can be shown similarly (cf. [8, Theorem 7.2]). q.e.d.

PrOOF OF THEOREM 5.5. We first assume that o > 1. By Lemma
5.13(1), the formula (5.46) holds for |z| sufficiently small. Making use of
F,K =0, we obtain by Lemma 2.4 that

o]
(5.53) R@) = 3, #"By, + 0@
=0

j=

in B(L, L;****) + B(L}"', L), where 1 < ¢ < p/2 + 1. On the other hand,
we can construct R(z) also by the formula

(5.54) R(z) = z (S'@)"Bof2) VIS (2)Rol2) -

This together with Lemma 5.13(ii) shows that (5.53) holds also in
B(L,, L;**") + B(L¥**, L."). Hence we get (5.15) for s = 1/2, (5.16) and
(5.18). Furthermore, elementary calculations show that

Ujlw, y) = fix) + filx, ¥) = 0.(%) + 9,(x, v) ,
Ife(@, ¥) |, | 9.0, ¥)| < M(Kx) + <y))<ey{y) .

Since f,(x) = 9,(0) + g.(x, 0) — fi(z, 0), this yields (5.17). It follows from
Theorem 1.1 and the comparison theorem that U(t, x, y) < Mt~"2, which
yields (5.15) for 0 < s < 1/2. It remains to prove (5.19)~(5.27). In the
same way as in n» = 2 we have that J = —dF,VJ + G,VJ. By (5.46),

(5.55) R(z) = G, K — F,VJ + 2'*B,,, + 0o(2**) as z—0,
(5.56) B,=-J+0+ GKV — F,VJV)FK.
Since F;K =0 and 1 + G, KV — F,VJV)F, = 0, we obtain that

1 + GKV — F,VJIV)F.Kh@) = —2(1 + G,KV — F, VJV)xSyKh(y)dy .

Putting
(5.57) @) = 271 + G,KV — F,VJV)x ,
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(5.58) vx(y) = 27"K*y ,
we thus obtain (5.19)~(5.27). This completes the proof of Theorem 5.5
for p > 1.

Let 0 < p<1. Choose a Cy-function ¢, (x) such that ¢,(x) = 0 and

¢(x) # 0, and put
A, = ([d[dx) —ci(x) , Ri(z)=(—A)", Vi=V+e@ .

In the following we shall consider A, as an unperturbed operator. We
have already shown (see (5.53)) that

R(z)=C+0®%) as z—0 in B(L!'**, L), 0=sd6<1/2.
By Lemma 5.9, there exists the inverse (1 — V,C)™* gf 1-V.,C in B(LY,
1<s<p+1. With K, =1 —-V,C)* and R,(2) = R,(z) — C, we obtain
that

(5.59) E@ = R@K. 3 (VE@KY ,

provided |z| is sufficiently small. Thus
(5.60) R(z) =B,+ 0O(z°") as z—0 in B(L} Lz***) + B(L¥*", L.),

where 1 <0< 0/2 +1. Similarly, (5.60) holds also in B(L, L**') +
B(L%, L7Y). Hence we get (5.15) for s with 1/2 < s < (0 + 1)/2. On the
other hand, the comparison theorem shows (5.15) for s = 0. This together
with (5.15) for s = 1/2 yields (5.15) for 0 < s < 1/2. q.e.d.

6. The case that c¢(x) > 0 on a non-empty open set. In this section
we deal with the operator A = >);, a; ()00, + >.;b;(x)d; + c(x) satisfying
the assumption (A) and the condition:

(6.1) ¢(x) > 0 on a non-empty open set .

U, x, y) stands for the fundamental solution for A.
Generalized eigenfunctions for A are also defined by Definition 5.7,

and Theorem 5.8 holds also.

