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0. Introduction. Hirzebruch defined in [5] several geometric in-
variants for normal isolated singularities, in particular the g-invariants
for Hilbert modular cusp singularities. The invariant ¢ is the difference
between the L-polynomial and the signature on the desingularization of
a compact neighborhood of the singular point. He conjectured that the
é-invariant coincides with the invariant w, which was defined by Shimizu
[11] as the special value of an L-function. This conjecture was recently
proved by Atiyah, Donnelly and Singer [1]. Ehlers [4] defined and com-
puted the +r-invariant for Hilbert modular cusp singularities, and Satake
[9], [10] generalized these to the cusp contributions for certain locally
symmetric varieties, i.e., arithmetic varieties of Q-rank one. From the
dimension formula of Hilbert modular cusp forms, it is conjectured in [6]
that the invariants ¢ and ¢ coincide.

Here we consider generalized cusp singularities of Tsuchihashi [13].
Generalizing the work of Satake [8], we associate a zeta function to a
pair of a nondegenerate open convex cone and a discrete group appearing
in the definition of Tsuchihashi’s cusp singularity. We show among
other things that the special value of the zeta function gives informa-
tion on the topology of the singularity, namely, the cusp contribution in
odd-dimensional cases.

Let N be a free Z-module of rank » (>1) and Nx:= N®;R. Let
C be a nondegenerate open convex cone in Nx and I” a subgroup in the
group GL(N):= Aut; (N) of Z-linear automorphisms of N such that C
is I-invariant, I" acts on D := C/R,, properly discontinuously and freely,
and that D/I" is compact. Then the semi-direct product N : I acts on
the tube domain Ni + 1 —1C in N¢:= N ®,C properly discontinuously
and freely. We get a complex manifold (Ng + V' —1C)/N - I'. By adding
a point oo, we can make {(Nx+1 —1C)/N:TI'}U{c} a complex analytic
space. Tsuchihashi’s cusp singularity is this point «~. Let X be the
exceptional set of a resolution of this singularity. Then X=X, +:-- + X
is a toric divisor, that is, X has only normal crossings as singularities,
each irreducible component X; of X is isomorphic to an (n — 1)-dimen-
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sional compact torus embedding and the union U,.; X;N X, of the double
locus X;NX, on X; coincides with the closure of the union of all the
codimension one orbits on Xj.

On the other hand, let N* be the dual Z-module of N with the
pairing {,>: N X N* > Z. Let dxr and dz* be the Lebesgue measures
on N and N3, respectively, so normalized that the volume of the paral-
lelotope spanned by a basis of N and N* is one. Let C* be the dual
cone of C defined by C*:= {z* in Ng; (x, 2*> > 0 for all « in C\{0}}.
The characteristic function of C is

bo(@) 1= SC* exp(— (&, &*))da*

defined by Vinberg [14]. Then we define the zeta function associated to
(G, I") by
ZIC, I';8):= >, ¢ox)* for Res>1.

ze(NNO)IT

We show in Theorem 2.1 that the function Z(C, I'; s) can be continued
meromorphically to the whole complex plane. As we briefly mention
below, it is expected that the value of Z(C, I'; s) at s = 0 gives topologi-
cal information on Tsuchihashi’s cusp singularity corresponding to (C, I').
It is indeed the case when the dimension n is either two or odd.

The zeta function associated to a self-dual homogeneous cone was
studied by Shintani [12] in the case of simplicial cones, by Zagier [15]
in the case of two dimensional cones and by Satake [8] in general. We
generalize the method employed by Zagier [15] and suggested to the
author by Zagier himself, but in a way different from that in Cassou-
Nogués [3], since (1) C may not be self-dual homogeneous (cf. Tsuchihashi
[13, §5]) and (2) 1/¢.,(x) may not be a polynomial.

We now explain which topological information Z(C, I';s) is expected
to give. We consider the following situation: Let & be a tube domain
R" +1/=1C such that C is a self-dual homogeneous open convex cone.
Let I', be an arithmetic group acting on &. Assume, for simplicity, that
I, is torsion-free, that the quotient space &Z/I', is smooth and that there
exists a compactification Y := (Z2/I)U{p, -+, ps} of Z/I, by addition
of a finite number of points p,, ---, p, called cusps. Mumford gave a
method to construct a smooth compactification Y’ : = (2/I',) U DYU---UD™
by using toroidal embeddings. Here D:= UD' is a divisor with only
simple normal crossings on Y’ and D' are connected components of D.
Let D% = U,c; D; be the decomposition of D* into the union of ir-
reducible components. Let §; in H*Y’; Z) be the cohomology -class
determined by D;. Then the difference X..:= X(Y') — %(Y’, D) of the



