BANACH ALGEBRA RELATED TO DISK POLYNOMIALS

Yûichi Kanjin

(Received October 12, 1984)

Introduction. Let $\alpha \geq 0$, and let *m* and *n* be nonnegative integers. Disk polynomials $R_{m,n}^{(\alpha)}(z)$ are defined by

$$R_{m,n}^{(lpha)}(z) = egin{cases} R_n^{(lpha,m-n)}(2r^2-1)e^{i(m-n)\phi}r^{m-n} & ext{ if } m \geq n \ R_m^{(lpha,n-m)}(2r^2-1)e^{i(m-n)\phi}r^{n-m} & ext{ if } m < n \ , \end{cases}$$

where $z = re^{i\phi}$ and $R_n^{(\alpha,\beta)}(x)$ is the Jacobi polynomial of degree *n* and of order (α, β) normalized so that $R_n^{(\alpha,\beta)}(1) = 1$.

Denote by $A^{(a)}$ the space of absolutely convergent disk polynomial series on the closed unit disk \overline{D} in the complex plane, that is, the space of functions f on \overline{D} such that

$$f(z)=\sum_{m,n=0}^\infty a_{m,n}R_{m,n}^{(lpha)}(z) \quad ext{with} \quad \sum_{m,n=0}^\infty |a_{m,n}|<\infty$$
 ,

and introduce a norm in $A^{(\alpha)}$ by

$$||f|| = \sum_{m,n=0}^{\infty} |a_{m,n}|.$$

The space $A^{(\alpha)}$ consists of continuous functions on \overline{D} , since if $\sum |a_{m,n}| < \infty$ then the series $\sum a_{m,n} R_{m,n}^{(\alpha)}(z)$ converges uniformly on \overline{D} by the inequality;

(1) $|R_{m,n}^{(\alpha)}(z)| \leq 1$ on \overline{D} (Koornwinder [5; (5.1)]).

Our purpose is to study some structure of the algebra $A^{(\alpha)}$.

Let $A^{(\alpha,\beta)}$ be the space of absolutely convergent Jacobi polynomial series $f(x) = \sum_{n=0}^{\infty} a_n R_n^{(\alpha,\beta)}(x)$, $\sum_{n=0}^{\infty} |a_n| < \infty$ on the closed interval [-1, 1]. The space $A^{(\alpha,\beta)}$ has the structure of a Banach algebra with pointwise multiplication of functions. This is proved by the nonnegativity of the linearization coefficients of products of Jacobi polynomials (see Gasper [2]) Igari and Uno [3] and Cazzaniga and Meaney [1] studied some structure of the algebra $A^{(\alpha,\beta)}$, that is, the maximal ideal space, Helson sets, spectral synthesis, etc. For the space $A^{(\alpha)}$, we will consider some of these problems. In §§1 and 2, we will show that $A^{(\alpha)}$ is a Banach algebra by the nonnegativity of the linearization coefficients of products of disk polynomials that is proved by Koornwinder [6], and then determine the maximal ideal space of $A^{(\alpha)}$. Moreover, we will show that if $\alpha \geq 1$ and z_0 is in the open unit disk D then the singleton $\{z_0\}$ is not a set of spectral synthesis for $A^{(\alpha)}$. In §3, we will give a characterization of a set of interpolation with respect to $A^{(\alpha)}$, $\alpha > 0$. The structure of $A^{(\alpha)}$ seems simpler than that of the algebra of absolutely convergent Fourier series and is similar to that of the algebra $A^{(\alpha,\beta)}$, but we will use sharper asymptotic formulas and apply delicate calculus.

I would like to thank Professor S. Igari for useful advice.

1. The Banach algebra $A^{(\alpha)}$. First we mention some properties of disk polynomials $R_{m,n}^{(\alpha)}(z)$ (cf. [5], [6]):

(i) $R_{m,n}^{(\alpha)}(z)$ is a polynomial of degree m + n in x and y, where z = x + iy.

