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1. Introduction. We consider linear evolution equations of "hyper-
bolic" type, that is, non-parabolic type, in a Banach space X

ldu(t)/dt = A0(t)u(t) 0 < t ^ T

\u(0) = u0eD(A0(0)),

where A0(t) is the generator of a semigroup on X and its domain D(A0(t))
depends on t.

It is our main intention to give an abstract formulation of the
mixed problem (including Neumann conditions) for hyperbolic partial
differential equations. For this purpose we modify Kato's formulation
[5] which is the following: the space X contains a dense subspace Y
(c.D(A0(t))) which is a Banach space with respect to the stronger norm,
and each AQ(t) generates a semigroup on Y. Instead of Y we define a
family of closed subspaces Y(t) (czD(A0(t))) of the space Y so that A0(t)
generates a semigroup on Y(t). Roughly speaking, our formulation reduces
to his when Y(t) = Y.

The basic idea is similar to [8], but the assumptions, and hence the
proofs, are essentially different: the result of [8] was incomplete in the
sense that it does not seem applicable to partial differential equations.

In the present paper we give only a simple application to the mixed
problem for wave equations with Neumann conditions. Further applica-
tions to hyperbolic partial differential equations will be discussed in sub-
sequent articles.

The authors wish to express their gratitude to Professor A. Inoue
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for many stimulating conversations. They owe much to the referee
whose kind advice made the paper easier to understand.

2. Notations and statement of theorems. Let X and Y be vector
spaces. Let (X, || ||) be a separable Banach space. (F, ||| |||) is a Banach
space such that Y is densely and continuously embedded in {X, || ||) and
the unit ball {ye Γ; HI»HI ^ 1} of (Γ, | | |-| | |)is closed in (X, || ||). Here we
denote by || || and ||| ||| the norms of X and Y, respectively. For sim-
plicity, (X, || ||) and (Y, ||| |||) will be abbreviated to Xand Yrespectively
if no confusion arises. Let {A(t)} be a family of closed operators from
I t o l such that YaD(A(t)) for each ίe[0, Γ]. Let {Y(t)} be a family
of closed subspaces of Y such that the unit ball {ye Y(t); \\\y\\\ ^ 1} of
Y(t) is closed in X with respect to the norm || ||. Let A0(t) be the mini-
mal closed extension of A{t) to Y(t)—>X.

A(t) and A0(t) correspond to a differential operator and the differential
operator with a boundary condition, respectively.

We assume the following conditions:
(A.I) For every £e[0, T], Ao(t) generates a bounded CΌ-semigroup

on X and Y(t).
(A.2) There exist a positive constant ω and a family of monotone

decreasing norms {|| ||Jίe[o,r] on X equivalent to || || such that each
exp(s(A0(ί) — ω)) is a contraction semigroup on X with respect to the
norm || ||t.

(A.3) There exist a positive constant ω and a family of monotone
decreasing norms {||| ||lί}*β[o,r] o n Y equivalent to ||| ||| such that each
exp(s(Ao0O — ft))) is a contraction semigroup on Y(t) with respect to the
norm \\\.\\\t.

(A.4) A( ) is strongly continuous from [0, T] to B(Y, X), where
B{ Y, X) is the space of bounded linear operators from Y to X. There
exists a Γ2-topology τ of X such that A(t) is continuous from (X, || ||)
to (X,τ) for any te[O, T].

Let C(e, t) and h(e, t) be positive functions on (0,1] x [0, T] satisfying
the following:

( i ) h(ε, t) and C(ε, t)h(ε, t) decreasingly tend to zero as ε—>0.

(ii) C(ε, s) ^ L(t)C(ε, t) for any s e [t, t + λ(ef ί)] where L(t) is

(2.1) -j a constant which depends only on t.

(iii) There exist positive constants M, M and δ such that

h(M, t)^δ and C(Λf, t) ^ M < + oo for any t e [0, T].

(A.5) For any e > 0, t e [0, Γ), x e Y(t) and s e (ί, ί + λ(ε,«)] there
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exists y e Y(s) such that

(2.2) Uα-2/IL^εCJs-ίHIMII*

(2.3) \\\x-y\\\.£CtC(e,t)\8-t\ \\\x\\\t.

Moreover, when s = t + h(ε, t) and α5e-D(A0(ί))r<«)-r<t>, 2/ satisfies

(2.4) |||»HI. ^ (1 + CMC t))\\\[I - Λ(e, ί)Ao(t)MI.

in addition to (2.2) and (2.3).

These constants C< (i = 1, 2, 3) do not depend on ε, t, s, x, y, Y(t),

Y(s).

REMARK. Our condition (A.2) is equivalent to the stability condition
of Kato [5].

THEOREM 1. If the conditions (A.l)-(A.δ) hold, then there exists a
unique solution u(t) e Y(t) to the equation

U(ί) = uQ + [ A0(s)u(s)ds for t 6 [0, Γ] ,
(2.5) i Jo

U 0eΓ(0).

In stead of the condition (A.4), we may assume the following:
(A.4)' A( ) is norm-continuous from [0, T] to B(Y, X) and D(A(t)) = Y

for t e [0, Γ].

THEOREM 2. If the conditions (A.1)-(A.3), (A.4)', (A.5) hold, then
we have the same conclusion as in Theorem 1.

3. Construction of an approximating sequence. We shall construct
an approximating sequence {uε(t)\ε [0). For an arbitrary fixed constant
0 < ε ^ 1 we define u% vε inductively as follows.

(a) Let

(3.1) ί0 = 0

(3.2) w (ίo) = t;'(ί0) = u0.