REMARK 6.1. If there are no generalized eigenfunctions for A, then
results similar to Theorems 5.3~5.5 hold. For example, U(¢, x, ¥) for odd
n = 3 has the asymptotic formula

[o]
©.2) U 2 y) = 2 't piu(@irmy) + 2 677Uz, y) + 0¢™")

as ¢ — oo, where the first summation on the right hand side of (6.2) is a
finite sum and ReX; = 0 and »; # 0.
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In order to treat the case where there are generalized eigenfunctions
for A, we further assume:

(A.IV) The inequality (1.2) holds with o > 2 for n < 2,0 > 1 for
n =3, and p > 0 for n = 4.

(A.V) A* = A.

From here on, we assume that A satisfies (A.I) ~ (A.V) and (6.1),
and that there are generalized eigenfunctions for A.

Let us denote by A, the self-adjoint realization of A in L.(R").

LEMMA 6.2. (i) A, has at most finite positive eigenvalues with
finite multiplicity. (i) Ewvery eigenfunction associated with a positive
etgenvalue of A, 18 a Cfunction which decays exponentially as

|@| — oo

Proor. It is well known that each positive eigenvalue has finite
multiplicity. Finiteness of positive eigenvalues is seen from the proof
of Theorems 6.5~6.9 below. Let »>0,uec W2 and Au = au. Since
Lemma 3.1 holds also for A, we obtain by the imbedding theorem that
ue W for any 2 < p < . Choose a C=»-function ¢ on R" such that
é() =1 for || = N+ 1 and ¢(x) =0 for |#] < N. We have that

1 — B¢ V)u = B\ — ¢)Vu .

Fix p and a so that 2 < p < o« and 0 < a < A\, and choose N so large
that

RSV + [[e*®B,(\)g Ve || < 1/2,
where | || is the norm in B(W?). Thus
(6.3) u=~1-RBMNgV)'RBMN1 — ¢)Vu.

Since (1 — ¢) Vu(x) has compact support, e**D*R,\)(1 — ¢) Vu € L, for |a| <
2. Hence e*?u(x)e W2 for any p <  and a < \"%, which yields the
exponential decay of u(x) as |x| — oo. ‘ q.e.d.

LEMMA 6.8. (i) The zero eigenvalue of A, has at most finite mul-
tiplicity. (ii) Every eigenfunction for the zero eigenvalue is a C*-function
which decays like |x|™* as |x| — «, where k =2 — n for n 2 5, k = 3 for
n=4, k=2 for n=38,2, and k is any positive number for n = 1.

PrROOF. (i) is clear. (ii) follows from the equality: (1 — G,V)u =0
for any eigenfunction # (cf. [8, Lemma 3.2]). q.e.d.

We call a generalized eigenfunction not in L, a resonance state.

LEMMA 6.4. (i) If m =5, there are mo resonance states. (ii) For



188 M. MURATA

n = 4, 8,1, the dimension of the linear hull of resonance states is at most
one; and for n = 2, the dimension is at most three. (iii) A resonance
state ¥ 18 a Cfunction having the following asymptotic formula as
x| — o: When n =3, 4,

(6.4) (@) = Mz + o(|x[*") for some N # 0 ;
when n = 2,

(6.5.1) @) =N+ 0o(1) for some A #0

or for some pt, v with t or v #0

(6.5.2) P(@) = (g, + va) 2|7 + o[z ™) ;

when n =1,

(6.6) (@) = ¢+ ve/lx| + o(1) for some (u,v) # (0,0) .

(iv) Every resonance state +r is orthogonal to all eigenfunctions X associated
with positive eigenvalues of A,: {y, X) = Sqm_(da: = 0.

PROOF. (i) is clear. (iv) follows from Lemma 6.2(ii). Let n = 3, 4,
and 4 be a resonance state. Then we obtain that 1 — G,V)¥ =0 and

SVdr(x)dx # 0, which implies (ii) and (iii) for » = 38,4. For n =2, we
have that (1 — G,V)y = constant, qu/r(x)dx —0, Xa:,. Vap(z)de # 0 for j =
1 or 2, which shows (ii) and (iii) for » = 2. The formula (6.6) is shown
similarly. It remains to prove (ii) for » = 1. To this end we have only
to show that there is an unbounded solution of A = 0. We may assume
that Au = 4" — bu’ — cu, from which we obtain the integral equation

a@) = w) + w )| By + | (| Boat) Ba);ewyuwiy ,
B(y) = expB:b(z)dz] .