(ii) Let m_{α} be the probability measure on \overline{D} defined by

$$dm_{lpha}(z)=rac{lpha+1}{\pi}(1-x^{\scriptscriptstyle 2}-y^{\scriptscriptstyle 2})^{lpha}dxdy\;,$$

Then $\{R_{m,n}^{(\alpha)}\}_{m,n=0}^{\infty}$ is a complete orthogonal system in $L^2(\overline{D}, m_{\alpha})$, that is,

$$\int_{\overline{\scriptscriptstyle D}} R^{\scriptscriptstyle(lpha)}_{{\mathfrak m},{\mathfrak n}}(z) R^{\scriptscriptstyle(lpha)}_{{\mathfrak k},l}(\overline{z}) \; \, dm_{lpha}(z) = h^{\scriptscriptstyle(lpha)-1}_{{\mathfrak m},{\mathfrak n}} \delta_{{\mathfrak m} {f k}} \delta_{{\mathfrak n} l} \; ,$$

where

$$h_{{\mathfrak{m}},{\mathfrak{n}}}^{(\alpha)} = \frac{(m+n+\alpha+1)\Gamma(m+\alpha+1)\Gamma(n+\alpha+1)}{(\alpha+1)\Gamma(\alpha+1)^2\Gamma(m+1)\Gamma(n+1)}$$

 $\overline{z} = x - iy$ and δ_{mk} is Kronecker's symbol. Moreover, $\widehat{f}(m, n) = 0$ for all m, n implies f = 0, where

$$\widehat{f}(m, n) = \int_{\overline{D}} f(z) R^{(lpha)}_{m,n}(\overline{z}) dm_{lpha}(z) \; .$$

(iii) The linearization coefficients of products are nonnegative, that is,

$$R_{m,n}^{(\alpha)}(z)R_{k,l}^{(\alpha)}(z) = \sum_{p,q} c_{p,q}(m, n; k, l)h_{p,q}^{(\alpha)}R_{p,q}^{(\alpha)}(z)$$

with $c_{p,q}(m, n; p, q) \ge 0$ [6; Corollary 5.2].

(iv) If $\alpha = 0, 1, 2, \cdots$, then disk polynomials are the spherical functions on the sphere $S^{2\alpha+3}$ considered as the homogeneous space $U(\alpha+2)/U(\alpha+1)$.

Let l^1 be the Banach space of absolutely convergent double sequences $b = \{b_{m,n}\}_{m,n=0}^{\infty}$ with norm $||b|| = \sum |b_{m,n}|$. Then the space $A^{(\alpha)}$ is a Banach space isometric to l^1 by the mapping $f \mapsto \{\widehat{f}(m, n)h_{m,n}^{(\alpha)}\}_{m,n=0}^{\infty}$ of $A^{(\alpha)}$ onto l^1 . We now claim that $A^{(\alpha)}$ is a Banach algebra.

Assume that $f(z) = \sum a_{m,n} R_{m,n}^{(\alpha)}(z)$ and $g(z) = \sum b_{k,l} R_{k,l}^{(\alpha)}(z)$ are in $A^{(\alpha)}$. Then we have

396

BANACH ALGEBRA

$$\begin{split} f(z)g(z) &= \sum_{m,n;k,l} a_{m,n} b_{k,l} R_{m,n}^{(\alpha)}(z) R_{k,l}^{(\alpha)}(z) \\ &= \sum_{p,q} \{ \sum_{m,n;k,l} a_{m,n} b_{k,l} c_{p,q}(m,n;k,l) \} h_{p,q}^{(\alpha)} R_{p,q}^{(\alpha)}(z) \end{split}$$

and

$$\|fg\| \leq \sum_{p,q} \left\{ \sum_{m,n;k,l} |a_{m,n}| |b_{k,l}| |c_{p,q}(m,n;k,l)h_{p,q}^{(\alpha)}| \right\} \leq \|f\| \|g\|,$$

since $\sum_{p,q} |c_{p,q}(m, n; k, l)h_{p,q}^{(\alpha)}| = 1$ by (iii) and $R_{m,n}^{(\alpha)}(l) = 1$. Thus we have the following:

PROPOSITION 1. The space $A^{(\alpha)}$ is a commutative Banach algebra with pointwise multiplication of functions.

2. The maximal ideal space of $A^{(\alpha)}$. Let m be the maximal ideal space of $A^{(\alpha)}$. The maximal ideal space is identified with the space of multiplicative linear functionals, that is, nonzero complex homomorphisms. Since the mapping $f \mapsto f(z)$ defines a multiplicative linear functional on $A^{(\alpha)}$, every z in \overline{D} corresponds to a maximal ideal $\iota(z)$ in m such that $\tilde{f}(\iota(z)) = f(z)$ for all f in $A^{(\alpha)}$, where \tilde{f} is the Gelfand transform of f. Thus we have a mapping $\iota: z \mapsto \iota(z)$ of \overline{D} into m.