(b) Using (2.1) and (A.4) we take εx > 0 small enough to satisfy (3.Sj):

(3.6,) Max {C(βw to)h(elf Q, εu \\ [A(t0 + λ(ew t0)) - A(to)K ||fo} ^ e

and we set

(3.3) hx < mm(h(e1910), (2a))"1)

(3.4) uU) = (I - M

where ίx = ί0 + /ix.
We set
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(3.5) tι+1 •= ί, + hι+1 leN.

(c) Assume that {ε, , hj9 uε(t3), t3) are determined for j = 1, 2, , k.
Then using (A.5) we take vε(tk) e Y(tk) satisfying (3.#fc):

(\\\uε(tk) - vε(tk)\\\tk ^ CAΛ4 |11^(0111*^

(d) Take εk+1 > 0 small enough to satisfy

(3.εfc+1) Max {C(ek+1, tk)h(εk+1, tk), εfc+1, \\[A(tk + h(ek+1, tk)) - A{tk)]uε{tk)\\tv

and set

(3.6) fefc+1 = h(ek+lf tk) ίfc+1 = tk + hk+1

(3.7) uδ(ίfc+1) = (/ - Λ4+1A0(tt))-V(ίt) e Γ(O .

The sequence {ίy} may be limited by tω = lim ί t < Γ, since fefc may decrease
rapidly. If uε(tω) e Ytω, we can start from tω again; tω+ι = tω + hω9

We shall show wβ(ίJ 6 F( ίJ We need the following Lemma.

LEMMA 3.1. // xke Y(tk) with \\\xk\\\tk ̂  L and if tk-+tω and xk->xω

as k^oo then xωe Y(tω).

PROOF. There exists k0 > 0 such that tω — tk < δ for any k ^ fc0.
From (2.1) and (A.5) for any k ^ k0 there exists yk e Y(tω) such that

\\xk - »4 | | i β ^ MCxμω - ί*| |||a?*|||tJk ^ MCMK - ί*)

| | | a j , - y k \ \ \ t ω ^ C2C(M, tk)(tm - tk)\\\xk\\\tk ^ C2C(M, tk)(tω - tk)L ^ C .

Therefore

\\yk - a?«||ίω ^ 111/* - ajfcll̂  + II^ - &«||ίβ,->0 as ίfc->ίω .

Since the right hand side tends to zero as tk-*tω9 it follows that yk-+xω

in X. By |||ifc|||fβ, ^ Cf + | | | ^ | | | t ^ C + L and the closedness of {y e Y(t);
| | | » | | | 4 ^ l } f we get xωeY(ω).

The boundedness of {uε} is shown in Proposition 3.1.
In the following, the constants C* (i e N) do not depend on ε, <5, s,

ί, a?, 2/, Γ(t), F(s).
From the definition of {uε(tk)} and {ve(ίΛ)} we get the following:

PROPOSITION 3.1.

(3.8) INWIII^^CJIIuolll^ for VkeN

(3.9) l l l^(«III^C 4 | |W| | ί 0 for VkeN.
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PROOF. Since ||| %*(**) III**-! ^ (1 - ^ W ' Ί l b ^ - J l l l ί ^ by (A.3), it suf-
fices to show (3.9).

From (3.7) and (3.#4) it follows that

Hence

III«•(«»_,)111,^ ^ Π a + W i l l *>ε(0 Ilk

^ eχp(C8t*)ll|i*ollUo

^exp(C 8 Γ) | | | « 0 | | | t 0 . q.e.d.

Let

(3.10) uε(t) =

PROPOSITION 3.2.

(3.12) | | v ( t t ) - *•(«,) ||iJk £ 2 C 4 | ί t - ί, I-III wo I I k

P R O O F . F r o m (3.# f c), (3.7) a n d (3.8) w e o b t a i n

^ Σ

Similarly, we can prove (3.12) using the inequality

II v%) - v^t^) \\tj ^ || v%) - w ̂ ) 1̂ . + II u%) - v%_d \\tj . q.e.d.

By transfinite induction we shall construct uε(t) on the whole interval
[0, T]. Ω denotes the first uncountable ordinal number and a any fixed
ordinal number smaller than Ω. Assume that uε(tβ) is defined for all
β < a and that supi3<α tβ < T. If a is an isolated ordinal number, then
ta and uε(ta) are defined, since tα_x and ^e(ία_i) are already defined. If a
is a limit ordinal number, we put ta = sup i5<α tβ. Let βx < β2 < be
such a sequence of ordinal numbers that βk < a and tβk^>ta. We put
tk = tβk, and xk = uε(tk). By Proposition 3.2, xk converges to some xωeX.
Applying Lemma 3.1, we get xωe Y(ta) and we define uε(ta) = xω.

We see easily that there exists an ordinal number aQ < Ω such that
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tσo = Ty since tβ_λ — tβ > 0 an Ω is an uncountable ordinal number.
Thus desired approximate sequences {uε(t)} are obtained.

4. Strong convergence of {uε(t)} in X Our main purpose of this
section is the following:

PROPOSITION 4.1. The sequence {uε(t)} is convergent in X with respect
to the norm || || uniformly in te[O, T] as ε tends to 0.

For two functions uε(t) and uε\t) depending on {ί,} and {tv}, we give
another approximate function u\s) depending on {sά} such that

min{ε, ε'} ^ δ > 0 , {«,} U {M<={s;} , tk^ = st < sι+1 < < sι+j = tk .

For the proof of Proposition 4.1 it suffices to show:

PROPOSITION 4.2.

(4.1) \\uε{tk) - u\tk)\\th ^ \\uε{tk_γ) - u\th_d 1 1 ^ + Cβ(ε + δ)(hk + Λ,.,) .