Choose N so large that Sz WB(t)dtB(y)—lc(y)yldy < z/4 for all x = N.

N
Solving the integral equation with #(N) and «'(N) sufficiently large, we
get a solution % on (N, «) which grows to infinity. Extending this solution
to the left we get an unbounded solution # of Au(x) =0 on R'. q.e.d.

REMARK. We see from the proof that when » = 1 the dimension of
the linear hull of generalized eigenfunction is at most 1.

Let »; (=1, -+, M) be the repeated positive eigenvalues of A,.
Let X; and ¢, (k=1, -, N) be real-valued eigenfunctions for the
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eigenvalues \; and 0, respectively, such that {X;, ¢.};, forms an ortho-
normal basis of the liner hull of all eigenspaces for the nonnegative
eigenvalues of A4,. Put

6D Bt,50) =051 - %6000 — 5 AL@LW)

Here and in what follows the convention is: 3);4;(x)%;(y) = 0 if such
functions ¢; do not exist. We note that N < 1 when » = 1 by the remark
after Lemma 6.3.

THEOREM 6.5. For any —1< o < p/2 — 1 there hold the followmg
Jormulas for all t > 1 and (x, y) € R*.
(i) For odd n =5,

(6.8) Et, x, y) = Z t""/Q"’U(x v+, ),
(6.9) 10:0,@¢t, @, »)| < Mut"""'m(o; 2, 9), 120,
(6.10) U@, )| = Mm(j;2,9), 5=0,
where m(g; @, y) = (&) + W) + &' WP + @)y, and
(6.11) |U_i(@, )| = M_,(<a)'™ + <y)* ™),
. 4S V¢j(z)szV¢,,(z)dz
(6.12) U@, y) = > $:()e(Y) .

=t (4Am)"*(n — 2)(n — 4)

Furthermore, Uyx, y) is a finite sum of functions of the form f(x)g9(y)
with {f,X;) =49, Xp =0 for j=1,-+, M, and Uyy, x) = Uz, ).
(ii) For even n = 6,

(6.13) E(t, z,y) = 222 t=i logt Uplx, y) + U,@, x, v) ,

4= =
where K(j) = [(§ + 2)/(n/2 — 2)], U,(¢, =, y) satisfies (6.9), Uy, y) for j = 0
and U_,(x, y) satisfy the same estimates as (6.10) and (6.11), respectively,
and U_,(x, ¥) is equal to the right hand side of (6.12). Furthermore,
Uz, y) = Uy, x) is a finite sum of function of the form f(x)g(y) with
LX) =49,%)=0 for j=1,---, M. In particular, when n =6

6.14) U_,(x,v) = 4"7r‘°j g‘,:lcy-ckcm(x)m(y) , c; = SV¢,-(Z)dz .

PrOOF. We only give a sketch of the proof of (i). Let 4 be a Cx-
function on R' such that () =1 for £ = 1 and +(t) = 0 for £ < 0, and set
gy(@) = (x| — N) for N> 1. Choose a Cy(R")-function ¢,(x) such that
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¢,(@) = 0 and c¢,(x) # 0, and put
(6.15) Ay = 57‘: @;(2)0,;0, + . b;(®)0; — co(x) + gu(@)e() .

We can choose N so large that there are no generalized eigenfunctions
for Ay. Then we have that for any 1 <o <n/2+ p/2 -1

[a]

By(z) = (2 — Ay)™' = 2,27°Cy, + O2°) as 20,
iz

Cir=0 for 7 odd and j/2<m/2—-1.