THEOREM 1. The maximal ideal space m of the algebra $A^{(\alpha)}$ is homeomorphic to the closed unit disk \overline{D} by the mapping ι and the Gelfand transform \tilde{f} of f in $A^{(\alpha)}$ is given by $\tilde{f}(\iota(z)) = f(z)$ for z in \overline{D} .

LEMMA 1. Let $\alpha \ge 0$, $0 < \theta < \pi$ and $\rho > 1$. Then there exist positive constants C and K not depending on β , n which satisfy the following: If n and β are positive integers such that $n > K\beta$, then

$$\Big(\cos^{eta} rac{ heta}{2}\Big) R_n^{(lpha,eta)}(\cos heta) = \Big\{\!(heta/\!\sin heta)^{1/2}\!\Big(\sin^{-lpha} rac{ heta}{2}\Big)\!J_{lpha}(N heta) + R \Big\} \Big/ \!ig(rac{n+lpha}{n}ig)$$

where $|R| \leq C\rho^{\beta}(n-K\beta)^{-1}$, $N=n+(\alpha+\beta+1)/2$, $\binom{p}{n}=p(p-1)\cdots(p-n+1)/n!$ and J_{α} is the Bessel function of the first kind of order α .

This lemma is essentially the asymptotic formula of Szegö [7; Satz II], but gives an estimate of the error term with respect to the parameter β which we need for our purpose. We omit the proof since it follows from term by term application of Szegö's method.

LEMMA 2. Let $\alpha \ge 0$, $0 < \theta < \pi$, $\sigma > 1$ and k be positive integers. Then there exist positive integers λ and μ such that $\sigma^{2\mu/(\alpha+1/2)} > \lambda > 1$ and

$$\limsup |\cos(N heta+\gamma)|>0$$
 ,

where $N = \lambda^{k} + (\alpha + 2\mu k + 1)/2$, $\gamma = -\alpha \pi/2 - \pi/4$.

PROOF. Since

$$\cos(N\theta + \gamma) = \operatorname{Re}\left[e^{i\left\{(\alpha+1)\theta/2+\gamma\right\}}e^{i\left(\lambda^{k}+\mu k\right)\theta}\right],$$

it suffices to show that there exist positive integers λ and μ such that $\sigma^{2\mu/(\alpha+1/2)} > \lambda > 1$ and that the sequence $\{e^{i(\lambda^k+\mu k)\theta}\}_{k=1}^{\infty}$ has more than two accumulation points. Put $\theta = 2\pi\eta$. First we suppose that η is a rational number, and write $\eta = q/p$, where positive integers p and q are relatively prime. Since $0 < \eta < 1/2$, we have p > 2. Let $\lambda = p$ and let μ be a positive integer such that $\sigma^{2\mu/(\alpha+1/2)} > p$ and μ and p are relatively prime. Then $\{e^{i(\lambda^k+\mu k)\theta}\}_{k=1}^{\infty}$ has p accumulation points. Next we suppose that η is irrational. Let λ and μ be integers such that $\sigma^{2\mu/(\alpha+1/2)} > \lambda > 1$ and let the accumulation points of $\{e^{i(\lambda^k+\mu k)\theta}\}_{k=1}^{\infty}$ be $\{\xi_{\nu}\}$. Assume that $\operatorname{Card}\{\xi_{\nu}\} = Q < \infty$. We write

$$e^{i(\lambda^{k+1}+\lambda\mu k)\theta} = e^{i\{\lambda^{k+1}+\mu(k+1)\}\theta}e^{i(\lambda-1)\mu k\theta}e^{-i\mu\theta}$$

The accumulation points of $\{e^{i(\lambda^{k+1}+\lambda\mu k)\theta}\}_{k=1}^{\infty}$ are $\xi_1^{\lambda}, \xi_2^{\lambda}, \dots, \xi_Q^{\lambda}$. On the other hand, $\{e^{i(\lambda-1)\mu k\theta}\}_{k=1}^{\infty}$ is dense in the unit circle |z| = 1, since η is irrational. This contradicts the finiteness of $\{\xi_{\nu}\}$. q.e.d.

PROOF OF THEOREM 1. Since two different points in \overline{D} separate functions in $A^{(\alpha)}$, the mapping ι is one to one from \overline{D} into m. It follows from the definition of the Gelfand topology that the mapping ι is continuous. Since \overline{D} and m are compact, it suffices to show that ι is surjective.