CUSP SINGULARITIES 369

arithmetic genus of Y’ and logarithmic arithmetic genus of (Y’, D)
depends only on & and I', and is called the cusp contribution. We can
calculate ¥(Y’, D) by using the proportionality theorem of Mumford.
By Satake [9], [10], the cusp contribution can be computed as follows:
_ 9;
X = x"(_i];II 1— e"’i) !
where I:=IYyU.--UI™ and k, denotes £,(b) = b,[]Y’] for the degree 2n
part b, of b in @, H*(Y'; Q). It is natural to define the contribution
of each cusp p, by
e 0;
Xm(pz) « xﬂ(j];!:z“) ‘—_—‘1 — je"‘"j ) .
Then we have Xo = Xoo(py) + +++ + Xoo(Dp).
Satake [9], [10] gave a relation:

- _ 09 1+ e

— nf __1\nt+1 — n—34J —_— o —

Kp) =2~ 5~ 4T, 21T,

where @ := {(JCI;J # @ and D, := N,e; D; # @}. For J in @ with
r =*] we denote by sgn(D;) the signature of the (» — r)-dimensional
manifold D,, i.e., the signature of the bilinear form on H""(D,; R)
defined by cup product. Then we also have (see Lemma 3.15 in Section 3)

(-)™ 3 (-2 = 3

X2 Jeol

| sgn(D;) .

Moreover, if n is odd, then we have
Xo(p:) = €(0")/2,

where e(@“) is the Euler number of the dual graph of D", which is an
(n — 1)-dimensional simplicial complex and which is determined by the
exceptional divisor D*.

Using the same formula we can define the cusp contribution of
Tsuchihashi’s cusp singularity. Namely let (V, p) be Tsuchihashi’s cusp
siugularity of dimension n, w: W — V a resolution of the singularity and
Ujer X; the decomposition of the exceptional set #~'(p) into the union of
irreducible components. Let d; in HXW; Z) be the cohomology class with
compact support determined by X;. Then we define the cusp contribution
X«(p) by

Xelp) 1= i, TT —21 ).

jer 1 — e7%

The equalities of Satake also hold in this case:
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o 0; 14 e7%
Lo(p) = 2 ;;,wsgn(X,) + E"(E EJ_—I — e"’f> , and

Xo(p) = e(@)/2 if m 1is odd,

where @:={JCl;J + @ and X,:= N;s X; # @} (see Lemma 3.15 in
Section 3).

Tsuchihashi’s cusp singularity in dimension n = 2 is a Hilbert modular
cusp singularity. The exceptional divisor of its minimal resolution is a
cycle of rational curves. Z(C, I';0) is expressed in terms of the cusp
contribution as

Z(C, IT'; 0) = —-1-152'; @+ 3) = —Xu(p) .

When % is odd, we show in Theorem 2.8 that Z(C, I'; 0) coincides
with —1/2 times the Euler number of the dual graph, hence we have

Z(C, I';0) = —X(D) .
Even if n = 4 is even, we can expect
Z(C, I';0) = —X(p)

to hold. Unfortunately, we could not prove this, but can express
Z(C, I';0) in a form very similar to Satake’s formula.

The author would like to thank Professors I. Satake, T. Oda and
M.-N. Ishida for their useful advice and encouragement.

1. Tsuchihashi’s cusp singularities. Generalizing Hilbert modular
cusp singularities, Tsuchihashi [13] introduced new normal isolated
singularities. These are the singular points appearing at infinity of the
quotients of tube domains. In this section we explain these generalized
cusp singularities of Tsuchihashi.

Let N be a free Z-module of rank » and N* the dual Z-module of
N with the natural pairing {, >: N Xx N* - Z. Consider a pair (C, I')
consisting of an open convex cone in Nz:= N®;R whose closure C
contains no line in Ny and a subgroup I in GL(N) := Autz(N) with the
following properties:

(1) C is I'-invariant.

(2) I acts on D:= C/R,, properly discontinuously and freely.

(8) The quotient D/I" is compact.

Then there exists a rational partial polyhedral decomposition (r.p.p. de-
composition for short) 3 satisfying the following conditions:

(i) C= U, s\ Int(0).

(ii) For any compact set K contained in C, the set {s€X; 0N K # @}
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is finite.

(iii) X is I'-invariant.