Put Vy = [e@) + (I — gx@))e@)]-, By(z) = R(z) — C,— 2C,, and S(z) =
1-V,yC, — 2VyC,. Then along the line given in the proof of Theorems
4.1 and 4.2 in [8] we construct R(z) in the form

R(z) = Ry(@)S(@)™ 3 (VaBr@)S@) ™)

as operators between weighted L,-spaces, and get the asymptotic formula
as 2—0: For 1<o<m/2+ p/2—-1,

(6.16) R@) — $.2"B;s = 0",
=
where B, =P=>7",<{,¢,56;, Bjr=0 for j odd and 1 <j<n/2-3,
and B,, ; = PVF,VP, which one derives by taking the limit as N —
of the coefficient of 2"*™® in the expansion of R(z) calculated for A, =
4 + gy(x)Vgy(x) instead of (6.15). (For more precise information on B,
see [8, Theorems 4.1~4.3].)
By using the equality

(6.17) R(z) = Ry(2) + Ry(2) VyRy(2) + RBy(2) VyR(2) ViRy(2) ,

we easily see that (6.16) for n/2 — 1 < o < m/2 + p/2 — 1 holds also as
operators from a weighted L,-space to a weighted L.-space, which implies
(6.8) ~ (6.12). The equality U,(y, z) =Uj(®, y) is shown by A*=A. It
follows from the expression of B;, for j odd that Uz, y) is a finite sum
of functions of the from f(x)g(y). Computing e*4X, by (6.8) and Lemma
6.2(ii), we have

[o
e, = X, + ._Zi', 2 SUf(x, W)y + O(F™*) as t— oo .
Thus SU,-(x, Wh(y)dy = 0. Hence (f, 1> = <g, %> = 0. c.e.d.

REMARK. There are differences between the notations in this paper
and [8]. If we denote A, V, and R(z) in [8] by Ag Vs, and Ry(2),
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respectively, then the correspondence is: A = —A;, V= —V and R(?) =
Rs(_z)-

REMARK. In deriving (6.14) we use the formula (4.31) in [8, Theorem
4.3(1)]. But the formula is incorrect for the space dimension » = 6.
When n = 6, the term

—zlog? 2(PVF,VP)
must be added before o(2"*~?) in (4.31) in order for the formula to be
correct.

When n = 8, 4, the following asymptotic formulas hold for ¢>1
and (x, y) € R**. The formulas can be shown in the same way as Theo-
rem 6.5.

THEOREM 6.6. Let n =8. For any 0 <o < (0 — 1)/2 one has

[o]

(6.18) Et, @, y) = >t U, y) + 0,¢, 2, v)
(6.19) |6t #, 9)| < Mt~ "'m'(o; x, ), 120,
(6‘20) |Uj(x9 y)] g M,’Im,(j; x; y) ] .7 g 0 ’

where m'(0; @, y) = (&) + Y)Y + @ 7HKY*™ + &Y™, and

620 U9 = 3 3 (6,0 Vade o) Vaids LAY 1 pony oy

ik=ti=1 1277
where (x) is a resonance state determined by
Yy(@) = @r)7 22| + o(jx]™) as |x|— o,

©.22) ?SA«/»(x)G(MIx —y)G@dy)dz =0, j=1 -, N,

Furthermore, Uiz, y) is a finite sum of function of the form f(x)g9(y)
W’l:th <f’ xa> = <g, X1> =0 fOT j = 1’ ttty My and U:i(yy .’E) = U:i(x’ y)'

THEOREM 6.7. Let n =4 and —1 <0 < p/2 — 1. Then one has

(6.23) E(t,x, y)=W(t)«/r(x)«k(y)+[Z“‘. St U, w)+ Ut 2, 9)

j=—1 (k,l)eI(f,0)
1G,0) ={k, D; k, 1 =5 +38, —§ — 2=k +U\{(0, 0} for j<o,
IG,0) =k, i k1S j+3, ~j~25k+1= -2}  for j=0,

where U,(t, x, y) satisfies (6.9) with n = 4, P (x) is a resonance state deter-
mined by
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v@) =7tz +o(|x|?) as [x[— oo,
6.24
o SAV(w)(Sﬂ“Iw - yl‘2¢j(y)dy)dw =0, 4j=1,---,N.
and
6.25 = | e~*dz
%) 7o So zl(logz —logt + d)* + @]