Let χ be a multiplicative linear functional on $A^{(\alpha)}$. Since the norm of a multiplicative linear functional is at most 1, we have $|\chi(R_{1,0}^{(\alpha)})| \leq 1$ and $|\chi(R_{0,1}^{(\alpha)})| \leq 1$. Pick points $se^{i\phi}$ and $te^{i\psi}$ in \overline{D} such that $\chi(R_{1,0}^{(\alpha)}) = se^{i\phi}$ and $\chi(R_{0,1}^{(\alpha)}) = te^{i\psi}$. By the identity

$$R_{\scriptscriptstyle 1,0}^{\scriptscriptstyle (lpha)}R_{\scriptscriptstyle 0,1}^{\scriptscriptstyle (lpha)} = rac{lpha+1}{lpha+2}R_{\scriptscriptstyle 1,1}^{\scriptscriptstyle (lpha)} + rac{1}{lpha+2} \qquad ({
m cf. Szegö~[8]}) \;,$$

we have

(2)
$$st e^{i(\phi+\psi)} = \frac{\alpha+1}{\alpha+2} \chi(R_{1,1}^{(\alpha)}) + \frac{1}{\alpha+2}.$$

Let $A_0^{(\alpha)}$ be the closed subalgebra of $A^{(\alpha)}$ generated by the set $\{R_{n,n}^{(\alpha)}\}_{n=0}^{\infty}$. Then $A_0^{(\alpha)}$ is identified with the algebra $A^{(\alpha,0)}$ of absolutely convergent Jacobi polynomial series of order $(\alpha, 0)$. The maximal ideal space of $A^{(\alpha,0)}$ is identified with the closed interval [-1, 1] and the Gelfand transfrom of f in $A^{(\alpha,0)}$ is $f(\cdot)$ [3; Theorem 1]. Thus, restricting χ to $A_0^{(\alpha)}$ we have a unique point r such that $0 \leq r \leq 1$ and $\chi(R_{1,1}^{(\alpha)}) = R_{1,1}^{(\alpha)}(r)$. Since $R_{1,1}^{(\alpha)}(r) = \{(\alpha+2)(2r^2-1) + \alpha\}/2(\alpha+1), (2) \text{ implies that } \psi = -\phi \text{ and } st = r^2$.

Next we show that s = t. By the identities $R_{m,n}^{(\alpha)} = (R_{1,0}^{(\alpha)})^{m-n} R_n^{(\alpha,m-n)}$

398

 $(2R_{1,0}^{(\alpha)}R_{0,1}^{(\alpha)}-1)$ for $m \ge n$ and $=(R_{0,1}^{(\alpha)})^{n-m}R_m^{(\alpha,n-m)}(2R_{1,0}^{(\alpha)}R_{0,1}^{(\alpha)}-1)$ for $m \le n$, we have

$$(3) \qquad \qquad \chi(R_{m,n}^{(\alpha)}) = \begin{cases} (se^{i\phi})^{m-n}R_n^{(\phi,m-n)}(2st-1) & \text{for } m \ge n \\ (te^{i(-\phi)})^{n-m}R_m^{(\alpha,n-m)}(2st-1) & \text{for } m \le n \end{cases}$$

Since $|\chi(R_{m,n}^{(\alpha)})| \leq 1$ for all m, n, we have

(4)
$$s^{m-n} |R_n^{(\alpha,m-n)}(2st-1)| \leq 1$$

for $m \ge n$ and

$$t^{n-m} |R_m^{(lpha, n-m)}(2st-1)| \leq 1$$

for $m \leq n$. If we show that (4) implies $s \leq t$, we have s = t by symmetry. The condition (4) with t = 0 implies s = 0 by the equality $R_n^{(\alpha,m-n)}(-1) = (-1)^n \binom{m}{n} / \binom{n+\alpha}{n}$. Suppose that $t \neq 0$. Put $\cos \theta = 2st - 1$, $0 \leq \theta < \pi$. Then the condition (4) is equivalent to