For the proof we need the following lemmas.
For x e Y(t), we define the set W(e, t, x, s) consisting of all elements

y e Y(s) which satisfy the following:

(4.2)

(4.3)

Set

(4.4) E SΞ uε(tk) - v fo.0 ; £, = ef - s,., .

For fixed k, I, we inductively define a sequence of triplets {vj9 wj9 uά)
by

(4.5) v0 = vo(ί*-i; ί*_i) = vβ(ί*-i)

(4.6) t»! = Wi(βί+i; «ι) = 0

(4.7) # ! Ξ ^ ( s i + 1 ; s,) = v0 + kι+ιhk

ιE + wx

(4.8) v< = v^Si+i; sz+i) e W{ek, sι+i_lf ui9 sι+i) for i = 1, 2, , j

(4.9) ut - vt_! = β<(s,+1; «,+<_!) - ^_!

e W(ek, tk_lf ϊct+faΈ, SM-J for i = 2, , j

(4.10) w, Ξ 117,(8,+,) = β, - v,.! - kι+1hk

ιE for ΐ = 2, , j

(4.11) wϊ = w'i(sι+i) = vi-ύi for i = 1, , j .

REMARK, Z Ξ ^(S; ί) means z belongs to the space Y(t) at "s-time".

For simplicity, set
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(4.12)

LEMMA 4.1.

(4.14)

PROOF. From (4.10), (4.9), (4.4) and (4.3), we get

since ΣίΓΛ £ ( + m ^ Σί- i ̂ i+. = Λ». Thus we get (4.13).
From (4.10), (4.9), (4.4) and (4.2), it follows that

-! = ||β< - t^-x Σi £1^ll.I+<_1 £ C A Σi

Thus we obtain (4.14). q.e.d.

LEMMA 4.2.

(4.15) Illβίlll. ι + 4£C,.

PROOF. From (4.7), (4.13), (3.9) and (β.εk) we have

lll«illl.,+ι ^ I l l^ ί -JIII,^ + W ^ Ί I I t f l l l ^ ^ C4|||tt0|||t0 + fc^^-Ίll^llk.,.

We prove

(4.16) HI u^ 11 |. ί+i_1 ^ C4| 11 w011 |eo expΓc(A ) Σ K+m] + [C(k) + fe1] Σ kι+mε

by induction on i = 1, 2, •••. From (4.10), (4.13), (3.e»), (4.8) and (4.16)
we have

^ [C{k)kι+i_y ^ + [C(k)kι+{

Σ ̂ ,

Σ fc+ [C(k) + h?} +
m = l

^ C4 | | |tt0 | | | to expΓc(fc) Σ
L m=0

By induction we obtain

[C(k)k
ι+i

[C(k) + h?] ΣΣ
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since ε tί 1.

LEMMA 4.3. For i, I = 1, 2, , we have

(4.17) l l l t ; < -u ( ί 1 ) I I L l + i ^ C ^

(4.18) l l l f i*-tt i (ί*)IIL I + < ^C β e.

PROOF OF (4.17). From (4.10) and (4.11), it follows that

Vi — v<_! = w'i + Wi + %ι+thΐΈ .

Then from (4.5) we get

(4.19) Vi = v*{tk_λ) + Σ < + Σ wm + ( Σ ϊcι+m)hΐιE .
m=l m=l \m=l /

Therefore by (4.13), (4.14), (4.15) and (3.ε»), we have

+ Σ; [iιiw:ιιι.,+. + ιιiw.ιιι.,+j + *,

^ ε + i[C(k-l)kι+J\\E\\\tk+1+C(k-l)kι+J\\Um\\\H+J+ε

^ 2ε + C(fc - DΛi-Λmax | | | f i j | | . 1 + . + β)

showing (4.17).

PROOF OF (4.18). From (4.11) and (4.17), it follows that

^ C8ε .

LEMMA 4.4.

(4.20). I b i - « ' ( « *

PROOF. From (4.11) and (4.10), we have

(4.21) v, =
m = l m = l m = l

By (4.4), (4.5) and Σ U &+. = h, we get

j

m=i
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Then from (4.21), (4.22), (4.8), (4.11), (4.14) and (4.15) it follows that

K-«•(«») II ̂  Σ I K 11 + Σ I K II
l m = l

ι + ._ 1 + C,

^ Ceεhk .

Thus we obtain (4.20).
For each I, i we set

(4.23) « ( Ξ ut(sM; sι+i^) = (I - fcί+<

(4.24) Vt = v{(sι+i; sι+ι) = (I - kι+iA0(sι+i))uί+1 .

LEMMA 4.5.

(4.25) || ut - v< \\.ι+t ^ CJβ + εk)kι+i .

PROOF. From (4.10), (4.4) and (3.7)

*>i-i = «< - W4 - ^ί+iAoCί^Ott'Cίt)

By (4.24)

Vi-i = Ui - ^ί+i-iΛ(βι+<-i)tt<

From (3.ε»), (3.#») and (3.8) we obtain

(4.26) | | [Λ(*»-i)-A(β I + 1)Mί»)| | . I + 4

*_,) - A(sι+i)][ue(.tk) - v%tk_d] | | , ί + ί

^ 2c|||Λ4_1Λ(ί*-.Mt*-i)lll«4_1 + 2c\\\vXtk^) - «•(«»_!)111,̂  + s

^ 2cs + 2cC2C(A; - l)λ»_i|||«'(«»_!) IH,^ + e

Then from (4.14), (4.26), (4.18) and (3.8) we have

k-d - A(sι+{)]u%tk) \\.ι+t

kι+t\\A(sι+i)[u°(tk) - ύ(+1]\\,ι+i

I , ^ + kι+iC'ε + ckι+t\\\u°(tk) - ύ

Therefore we get from (4.23) and (4.24)
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(4.27) || ut - % ||. ί+< £ (1 - ωk^)-! v^ - v(_, | | . | + l_1 5S C'nεkι+i .