6.26) d=2v—1+ (87:2)-1“%#(@) Vap(y) log | — y|/2dedy ,

where ¥ is Euler’s constant, and

6.27) T,(t) = — S“’(—z)"“e“‘lm(logz —logt — i) (logz —logt +d — m1)'|dz

o 7w[(log z — log t)* + m*)*[(log z — log t + d)* + =*]*
(6.28) [Uju(x, ¥)| < MA(Kx) + {yy)™log ({z) + <v>)

+ @)~y log <y + (y)~*a)™** log ()},
m=7+min(k +1+1,0).
Furthermore, Uy, (x, y) is a finite sum of functions of the form f(x)9(y)
with {f, X;) = g, Xp>=0jfor 5 =1, -, M and Uz, y) = Uu(y, 2).
THEOREM 6.8. Let n =1. For any 1 < ¢ < p/2 one has

(6.29) Blt, 2,9) = 3,5 e, 9) + Uty 2,9)
©30) 0. 2,9)] S Mt + @), 120,
6:31) e, )] = M@ + W)

Furthermore, Uiz, y) is a finite sum of functions of the form f(x)9(y)
with <'f’ x.1> = <g’ x:> = <f’ ¢k> = <97 ¢k> fo'r j = 1, ) Myk = 17 Sty N1
and Uz, y) =U,(y, x). In particular, Uz, y) = ¥@)y(y) for a resonance
state r(x) when there is a resonace state, and otherwise Uyx, y) = 0.

PrROOF. The theorem except for the last assertion can be shown
in the same way as Theorem 6.5. Let P be the orthogonal projection

onto the zero eigenspace, and put Qf(x) = n‘”s Uz, ¥)f(y)dy. Then

R(z)=2'"P+2""Q + B,+0o(1) as z—0.
By the resolvent equation (1 — Ry(2)V)R(2) = Ry(2),
a-G6V)Q=FVB +FVP+F,, FFVP=FVQ-(1-GV)P=0.

This implies that U, (x, ¥) = 3..9.(x)g,(y) for some generalized eigenfunctions
g.(x) or zero (cf (4.20) and (4.42) in [8]). Now assume that there is a
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generalized eigenfunction g(x). Then the remark after Lemma 6.4 shows
that Uy(x, ¥) = Ag(x)g(y) for some constant A. First, assuming that g¢
L,, we show that A = 0. Suppose that A = 0. Then R(z) = OQ1) as z—
0, for there are no eigenfunctions for zero. Thus the same argument as
in the proof of Lemma 5.13 shows that there are operators J and K’ such
that JVF,V+ K'A1 -G, V) =1 and K'F,=0. Since F,Vg=0 and
1 - G,V)g = F,h for some function », we get g = 0. This is a contra-
diction. Hence we obtain that Uy(x, ¥) = J(@)y(y) with 4(z) = A'g(x) = 0.
Next assume that ge L,. Then we have by Lemma 6.3(ii) that

g=¢“g=g+M"|gl’g + ot as t—oco.

This implies that » = 0. Thus Uy x, y) = 0. This completes the proof of
the last assertion. q.e.d.