(5)
$$\left(\cos\frac{\theta}{2}/t\right)^{m-n} \left(\cos^{m-n}\frac{\theta}{2}\right) |R_n^{(\alpha,m-n)}(\cos\theta)| \leq 1$$

for $m \ge n$. If $\theta = 0$, we have obviously t = 1 and s = 1. If $0 < \theta < \pi$, we put $\sigma = t^{-1} \cos(\theta/2)$ and $\beta = m - n$. Suppose that $\sigma > 1$, and choose λ and μ as in Lemma 2. Let ρ be a positive constant such that $\rho > 1$ and $\rho^{2\mu} < \lambda^{1/2}$. By Lemma 1 with this ρ and a well known asymptotic formula

$$J_{lpha}(z) = \sqrt{2/\pi z} \cos(z + \gamma) + O(z^{-3/2})$$

as $z \to \infty$, where $\gamma = -\alpha \pi/2 - \pi/4$, we have

$$egin{aligned} \sigma^{eta}\cos^{eta}rac{ heta}{2}R_n^{(lpha,eta)}(\cos heta)\ &=\sigma^{eta}inom{n}{n}^{-1}N^{-1/2}iggl[(2/\pi\,\sin heta)^{1/2}iggl(\sin^{-lpha}rac{ heta}{2}iggl\{\cos(N heta+\gamma)+R'\}+N^{-1/2}Riggr] \end{aligned}$$

for $n > K\beta$, where $N = n + (\alpha + \beta + 1)/2$, $|R| \leq C\rho^{\beta}(n - K\beta)^{-1}$, and $|R'| \leq C'(N\theta)^{-1}$ for $N\theta \geq 1$ with a positive constant C' not depending on N and θ . Put $n = \lambda^k$ and $\beta = 2\mu k$, and let $k \to \infty$. Then $R' \to 0$, $N^{-1/2}R \to 0$ and $\sigma^{\beta} {\binom{n+\alpha}{n}}^{-1} N^{-1/2} \to \infty$, and thus

$$\limsup_{k o\infty}\sigma^{\scriptscriptstylem heta}\Bigl(\cos^{\scriptscriptstylem heta}{2}\Bigr)|R^{\scriptscriptstyle(lpha,m heta)}_n(\cos heta)|=~\infty$$

by Lemma 2. This contradicts the condition (5). Thus we have $\sigma = t^{-1}\cos(\theta/2) \leq 1$. This implies $s \leq t$ since $st = \cos^2(\theta/2) \leq t^2$.

By (3) and s = t = r, we have

$$\chi(R^{(\alpha)}_{m,n}) = egin{cases} (re^{i\phi})^{m-n} R^{(lpha,m-n)}_n(2r^2-1) & ext{for} \quad m \geq n \ , \ (re^{i(-\phi)})^{n-m} R^{(lpha,n-m)}_m(2r^2-1) & ext{for} \quad m \leq n \ . \end{cases}$$

Thus for every $f = \sum a_{m,n} R_{m,n}^{(\alpha)}$ in $A^{(\alpha)}$ we have

$$\chi(f) = \sum a_{m,n} R_{m,n}^{(lpha)}(z_{\scriptscriptstyle 0}) = f(z_{\scriptscriptstyle 0})$$
 ,

where $z_0 = re^{i\phi}$. The proof is complete.

By the Wiener-Lévy theorem we have the following:

COROLLARY. Suppose that $\alpha \geq 0$,

$$f(z) = \sum_{m,n=0}^{\infty} a_{m,n} R_{m,n}^{(lpha)}(z)$$
 , $\sum_{m,n=0}^{\infty} |a_{m,n}| < \infty$,

and F is a holomorphic function on an open set containing the range of f. Then

$$F(f(\mathbf{z})) = \sum_{m,n=0}^{\infty} b_{m,n} R_{m,n}^{(lpha)}(\mathbf{z}) \quad with \quad \sum_{m,n=0}^{\infty} |b_{m,n}| < \infty \; .$$

By Theorem 1 the algebra $A^{(\alpha)}$ is semisimple. Repeating integrations by parts we may show that the infinitely differentiable functions on a neighborhood of \overline{D} belong to $A^{(\alpha)}$. This implies that the Banach algebra $A^{(\alpha)}$ is regular.

Let *E* be a closed subset of \overline{D} . Denote by I(E) the closed ideal in $A^{(\alpha)}$ consisting of all *f* in $A^{(\alpha)}$ such that f = 0 on *E*, and by J(E) the ideal of all *f* in $A^{(\alpha)}$ such that f = 0 on a neighborhood of *E*. If J(E) is dense in I(E) then *E* is called a set of spectral synthesis for $A^{(\alpha)}$. By an argument similar to that used for Schwartz's example in the Euclidean space \mathbb{R}^3 (cf., also, [1]), we have:

THEOREM 2. If $\alpha \ge 1$ and z_0 is in the open unit disk D, then $\{z_0\}$ is not a set of spectral synthesis for $A^{(\alpha)}$.