(iv) I acts on I\ {0} freely.

(v) (N{OY/I" is a finite set.

Here we denote by 0 the cone {0} and by int(s) the relative interior of g.

Tsuchihashi [13] gave an r.p.p. decomposition ¥ using the convex
hull 8 of CNN. Taking a I'-invariant subdivision of 3, if necessary, we
may also assume the following:

(vi) For every ¢ and 7 in Y, there exists at most one g in I" with
(go)Nz # 0.

(vii) 2 is nonsingular, i.e., for each ¢ in ¥ there exists a Z-basis
{4y, -+, u,} of N and r < n such that ¢ is spanned by u,, ---, #,, namely,
c=R-u, + - + Rsu,. In the following, we assume that X satisfies
the conditions (i)-(vii).

Tsuchihashi [13] associated to such a pair (C,I') a cusp singularity
Cusp(C, I') as follows: Ty:= N®;C* is an algebraic torus. Since X is
nonsingular, the corresponding torus embedding Z:= Tyemb(Z) is a non-
singular complex analytic space. Since X is [-invariant, I" also acts on
Z. We define a homomorphism

ord: Ty = NX;C* —> Nr = NQRzR
by 1y ® (—log| ). W:=ord(C)U(Z\Ty) in Z is a I-invariant open
set and I' acts on W properly discontinuously and freely. ¥:= Z\ T,
in W is also I'-invariant. We set W:= W/I" and Y:=Y/I". By con-
struction they have the following properties:

@ Y=X,+---+ X, is a toric divisor with only simple normal
crossings, that is, Y has only simple normal crossings as singularities,
each irreducible component X; of Y is isomorphic to a nonsingular (n — 1)-
dimensional compact torus embedding and the union U.,(X;NX;) of the
double locus X;N X, on X, coincides with the closure of the union of all
the codimension one orbits on X;. We define @ to be the set of subsets
J#@ of {1, ---, 1} such that the intersection X, := N,., X; is nonempty.

(b) For each J in @, the analytic space X, is isomorphic to a com-
pact nonsingular torus embedding of dimension n — %J. We can choose
a complete set of representatives {g(J) € X; J e ®} of ¥\ {0} modulo I" so
that for J in @ the closure in W of the torus orbit corresponding to a(J)
is a compact nonsingular torus embedding isomorphic to X,. Indeed by
the theory of torus embeddings, we have a canonical bijection between
Y and the set of torus orbits in Tyemb(Y). For each ¢ in X, let us
denote by V(o) the closure of the orbit corresponding to ¢. dim V(g) =
n —dimg. If ¢ + {0}, then V(o) is contained in ¥ = Tyemb(Z)\ Ty W.
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We have Y = ¥/I' = X,U--- UX,. Hence for each J in @, there exists
an (n — *J)-dimensional cone ¢(J) in Y such that the inverse image of
X, under the projection W — W is the disjoint union of V(ga(J)) with g
running through I". Obviously, Y\ {0} = {ga(J); g€ I, J € @}.

(¢) @ gives a triangulation of D/I" by the projection C — D = C/R.,.
Namely, each k-dimensional cone ¢ in 3 gives rise to a (k — 1)-simplex
(o\{0})/R,, in D = C/R,, and we get a triangulation {(¢\{0})/Rs,; o€
2N\{0}} of D. Thus by the projection D — D/I" the complete set of
representatives {o(J)/R.,; J € ®} of simplices modulo I gives rise to a
triangulation of D/I".

We obtain Tsuchihashi’s cusp singularity Cusp(C, I') by contracting
Y to a point p.

WoY
Vol
Vap

The germ of the analytic space (V, p) depends only on the pair (C, I")
and is independent of the choice of Y.

2. Main theorems. For an open convex cone C in Ng, we define the
dual cone C* in Nj by

C* := {x* e NE; (x, x*> > 0 for all z in C\{0}} .

Denote by dz* the Lebesgue measure on N} normalized so that the
volume of the parallelotope spanned by a Z-basis of N* is one. Then

o(@) 1= SC' exp(—(w, @*))da*

is the characteristic function of C defined by Vinberg [14]. The value
dc(x) is positive for every point z in C and goes to infinity as x ap-
proaches the boundary of C. Moreover, if g is a linear transformation
of Ny preserving C, then we have ¢,(gx) = |det g| " ¢s(x).