From (4.11), (4.8) and (4.15) it follows that

IIβi - vA\H+i ^ εkk~ι+1\\\uM,ι+i ^ Cβεkkι+1 .

Hence from (4.27) we get

II«* - tfj.i+1 ^ ll«« - &t\\.ι+ι + \\dt - v*ll.I+i ^ C10(e + sh)kM .

Thus (4.25) is proved.

LEMMA 4.6.

(4.28) || v\th) - v, \\tt ύ II v\tk_,) - v (tk_d ll »_1 + C12(e + δ)Λ, .

PROOF. Let

v? = vι(sι+i) , ut = uι(sι+i) , i = 0,1, 2, , j .

From (3.7), (4.25), (3.8) and (4.23) we obtain

+ J + ||«} - «,||.J+i + C10(ε + εk)kι+ί

<! \\vU - v,_1||.I+J_ι + Sί+J £ ! + i C 4 | |K | | | t 0 + 2C10εΐcι+j

^ \\vU - vj-ill.,^.! + CJe + δ)ΐcι+j

•
^ \\Vo - Vt\\.t + CJβ + δ) ί.^,

k_d K-t + Cjβ + δ)hk.

PROOF OF PROPOSITION 4.2. From (4.20), (4.28), (3.8) and (3.#4) it
follows that

||tt (t4) -«'«*) Ik
^ \\u'(M - VJW* + \\v, - t>}||l4 + ||v'j - u'(tk)\\tk

CωiH.j + !!«•(«»_!) - v i(4-1)ll t4_ l + Cu(β + δ)Λ*

+i | | |*
<(ί»_1)||, ik

0|lU0eΛ.fc + H^ί^x) - »•(«*_>) H,^ + ||tt (ί*-i) - «'(ί*_i) II,,.,

*_*) - v C**_i> II.*-,. + C12(e + δ)hk + C C J I K I H ^ + y

I u U . , ) ! ! ! ^ + || !*•(«»_,) - tft*(**_J ]|.Jb_i

-illl«'(t*-i)|||«4 + [Ca + CIC4 | | |«β | | | tJ(β + δ)hk

Thus we obtain (4.1).
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5. Proof of theorems. Let

u'(t) = u'(tk) , uε(0) = u0

(5.1) • V(t) = t> (ί*_i) , v°(0) = u0

A°(t) = A(tk_d for ίj_t < ί £ tk .

Then we have

Λ»ι[tt'(ί) - uε(t - hk)] - A\t)v°(t + 0)
(5.2) • = h?[V(t + 0) - u°(t - hk)] , tk_t <t£tk

u'(t) = u0, - 1 ^ t ^ 0 .

There fore

(5.3) tt (ί) - w£(0)

135

= « (β - «•<

= hkA°{t)v°{t

t-hk)-\

k \

+ 0) + ^

k-1 (

1=1 I

uε(Q)

vε(t +

u (

• 0 )

f k \

— t6e(ί — hk)

/ fc-1

\ m=l

fc-lΓ / ϊ \ / I \
\Sy\hΛεlt V h U)sl f V Jί 4- Π I

Z=l L \ m=l / \ w=l /

( i \ / l + ί \ ~ |

ί — Σ ^m ~4~ 0 1 — Vf\ t — Σ ^m )
m=l / \ m=l / J

S i fc

Ae(s)vε(s)ds + Σ {^e(^-i) ~ ^e(^-i)} for ί e (t4_ l f tk] .
0 i=2

From (3.#fc) and (3.8) we get
k

^ Σ εΛ ^ eCo|||Wo|||toΓ .

This means

(5.4) Σ {̂ (ίi-i) - as ε 1 0 for V t e [0, T]

in X with respect to the norm || ||, where the notation zj means the
uniform convergence.

From Propositions 3.2 and 4.1 there exists u(t) e X such that

(5.5) ue(t)zXu(t) as ε | 0 for ίe(0, T] in X w.r.t. || ||

(5.6) ve(t)zXu(t) as ε | 0 for ίe(0, T] in X w.r.t. || || .

We now prove Theorem 1.
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LEMMA 5.1.

(5.7) Aε{t)vε{t) —> A(t)u(t) for almost every t as ε [ 0 in (X, τ) .

P R O O F . There exists k > 0 such t h a t th_x < t ^ t k . From (5.1) we

have

Aε(t)vε(t) - A(t)u(t) =

Then from (2.2), (A.4) and (5.6) we obtain (5.7). The closedness of {ye
Y(t); \\\y\\\t ^ 1} in (X, ||.||) implies u(s) eD(A0(s)). Thus from (5.3), (5.4),
(5.5) and (5.7) it follows that

S t

A0(s)u(s)ds .
o

LEMMA 5.2.

(5.8) u(t) = uo + [ A0(s)u(s)ds .

PROOF. If A0( )u(-) is a weakly measurable function from [0, T] to
(X, || ||), then it is strongly measurable by the separability of X and
Pettis's theorem. From Proposition 3.1 it follows that

\T\\A0(s)u(s)\\ds ̂  Γc|| |it(β)|| |dβ ^ CT
Jo Jo

Therefore Ao( )^( ) is integrable on [0, T] with respect to (X, || | |).
To complete the proof of Lemma 5.2, it is sufficient to show the

following:

LEMMA 5.3. /// : [0, t]->(X, τ) is weakly measurable then f: [0, T]->
(X, || ||) is weakly measurable.