PROOF. Let k be the greatest integer not exceeding α and let z_0 be in D. By (1) and simple calculations, there exist a positive constant C and a neighborhood V of z_0 in D such that

$$\left|\frac{\partial^{p+q}R_{m,n}^{(\alpha)}}{\partial x^{p}\partial y^{q}}(z)
ight|\leq C$$

on V for $0 \leq p + q \leq k$ and all m, n. This implies that the functions in $A^{(\alpha)}$ have k continuous derivatives on D and the functional

$$f \mapsto \frac{\partial^{p+q} f}{\partial x^p \partial y^q}(z_0)$$

400

on $A^{(\alpha)}$ is continuous. Let $I_1 = \{f \in A^{(\alpha)}; f(z_0) = 0\}$ and $I_2 = \{f \in A^{(\alpha)}; f(z_0) = (\partial f/\partial x)(z_0) = 0\}$. Then I_1 and I_2 are distinct closed ideals for $\alpha \ge 1$. This proves the theorem.

3. Sets of interpolation with respect to $A^{(\alpha)}$. A closed set E in \overline{D} will be called a set of interpolation with respect to $A^{(\alpha)}$, if every continuous function on E is the restriction of a function in $A^{(\alpha)}$ to E. Vinogradov [9], Kahane [4; Ch. XI §4] and [3] suggest the following observations.

A finite subset of D is evidently a set of interpolation with respect to $A^{(\alpha)}$. Let T be the circle group $R/2\pi Z$ and A(T) be the algebra of absolutely convergent Fourier series $f(t) = \sum_{n=-\infty}^{\infty} a_n e^{int}$, $\sum_{n=-\infty}^{\infty} |a_n| < \infty$. A closed set E in T is called a Helson set, if every continuous function on E is the restriction of a function in A(T) to E (cf. [4; Ch. IV]). The image of a Helson set by the map $t \mapsto e^{it}$ will be called a Helson set on the boundary ∂D . For $f(t) = \sum_{n=-\infty}^{\infty} a_n e^{int}$ in A(T), put $f(z) = \sum_{n=0}^{\infty} a_n R_{n,0}^{(\alpha)}(z) +$ $\sum_{n=1}^{\infty} a_{-n} R_{0,n}^{(\alpha)}(z)$. Then f(z) belongs to $A^{(\alpha)}$. Thus a Helson set on the boundary ∂D is a set of interpolation with respect to $A^{(\alpha)}$. Also, the union of a finite set in \overline{D} and a Helson set on the boundary ∂D is a set of interpolation with respect to $A^{(\alpha)}$. We will consider the converse.

THEOREM 3. Suppose that $\alpha > 0$. Then every set of interpolation with respect to $A^{(\alpha)}$ is the union of a finite set in the open unit disk D and a Helson set on the boundary ∂D .

LEMMA 3. Let
$$\alpha, \beta \geq 0$$
 and $0 < \theta < \pi$. Then

 $|R_n^{(\alpha,\beta)}(\cos\theta)| \leq C_{\alpha} n^{-\alpha} \{\sin^{-\alpha}(\theta/2)\} \{\cos^{-\beta}(\theta/2)\},\$

where C_{α} is a positive constant depending only on α .

PROOF. Let F(w) be the generating function for Jacobi polynomials of the form $F(w) = 2^{\alpha+\beta} \Phi(w) \Psi(w)/Q(w)$, where $Q(w) = (1 - 2w \cos \theta + w^2)^{1/2}$, $\Phi(w) = \{1 - w + Q(w)\}^{-\alpha}$ and $\Psi(w) = \{1 + w + Q(w)\}^{-\beta}$ with the branches of Q(w), $\Phi(w)$ and $\Psi(w)$ being chosen positive for w = 0. Then, for $0 < \theta < \pi$, Jacobi polynomials are given by the formula

$${n+lpha \choose n} R_{\scriptscriptstyle n}^{\scriptscriptstyle (lpha, eta)}(\cos heta) = rac{1}{2\pi i} {\int} F(w) w^{\scriptscriptstyle -n-1} dw$$
 ,

where the path of integration is a small closed curve around the origin in the positive direction. Thus

for $0 < \theta < \pi$, where $w = e^{-it}$. From this and the inequality $\binom{n+\alpha}{n}^{-1} \leq C_{\alpha}n^{-\alpha}$ with a constant C_{α} depending only on α , it suffices to show that $|\Phi(w)| \leq \{2\sin(\theta/2)\}^{-\alpha}$ and $|\Psi(w)| \leq \{2\cos(\theta/2)\}^{-\beta}$, which follow from the inequalities;