DEFINITION. For a pair (C,I") as in Section 1, we define the zeta
function associated to (C, I') by

ZIC, I';8):= >, ¢gx)* for Res>1.

ze(NNO)IT

REMARK. When the cone C is homogeneous and self-dual, this func-
tion coincides with that defined by Satake [8].

To see that it is well-defined, we need only to prove that for each
o in Y\ {0}, the partial zeta function
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Z(g,8):= >,  ¢iw)
ze NNint (a)

converges absolutely for Res > 1. Indeed,

C= U int(o)

oer\{0)

and 3\ {0} modulo I' is finite. Since {o(J);J €@} is a complete set of
representatives of XY\ {0} modulo I, we have a finite sum

Z(C, T;s) = .;Z‘w Z(o(J), s) .

Choose an open simplicial cone 4 = R,,w, + -+ + R,,v, contained in
C and containing ¢. v, -, v, are points in C and form a basis of Ng.
For any x in NNint(¢) we may write £ = a,v, + -+ + a,v, with positive
real numbers a,. Since C* is contained in 4*, we have

_K

L@,
for a positive constant K. If dim ¢ = r, there exist u,, ---, 4, in NNC
so that ¢ = R, u, + --+ + R u,. Let u, = >}, u{”v;. Then we have

lZ(o,s)l = >, )i¢o(x)'l

zeNNint(o

po(x) = ¢4(x) =

(=] n )
= 3 K* Il(muf + -0 + mau) ",
ml,---,mr=1 j=1

The right hand side converges absolutely for Res > r/n, since it has
exactly the same form as that appearing in the Hilbert modular case (cf.
Shintani [12, Proposition 1]). Therefore Z(C, I'; s) is well-defined.

In the next section, we shall prove the following theorems.

THEOREM 2.1. The zeta function Z(C, I';s) associated to (C,I") can
be continued meromorphically to the whole complex plane.

For any positive integer k, let 2(k):= {0 € 3;dimo = k} and (1) :=
{ryz <o and dimz =1} for ¢ in ¥. For any p in (1), we denote

by 0, the derivation in the direction p, that is, for a function F(x)
on C,

9, F() : = lim {F(z + hu(0)) — F@)/h ,
where u(0) is the unique primitive element in pNN. For any compact

complex manifold M of dimension », we denote by sgn(M) the signature

of the bilinear form on H"(M; R) defined by cup product H"(M; R)X
H'(M; R) — H*(M; R) = R.

THEOREM 2.2. For any integer v = 2, we have
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per() 1 — g%

Z(C, F; 0) - re(;%o))/[‘ Sr[ H ap j|dimz- G”(x)dxr
dim(X jy)
= —2 3, sgn(X,) + 3 (-%_) "sgn(X,)
X S |: H ﬁ'1_+§'_ij| Gv(x)dxo(-f) ’
a(J) dimg(J)

pcai) 2 1 — g~ %

where G, (x) := exp(—oy(x)™), dx. s the Lebesgue measure on the linear

subspace t + (—7) of N normalized so that for a Z-basis {u, ---, u,} of
N with 7 = Ryu, + -+ + Ryu, the volume of the parallelotope spanned
by {u,, -+, u,} is one, and {o(J); J €@} is a complete set of representative

of (I\A{0}) modulo I' as in Section 1. We denote by

[peIrI(1) 1 —e % I

the total degree k part of the formal power series expansion of
0o

per) 1 — g% '

regarded as a differential operator of order k acting on the function
G, (x).

THEOREM 2.3. When n 1s odd, we have
Z(C, I';0) = —27%(D/I") ,
where e(D/I") is the Euler number of D|I'.

3. Proof of the theorems. For the proof of Theorem 2.1, it is
enough to show that Z(g, s) = >,crninue $o(2)° can be continued meromor-
phically to the whole complex plane for each ¢ in Y\ {0}. In fact, we
show the following in Proposition 3.7:

For any positive integer vy, the function Z, (o, s):= Z(o, vs) can be
continued meromorphically to the half plane

Res> —-1+1/v.

Thus Z(o, s) can be continued meromorphically to the half plane Res >
—v 4+ 1 for any positive integer v, hence to the whole complex plane.
Moreover, using the complete set of representatives {o(J);J €@} of
X\ {0} modulo I, we have a finite sum

ZC, I3 0) = 3, Z(0(J), 0) .

To prove Proposition 3.7, we use a general result on the special



CUSP SINGULARITIES 375

values of Dirichlet series. The following proposition is a slight generali-
zation of that in Zagier [15] to the case where f(t) is expanded asymptoti-
cally in terms of fractional powers of t.