PROOF. Let X' and X[ be the respective dual space of (X, || ||) and
(X, τ) and B' a closed unit ball of X'. Since X is separable, B' is a
metrizable compact set with respect to the w*-topology.

We define Xr

τ{a) inductively as follows.

Xr'(l) = {xeX' , *{xn}aX'T(Q) such that xn *χ as n-> 00}

X'v(a) = {x e X'\ 3 K } c U X[{0) such that xn - ^ a; as n -^ 00}
β<a

i.e. Xr(α) is the set of limit points of w*-sequentially convergent sequences
Of Όβ<a X'τ(β).

Set X'τ = Uα<i2 X[(OL), where Ω is the first uncountable ordinal number.
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Then Xf

τ is closed with respect to the w*-sequential convergence. Since
B' is metrizable X'τf)nB' is w*-closed for all neN+. Thus by Krein-
Smulian's theorem X'τ is w*-closed. On the other hand, X[ is w*-dense
in Xr since X[, is w*-dense in X'. Hence XI coincides with X'.

For any xeX'τ(l), there exists {xn} c X&O) such that xn *x and
that (f(t), xn) is measurable for all xn. Hence </(£), x) is measurable.
In the same manner, we see that </(£), x) is measurable for all xeX'τ(ά),
if (f(t),x) is measurable for all xe {Jβ<(XXί(β).

Consequently, /: [0, T]-+(X, || ||) is weakly measurable. q.e.d.

Therefore we get
ct

u(t) = u0 + I A0(s)u(s)ds .
Jo

LEMMA 5.4 (Kato [4]). Let S be the set of those s ^ 0 at which the
strong solution u(s) of du(t)ldteAu(t) is strongly differentiable. Then,
we have,

2- 1A|| u{s) ||2 - lK8)H d | l ^ ( g ) l 1 = R e ( ^ 5 l , f), at almost every s e S
ds ds \ ds I

whenever feF(u(s)), where F is the duality map.

The uniqueness of the solution to (2.5) now follows.
Indeed, let ux(t) and u2(t) be two solutions to the equation (2.5).

From the above lemma, we obtain, for a certain feFiu^t) — u2(t)),

dt \ dt dt

= Re<Λ)(*)Wi(ί) - A0(t)u2(t), /> ^ 0 .

Therefore we get

INi(ί) - ^ ( i ) l l 8 ^ INi(O) - ^2(0)||2 = Ĥ o — ^oll2 = 0 .

This means that uγ = u2.
This finishes the proof of Theorem 1.

We now prove Theorem 2.

LEMMA 5.5. For any ε > 0, 2ω~ι > λ > 0 and 16 [0, T] there exists
δ > 0 such that

(5.9) || (/ - λΛ(ί))'1 - (7 - λΛ(s))-11| < ε for \ t - s | < δ

(5.10) || (/ - λAo*^))"1 - (J - λAo^s))-11| < ε for \ t - s \ < δ ,

where Af(t) is the adjoint operator of A0(t).
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PROOF. Let x e X be fixed. Set

(5.11)
( y . = { i -

where ί < s. From (A.5) for any η > 0 there exists z, e Y(s) such that

(5.12) I l l y , - s . l l . ^ C t f l β - t H l l y , III,.

L e t

(5.13) z = (I- xA0(s))z, .

From (5.11) and (5.13)

(5.14) \\ze — y, II, = | | ( I — XAois))-^ — (I — xA(s)) - 1a; ||,

^ (1 — λα))" 1 ! !^ — a; ||,
—— | M ( T .^_ "\ A (Qt\\/y _ _ (i _ _ "\ Λ f'f'\i'y I / Ύ ___ *\ A (T\\Φ

- (I - λΛ(ί))y,ll.

^ C[λ|| [A(s) - A(ί)]2,||, + || (/ - XA(t))(z. - yt) | |J .

Since A( ) is norm-continuous, for any r[ > 0 there exists ζ = ζ(ί) > 0
such that

(5.15) l l [A(β)-A(ί)]* . | | .^ :/ | | | 2 . | | | . for |β - ί | < ζ .

From (5.12) we have

(5.16)

Note that D(A(t)) = Y and the norm ||| | | | t is equivalent to the graph
norm || ||f + ||-A(ί) ||«. Then from (5.14), (5.15) and (5.16) it follows that

(5.17) | | z . - y . H . ^ C { λ i / ( 1 + Cfi{η, t)) + c&fiiη, t)\s - t\}\\\yt\\\t .

From (5.11) we obtain

(5.18) IIIy,HI, ^ β.(||y,||, + || A(t)y, ||,)

c ( | | * | | , + x-1!! [Z - (/ -

Thus from (5.17) and (5.18) we have

(5.19) | |z, - y. II. ^ Cco(l + 2κrι){\τf + CtC(η, ί)[λj/ + co|s - 11]}|| a; ||f .

From (5.11), (5.12), (5.18) and (5.19)
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||[(7 - λΛ(ί))-1 - (I -

= lift - ftll. ^ lift- «.||. +1 |«.- ftll. ^ C1η\s-t\c0(l+2-1X)\\x\\t + \\z,-y.\\t

^ co(l + 2"1λ){λ[l + C2C(V> Ϊ)]V' + [c»C2C(y, t) + C^]|s - t\)\\x\\t .

Then for rf > 0 and |β — t\ sufficiently small we obtain (5.9).
Let σ(t) — σ(X, D(4,*(ί))) be the weak topology on X with respect to

D(A?(ί)) = (J - xAϊit))-1^. Then we have

(5.20) A(t): (Y; \\ ||) -> (X; σ(t)) is continuous for t e [0, Γ] .