$$(6) \qquad |1-w+Q(w)| \ge 2\sin(\theta/2)$$

$$(7) \qquad \qquad |1+w+Q(w)| \geq 2\cos(\theta/2)$$

for $w = e^{-it}$, $t \in (-\theta, \theta) \cup (\theta, 2\pi - \theta)$. Write $1 - w + (1 - 2w \cos \theta + w^2)^{1/2}$ $= e^{-it/2}(e^{it/2} - e^{-it/2}) + [e^{-it}\{(e^{it} + e^{-it}) - 2\cos \theta\}]^{1/2}$ $= e^{-it/2}2i \sin(t/2) + e^{-it/2}(2\cos t - 2\cos \theta)^{1/2}$

for $t \in (-\theta, \theta)$. Then a branch of $(2\cos t - 2\cos \theta)^{1/2}$ should be chosen positive for t = 0. Thus we have

 $|1 - w + Q(w)| = [\{2\sin(t/2)\}^2 + 2\cos t - 2\cos \theta]^{1/2} = 2\sin(\theta/2)$

for $t \in (-\theta, \theta)$. Also, write

$$egin{aligned} 1-w+(1-2w\cos heta+w^2)^{1/2}\ &=e^{-it/2}2i\sin(heta/2)+e^{-it/2}i(2\cos heta-2\cos t)^{1/2} \end{aligned}$$

for $t \in (\theta, 2\pi - \theta)$. Then the branch of $(2\cos\theta - 2\cos t)^{1/2}$ should be positive, since the branch of $(1 - 2w\cos\theta + w^2)^{1/2}$ is positive for w = -1. This shows that

$$||1 - w + Q(w)|| = 2\sin(t/2) + (2\cos\theta - 2\cos t)^{1/2} > 2\sin(\theta/2)$$

for $t \in (\theta, 2\pi - \theta)$. Thus we have (6). Similarly, we have (7) by the identities;

$$1 + w + Q(w) = e^{-it/2} \cos(t/2) + e^{-it/2} (2\cos t - 2\cos heta)^{1/2}$$

for $t \in (-\theta, \theta)$, where the branch of $(2\cos t - 2\cos \theta)^{1/2}$ is chosen positive, and

$$1+w+Q(w)=e^{-it/2}2\cos(t/2)+e^{-it/2}i(2\cos heta-2\cos t)^{1/2}$$

for $t \in (\theta, 2\pi - \theta)$, where the branch of $(2\cos\theta - 2\cos t)^{1/2}$ is chosen positive. q.e.d.

PROOF OF THEOREM 3. Let E be a set of interpolation with respect to $A^{(\alpha)}$. Any closed subset E is also a set of interpolation with respect to $A^{(\alpha)}$ and the restriction of a function in $A^{(\alpha)}$ to ∂D can be regarded as a function in A(T). Thus $E \cap \partial D$ is a Helson set on the boundary ∂D . BANACH ALGEBRA

Next we will show that $E \cap D$ is finite. Suppose that the assersion does not hold. Then there exist a sequence $\{z_i\}_{i=1}^{\infty}$ in E such that $0 < \infty$ $|z_j| < 1$ for $j = 1, 2, 3, \cdots$ and $z_i \neq z_j$ for $i \neq j$, and a point z_0 in \overline{D} such that $\{z_i\}$ converges to z_0 . Let $A^{(\alpha)}(E)$ be the quotient algebra $A^{(\alpha)}/I(E)$ with quotient norm $\|\cdot\|_{A^{(\alpha)}(E)}$ and C(E) be the Banach algebra of continuous functions on E with uniform norm $\|\cdot\|_{\mathcal{C}(E)}$. Since E is a set of interpolation with respect to $A^{(\alpha)}$, we have $A^{(\alpha)}(E) = C(E)$, and the norms in $A^{(\alpha)}(E)$ and in C(E) are equivalent. Let g_k be a function in C(E) such that $g_k(z_{2i}) = 1$ and $g_k(z_{2i-1}) = 0$ for $j = 1, 2, 3, \dots, k, g_k(z_i) = 0$ for j = 0 $2k + 1, 2k + 2, \cdots$ and $||g_k||_{C(E)} = 1$. By the norm equivalence we can choose a function $f_k = \sum a_{m,n}(k) R_{m,n}^{(\alpha)}$ in $A^{(\alpha)}$ for every $k = 1, 2, 3, \cdots$ so that $f_k = g_k$ on E and $||f_k|| \leq C$, where C is a constant not depending on k. Let c_0 be the space of double sequences $\{c_{m,n}\}_{m,n=0}^{\infty}$ vanishing at infinity. Since $A^{(\alpha)}$ is isometric to l^1 , $A^{(\alpha)}$ is identified with the dual of c_0 . This implies that there exists a subsequence $\{f_{k(p)}\}_{p=1}^{\infty}$ of $\{f_k\}_{k=1}^{\infty}$ which converges to a function $f = \sum a_{m,n} R_{m,n}^{(\alpha)}$ in the weak * topology $\sigma(A^{(\alpha)}, c_0)$. Let z be in D and put $z = e^{i\phi} \cos(\theta/2)$. By Lemma 3, we have