THEOREM 6.9. Let n=2. Let 0 <o < p/2—1 and ¢’ be the largest
integer smaller than o. Then one has

N

N(—-1) (—1) 0 N(0)
(6.32) E(t,x,y) = kZ:.I lZ. O_,(1)9:(2)91:(y) +k§m§1t—‘ log~*t g,.,(x) 91(y)

1
) N(

|
[
S,

a’

)

+ . £ 90, (1) U, y)
3=0 k=2 Il=1
o] 0 N (4) . ~
+ 2 2,67 log M Up(x, y) + U@, %, 9) -

i=1 k==(j+1)m I=1

Here N(j) is an integer depemding on j, m is an integer with 0 < m < 6,
v—1

(6.33) 0, () = X, ciplog™t + O(log™t) as t— o0, v>Ek,
i=k

where the c;; are numerical constants and the asymptotic expansion (6.33)
1s termwise differentiable, the functions g, (x) are zero or gemeralized
etgenfunctions such that

(6.34) lgu@)| = M_ x>, kE+0,

(6.35) lga(@)| = M_,,

and

(6.36) |Ujler, v)| = My(<x) + (y)"log 2(x) log 2¢yy , k= -1,
(6.37) |Uso(, 9)| = M;(<x) + ),

(6.38) |Ujlx, v)| = M{({x) + {y))* log 2{x) log 2<y)
+ (@)~ log 2{y) + Yy~ Kw)**log 2<x)}, k=2,
6.39) |80, x, )| £ Mt (<) + <o)
+ )y + ()}, 120.
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Furthermore, Uy(x, y) is a finite sum of functions of the form f(x)g(y)
with <f) x1> = <g’ X:> = 09 J = 1’ tt M, and Ujk(yr 217) = Ujk(xr y)°

PrROOF. The expansions (6.32) and (6.33) can be shown in the same
way as Theorem 6.5 (cf. [8, Theorem 4.1]). We give here only the
outline of the proof of (6.34) ~ (6.38). For ¢ > 0 with o ¢ Z, we obtain

that
[a]

(6.40) Rz =3 S #log*B,,+0r) as z—0,

f==1k=={j+1m—1
where B_; , =0 and B_,, = P=>_,{-, 6,54, By the resolvent equation
1 — R(2)V)R(z) = R(2)(1 — VR,(2)) = R,(2), we have that
(6.41) 1-GV)B_,,=F,VB_, s+, k=0,
(6.41") B_,.1-VG)=B_,.VF,, k=0,
and for 7 =0

J+1 J+1

(6-42) (1 - GOV)Bj,k = %Fz VBj—l,k+1 + IZ.IGz VBj—l,k + 5k+1Fj + 5ij ’
g+l j+1

(6.42’) Bj'k(l - VGO) == lgo Bj—l,k+1 VFl + é Bj—l,k VGZ + 6lc+1Fj + Bij y

where 6, =1 for I =0 and 6, =0 for [ 0. We first show by induction
that for any £k = 0

(6.43) 1-GV)B_,,=0, F,VB_,,=0.

Since B_,, = P, (6.43) holds for k£ = 0. Suppose that (6.43) holds for k.
By (6.41), F,VB_,,,,=0. This together with (6.41") implies that
F,VB_,,..VF,=0. Since A* = A, there are real-valued functions {y},
such that B_, ,., = >,<{-, ¥)¢. Thus

0= F,VB_isVF, = =3 (S Vr./r,d.%)zFo .

This implies that F,Vy, =0 for any l. Hence F,VB_, ,;, =0, which
implies that (1 — G,V)B_,;, = 0. This completes the proof of (6.43).
Similarly,

(6.44) 1_a-GV)B,,=0 and F,VB,, =0, kL -2,

(6.45) 1 -G, V)B,_,=F,VB,,+ F,VP+ F, and F,VB,_,=0.

It follows from (6.43) ~ (6.45) that g,,(x) are zero or generalized eigen-
functions satisfying (6.34) and (6.35). We have by (6.42) and (6.42") that
for j=0and k=1

(6-46) B‘,lc = Z (Fi VBj-i-t,k+2 VFl + Fi VBj—i—l,k+1 VGz

J
H;'lsj+l

+ Gi VBj—i—l.k+1 VF; + G,; VBj—i—l,k VG[) .
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This implies (6.38). Similar argument shows (6.36) and (6.37). q.e.d.
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