Let x' e X' be fixed. Set

{uM) = Wn{t); M , ί e [0, Γ]

wn(t) = A0(tk)un(tk) , ί»_! ̂  t < tk

]Λ(ί) = (I - λΛ^ί))-1^', ί e [0, T]

./i,.(«) = (/ - λA0*(ί*))-V , «*_! ̂  t < tk..

LEMMA 5.6. For some positive sequence en—>0 we Λαve

(5.22) j J <w,(β), /a(β) - /,,B(s)> |ds ^ CεJ ί - ί'| .

PROOF. From (5.10) for any s 6 [0, T] and meN+ there exists % e JV,
or a partition {ί!(π)} with respect to {w1'"}, such that se [ί(»_,)(n,f ίt(n)) and

|| (/ - λA0*(s))-V - (I - λΛ*(ί*(»')))~1*' II ̂  1/m for Λ' ̂  » .

n depends on s, but we get no(m) e N+ such that

for

for any s e [0, Γ], since [0, T] is compact. Let επ = 1/m for %0(m) fί n <
no(m + 1). Then for k = k(n) and se [ίfc_1, ίt) it follows from Lemma 5.5
and Proposition 3.1 that

I <wn(s), fλ(s) - Λ,n(s)> I = I (A0(th)un(tk), (I - λA0*(s))-V - (/ - λA0*(«)-V> |

Integrating both sides of the above inequality we get (5.22).

LEMMA 5.7.

(5.23) \
Jt

S t'

(A0(s)u(s), (I — λA?(8))~V>(Js , as n —> oo .

PROOF. Since \\(A(tk) - A(t))un(tk)\\ ^ \\A(tk) - A(t)\\Y_+x\\\un(tk)\\\-+0
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(where || | |F-z is t h e norm of B(Y, X)) and since un(tk)->u(t) as n—>oo,
i t follows from (5.20) t h a t

(5.24) wn{t) = (A(tk) - A{t))un(tk) + A(t)un(tk) -> A{t)u{t) = w(t) ,

with respect to σ(t) for any fixed t e [0, T] .

By virtue of (5.24), (wn(s), fλ(s)) converges to (w(s),fλ(s)) for each se
[0, T] as w—>oo, and so the function <w(s), Λ(s)> is measurable in s. On
the other hand, we have

(5.25) I £ <Wm(β), Λ.(β)>Λr - j | # <w(β), /a(β)>ciβ

<Wn(«),/a(β) -fx,n(8))\d8 .

From ||/i(s)| | ^ ||&'||, (5 25), Lebesgue's convergence theorem and Lemma
5.6 it follows that

S t' rt'

t <wn(s), fλ>n(s))ds -* ^ <w(β), fλ(s))ds as n -> oo .
LEMMA 5.8.

Λ( M ): [0, T] ->(-3Γ, H ll) i s weakly measurable.

PROOF. <W(S), Λ(S)> = (A0(s)u(s), (I - λA0*(8))-1a;'> converges to
<A0(s)tt(s), a;> as λ-^0 for each s e [0, Γ]. Thus for any x' eX' the func-
tion (AQ(s)u(s), x') is measurable in se[0, Γ], since <w(s), Λ(s)> is meas-
urable.

From the separability of X and Pettis's theorem we get the strong
measurability of A0(s)u(s). Therefore the equality

(u(t) - u(0), x') = Γ<A0(s)%(s), x')ds for any x' e X'
Jo

implies

u{t) = u0 + 1 A0(s)u(s)ds .
Jo

REMARK. Suppose X, Y are reflexive Banach spaces. From Proposi-
tion 3.1 there exist subsequences {uεn(tk); εn j 0} c {uε(tk)} and {vεn(tk);
εn i 0} c {vε(tk)} such that they are weakly convergent sequences in Y.
From Y c Z)(A(ί)) and the closed graph theorem A(ί) is continuous from
y to X. Therefore we can prove our theorem under weaker assump-
tions without Proposition 4.2.

6. Application to wave equations. As a simple application of pre-



LINEAR EVOLUTION EQUATIONS 141

ceding results, we consider the mixed problem for hyperbolic equations
of second order:

(M.P)

| U ( ί , x) = Σ / / * „ ( « , x)^-u(t9 x)) , (t, x) e [0, T]xΩ

u(0, x) = uo(x) , ut(0, x) = u^x) , x e Ω

Σ α<y(ί, a?K-—w(t, a?) t ^ Γ,

where β is a domain such that dΩ is a C1-manifold and satisfies the
following:

Condition (C). For some r0 > 0, the projection PdΩ: {x e Ω; dist(ίc, 342) <
ro}->dΩ is a well-defined differentiate map.

iPu ' •> vJ is the outer unit normal of dΩ at x e dΩ. Σ?,i=i
x) d/dXj) is an elliptic operator satisfying

aφ dajdt, dajdxif d^JdXidXj, d^JdtdXt 6 ̂ ( [ 0 , Γ] x Ω)

(6.1)
sup j lα^t , a?) I,

dt
ij(t, X)

ϋ atβ, z)Ui ^ d Σ S ί , d>0 V {ξ u , &,) e Λ "
'=1 ί=l

l3 (ί, *) = o3i(ΐ, x) for V (ί, a?) e[0, T]xΩ .