(8)
$$|R_{m,n}^{(\alpha)}(z)| \leq \begin{cases} C_{\alpha}n^{-\alpha}\sin^{-\alpha}(\theta/2) & \text{for } m \geq n > 0 , \\ C_{\alpha}m^{-\alpha}\sin^{-\alpha}(\theta/2) & \text{for } n > m > 0 . \end{cases}$$

Since $|R_n^{(\alpha,\beta)}(\cos \theta)| \leq {\binom{n+\beta}{n}}/{\binom{n+\alpha}{n}}$ for $\beta \geq \alpha$ (see, [8; (7.32.2)]) and ${\binom{n+\beta}{n}}/{\binom{n+\alpha}{n}} \leq C_{\alpha,n}\beta^n$ with a constant $C_{\alpha,n}$ not depending on β , we have

$$(9) \qquad |R_{m,n}^{(\alpha)}(z)| \leq \begin{cases} C_{\alpha,n}(m-n)^n \{\cos(\theta/2)\}^{m-n} & \text{for } m-n \geq \alpha \\ C_{\alpha,m}(n-m)^m \{\cos(\theta/2)\}^{n-m} & \text{for } n-m \geq \alpha \end{cases},$$

Thus, if $\alpha > 0$, then the complex sequence $\{R_{m,n}^{(\alpha)}(z)\}_{m,n=0}^{\infty}$ belongs to c_0 for every z in D by (8) and (9). By the definition of the weak * topology, we have that $f_{k(p)}(z)$ coverges to f(z) as $p \to \infty$ for every z in D. In particular, we have that $f(z_{2j}) = 1$ and $f(z_{2j-1}) = 0$ for $j = 1, 2, 3, \cdots$, which contradicts the continuity of f in \overline{D} . The proof is complete.

References

- F. CAZZANIGA AND C. MEANEY, A local property of absolutely convergent Jacobi polynomial series, Tôhoku Math. J. 34 (1982), 389-406.
- [2] G. GASPER, Linearization of the product of Jacobi polynomials, I and II, Canad. J. Math. 22 (1970), 171-175 and 582-593.
- [3] S. IGARI AND Y. UNO, Banach algebra related to the Jacobi polynomials, Tôhoku Math. J. 21 (1969), 668-673.
- [4] J.-P. KAHANE, Séries de Fourier Absolument Convergentes, Ergebnisse der Math. 50,

Y. KANJIN

Springer-Verlag, Berlin, Heidelberg, New York, 1970.

- [5] T. H. KOORNWINDER, Two-variable analogues of the classical orthogonal polynomials, Theory and Application of Special Functions, 435-495, Math. Res. Center, Univ. Wisconsin, Publ. No. 35, Academic Press, New York, 1975.
- [6] T. H. KOORNWINDER, Positivity proofs for linearization and connection coefficients of orthogonal polynomials satisfying an addition formula, J. London Math. Soc. (2) 18 (1978), 101-114.
- [7] G. SZEGÖ, Asymptotische Entwicklungen der Jacobischen Polynome, Schriften der Königsberger Gelehrten Gesellschaft, naturwissenschaftliche Klasse 10 (1933), 35-112.
- [8] G. SZEGÖ, Orthogonal Polynomials, Amer. Math. Soc. Colloquium Publications, 1975.
- [9] S. A. VINOGRADOV, Interpolation and zeros of power series with a sequence of coefficients from l^p (Russian), Dokl. Akad. Nauk SSSR 160 (1965), 263-266; English translation: Soviet Math. Dokl. 6 (1965), 57-60.

DEPARTMENT OF MATHEMATICS College of Liberal Arts Kanazawa University Kanazawa, 920 Japan