We treat this problem (M.P) as the following evolution equation
(A.M.P):

(A.M.P)

where

A-U(t) = A0(t)U(t) ,
at

U(0) = Uo =

(6.2) X = \Γj; u6 H\Ω), v e L2(β) , Y = Γ j ; ueίί2(i2), v e tfK^f -

(6.3)

(6.4)

(6.5)

(6.6)

0

Σ -^-(α«(ί, »)-i-) 0
A(t) =

= Γ Σ α«(ί, «)y«— ol: r-* H
U,3=l dXj J

Ao(<) =
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We introduce norms in the spaces X and Y as follows:

(£t Π\ II 77112 || „# ||2 Λ ι || „ , |]2 - f ? Λ V 7Ύ

(6.8)

(6.9)

U\\|2 = \\u\\%2{Ω) + \\v\\*HHΩ) f o r

U\\\ =

, u)L2{Ω) + (v, v ) L { Ω ) j f o r U = ί \ e X

(6.10) Ϊ = exp(-Md- 2 )[ | | A(t)U\\\ + for U=heY.

By (6.1), α<y and (d/dxt)atj are Lipschitz continuous in t e [0, Γ] in the
following sense:

(6.11)
atj(t, x)u - ati(8f x)u\\L2{Q) ^ C\t - S| | | ^

^ C\t -—-a^t, x)u - —aiS{fif x)u\
dX dX

As is easily seen, our norms in (6.8) and (6.9) satify the assumptions
(A.2) and (A.3).

In order to apply our theorem, it is suffices to show that the assump-
tion (A.5) holds.

Let any t e [0, Γ) be fixed. There exist families of open sets {Oβ}^=1

and homeomorphic mappings {Ψj1}^ of C2-class such that

yt> 0}

, yx = 0}

dy

+ {yeRn; \y\ <

Ψj'iOβΠdΩ^iyeR"; \y\

for all β and some μ > 0 .

For any local coordinate y\> = (y°2, , y°n) of OβΓ\dΩ.
We consider the following ordinary differential equation:

(6.12) | d y V i f > i f 0 / " ^

Γ(0, ».O = x. s y,(0, y.O F

where A(ί, X) = {au{t, X)) and -V = (X - PSΩX)/\\X - PtaX\\. By the
condition C, v is a differentiate map, and (6.12) has a unique solution
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i, 2/0- Then the mapping X(yl9 yό) = (x19 , xn)-*Vo = (ita 2/ί) defines
another local coorditate of Oβ Π {x e i2; dist(α, 342) < ro/2}. From α t i e ^ 2 (£?)
there exists ic > 0 such that

(6.13) 1 ^
d(x19 x29

Λ: for

Note that it does not depend on Oβ and t.
We define e(s, j/) = (e^s, y), , en(s, y)) by

Σ d v-i 9

3a;,. dy3.
(6.14)

Then we get

(6.14)' . . Ί. ,

et(t9 y) = 0 , i ^ 2 for aist(y19 dΩ) ^ ro/2 .

Let Z(y)eC™(Rι) be a function such that

0 ^ ζdh) ^ 1 , ζ(0) = 1 , ζ(yj = 0 for y, ^ ro/2 , ζ'(0) = 0 .

Let {ξβ}J=0 be a partition of unity on dΩ such that

& e C\dΩ) , supp f, c Oβ Π 3i2 , Σ ξβ(x) = 1 on 3i2 .
0=0

For u e Y(t) set uβ(x) = ζiy , yϊ))u(x) for x = X(y19 y'o) and

W
10

For simplicity, we denote u = uβ, w = wβ etc. We consider the fol-
lowing matrix

"01 0

a 1 °
(6.15) Q{s) = q* L .

_qn 0 Ί_

where for positive constats λ, h we set
fi — (o ("t 01 l 1 Ύi 1 —*~ I x . . .

2>i = - e / ί , 2/) + (ft"1 + λ)e,(β, y) for i ^ 2 .

Then the inverse matrix is given by
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(6.16) Q-\s) = 1 °

o Ί
where qt = (e^s, y))'^, i = 1, 2, , n .

Set

(6.17) z = ί : = Q(s)\ : I ,

(6.18) g(z) = ΛQ-Wz) (=f(y))>

(6.19) Wj,Λ(z) = Xhgi^L, z2, *, zn) X > 0 , fe > 0 .

LEMMA 6.1. .For we Y(£) and wXih as above, we have

7") •«.,.
PROOF. We simply denote wλ)h by w.

w ( » ) = xhf( ejtf y\ y ± , y 2 + y 2 , --,& + yi,-'-,yn + y n )
\ eλs. v) X /(6.20)

where
Lβi(8,!/) βi(s, ?/) Jλ

2 , . . . , n

So with fs — df/dy3- we have

(6.21)

Using

and

we get

(6.22)

W =

βi(s, y)—-w
dy

ΊL e^s, y) X

ι\S, y) x

n

- Σ βy(8, y)(f3.

»i=o

xedΩ
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= Σβ,(«, ytffyj)

= Σ β,(«, i/)//?/)Σ
3=1

Σ
V!=Q 3=1

»l=0

Σ
3=1

LEMMA 6.2. jPor any ε > 0 and h — s — t > 0 we obtain

(6.23) l|w i. i.- l | |.<efc|| |tt| | |,

(6.24) | | |w.. i . . l | | | .^e

by (6.14). Therefore (™ +

Q

Wx'h) e Y(s).

where \\w\\8 =

PROOF. We simply denote wε2}8_t by w. Then with ^ = X^y, we have

(6.25) ( I w(y) \2dy = (Xh)2 \ \ g(zίf

JOβ JOβ

and

(6.26)

Set

I —w(y) dy = λΛ2\
Jo^ 3^/i JOβ

ψ-{zi,y')
dzx

dzγdy' .

Then it is easy to see that

Mz» y')\ ^ [j]Ίffπ(!c, yΊN

Hence, by the Shwarz's inequality

(6.27) \ \g1(z,y')\tdzdyf

JOβ

ύ2\1z\ (" Iflfu(α, y')\2dxdy'dz + 2 Π ^(0, yjdy'dz
JO J i / ' J O JO J ^ '

s i n c e ||flf||β0/g ^ j

(6.26) and (6.27) we obtain
and supp g c {(x, y')\ \x\ ̂  1}. From

(6.28)
JOβ

Combining (6.25) and (6.28) we have (6.23).
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(6.29) ( —w(y) *dy = — \ \g11(z)\idzdy'=
^°β dyi X JOβ ^

By (6.13) and C ' ^ d e t Q ^ C " , we have |||ff||| ^ C|||w|||. Hence from

(6.28) and (6.29) follows (6.24).

LEMMA 6.3. If h — ε2 and U e D(A0(t))Y{t)^Y{t) then we have

(6.30) \\\U+ WλΛ\\\t+h <ί (1 + Czh)\\\[I- hA0(t)]U\\\t

where Wλth = (WQh) with wλ>h as in (6.19).

PROOF. Set

(6.31) V= (I-hA0(t))U .

We simply denote Wλih by W.

We first show that for s = t + h we get

(6.32) \<A(8)U, A(s)W)x\ ^ 2 - 1 | | | F - U\\\2 + Ch\\\U\\\2 .

From (6.3) we have

(6.33) (A(s)U, A(s)W)x = \[ Σ—iaJs, x)JLuW—(alm(s, χ)J—w)dx
JJΩ dXi\ dx3- / dXi^ oxm 1

d
= \ Σ — (α<y(β, x) £-v) Σ

hΩ dXi\ dXj I dxm

wds

~ \\ alm(s, x)—(^-(aij(s, x)— wj-—w)ds .
J J β dXι\dXi\ dXj I dxm I

Let I and II be the first and the second terms. From (6.1), (6.23) and
(6.31) it follows that

(6.34) [ ^

^cM\\\κut)υ\\\Vh\\\υ\\\ =COM\\\V-

^ 4-111V- [7|||2

From U + W e Y(s) we have

(6.35) I = ( Σ -r-(ati(8f x)^-u) Σ alm(s, x)»ι-^-(w + u - u)ds
ho dXi\ dXj I dxm

= - V Σ -IrUifa χ)^~u) Σ CLiΛs, x
J*Ω dXi\ dXj I ' 5xm

From (6.13) we get

Σ alm(s, x)vt--—u = Σ ek(s, y) ̂ -j
ι'm=ί dxm A=I dyk

and
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Σ e>(8, y)^-f = α, Σ β*(t, y)£-f + Σ bfyfiJLf

where a, = eλ(s, y)\eγ% y), bά(y) = (-e^s, i/)βy(ί, y) + e1(t9 y)ej(s9 y))lex{t, y)
for j — 2, •••, w.
Note that (6.14) and UeY(t) imply

(6.36) α1 = e1(8,»)

From (6.13) we get

(6.37) Σ e*(β,
i

«, »)^-/ = Σ
dyk i»«=i

)f/ = 0 for
3

β, a?) - alm{t,

Therefore from (6.36), (6.37) and (6.1) it follows that

(6.38)

Let

(6.39)

where dist((i/J, 2/'), dΩ) ^ r0,
From (6.35), (6.38) and (6.39) we get

bj(y) \^Ch for yedΩ .

(6.40)
3o5 3o5 dyk

= 11 Σ /-(α«(8, *)/4i) Σ Uv)±-fd8
\JBΩ dxt\ dXj ' i=2 32/y

= I ί Σ /-(^(β, s) / ^ ) ± h&yjL
\ha dXi\ dXj /i=2 3̂ /i

We now estimate

w d/?y=w (*<*&

(6.42)
9 χ m J Jo Lδa;, 3a;OT J L 3 x m J

Therefore from (6.1) we have

(6.43) sup Γ—/T = sup
o s s * Ldj/i J os is*' 3*m J
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From (6.41) and (6.43) we have

From (6.39) and (6.13) we have

for k = 2, • •-,«.

Therefore

(6.44) 11/11 gChv*\\\U\\\.

From (6.40), (6.44) and (6.31) it follows that

(6.45) | I | ^ 4 - 1 | | | F - ^ | | | 2 + α | | | ί 7 | | | 2 .

From (6.34) and (6.45) we get (6.32). By definition we have

(6.46) {U, W))t = [<JJ, W>. + <A(s)U, A(s)W),]exv(-Msd-*) .

From U e D(A0(t))Yw^YW (6.23) and (6.32) it follows that

(6.47) 2((U, W}. ^ 2||t7||. ||WΓ||. + 2 - 1 | | | 7 - ?7|||2. + Ch\\\U\\\l

^C"Λ|||C/|||? + 2 - 1 | | | F - U\\\>. .

Since {An, u) sί a)\\uf for a large enough constant C, we have ||| U\\\l +
\\\U- F|||? ^ (1 + CΛ)2|||F|||?. Then it follows from (6.47) and (6.24) that

\\\U+ W\\\\ = \\\U\\\\ + 2{(U, Wh + \\\W\\\\

^ \\\U\\\l + CΆIII^HIi + HI I T - F | | | 2 +

= [1 + CΛ26-2]|||C7|||? + C"Λ| | |C7| | | 2 + | | | t Γ - Fi l l 2

|? + [Chε-> +

- hA0(t)]U\\\ϊ . q.e.d.

From Lemmas 6.1, 6.2 and 6.3, we can now see that the condition
(A.5) holds.
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