PROPOSITION 8.1. Suppose a Dirichlet series
P(8) 1= 2 ai®

converges absolutely for Res > 1, where {\,}i, 1S a sequence of positive
real numbers which diverges to infinity, and let

f@) := Ig a; exp(—n;t)

be the corresponding exponential series defined for ¢ > 0. If f(t) has an
asymptotic expansion at t = 0 of the form

ft) = 5 bt + O as t—0,

Sfor positive integers K and 1, then (s) admits a meromorphic continua-
tion to the half plane Res > —KJl and is holomorphic at s =0 with
¥ (0) = b,.

PrROOF. For each t > 0, there exists a positive number y, with
eV >yt for all y =y, Thus using the gamma function I'(s):=

S t*'e~tdt, we can write
0

I(8)y(s) = Smf(t)t’-ldt for Res>1.
Set
I(s) = | fiye=de and L) = | fwp-at .

Since the absolute value of f(£) = O(exp(—2X,)) decreases exponentially as
t — + oo, I(s) converges absolutely for all s and uniformly on compact
sets. Thus I,(s) is an entire function in s.

On the other hand, for Res > 1, we have

[, (33 bt = 3], bat™*(s + k)T = 5 buls + kfl)™
and
I(s) = ,Kz}(b,,(s + kD)™ + S: (f(t) — ,;‘K b te e -tdt .

Here the integral on the right hand side converges absolutely for the
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half plane Res > — K/l and uniformly on compact sets in the half plane
by assumption, hence is holomorphic there. Therefore the function
T(8)y(s) — Die<xbi(s + k/)™ has a holomorphic continuation to the half
plane Res > —K]/l. Since 1/I'(s) is an entire function, +(s) can be con-
tinued meromorphically to the half plane Res > —KJlI.

Finally I'(s)y(s) has a simple pole at s = 0 with the residue b, and
I'(s) has a simple pole at s =0 with the residue 1. Therefore +(s) is
holomorphic at s = 0 with +(0) = b,. q.e.d.

In order to apply Proposition 3.1 to the proof of Theorems 2.1 and
2.2, we need an asymptotic expansion of >\, xninto) €XP(—de(x)™t) at ¢t = 0
for each ¢ in Y\ {0} and any positive integer v. We use the Bernoulli
polynomials B,(x) defined as follows:

DEFINITION.

S Btk = -1
k=0 e —1

B, := B,(0) are ordinary Bernoulli numbers. These polynomials satisfy
the following properties:

(d/dx)By(x) = kB;_,(x) ,
B,(x + 1) = By(x) + kx** for k=1.
For a real number x, denote by [x] the Gauss symbol.

LEMMA 3.2 (Euler-Maclaurin summation formula, see, for instance,
Bourbaki [2]). For any positive integers L, K and any CX-function g(x)
on [0, L], we have

< —_ ( 1) Bk+1 ¥ (1,)
3100 = | sz + 3 G B — g

- 2L B — P @

where g*'(x) is the k-th derivative of g(x).

REMARK. Lemma 3.2 is also true for a function g(x) in C¥(0, L] such
that the derivatives g*'(x) of orders up to K — 1 have limits at x = 0
and that g®(x) is bounded.

Set
= (—1)*By/k!

for every positive integer k. Thus 8, = 1 and
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t .

1—et

We say that a continuous function f(x) on [0, )" tends to 0 rapidly at

infinity if for any positive integer m the function (1 + |jz|)"f(x) is

bounded for ||| sufficiently large, where ||| denotes a fixed Euclidean
norm of z in R". Using Lemma 3.2, we easily have the following:

= 2 Btk .
k=0

COROLLARY 3.3 (Zagier [15]). Let g(x) be a C**'-function on (0, =)
such that its derivatives of orders up to K+ 1 tend to 0 rapidly at
infinity, while its derivatives of orders up to K have limits at x =0
and the (K + 1)-th derivative is bounded. Then the function

fit) = g gtl) for t>0
has an asymptotic expansion at t = 0 of the form
£y =t |7 g — 3, 89" )t + 06%)

= kKO 1 Sw Birg®(x)dx + Ot*) as t—0.
= 0

Applying Corollary 8.8 repeatedly to each variable, we have the
following for funections G(x) = G(«,, - -, x,) of r variables:

PROPOSITION 3.4. Let K be a positive integer and assume that G(x)
1s a CX*-fumction on [0, =) \{(0, -, 0)} such that its partial derivatives
of total orders up to K + 1 tend to 0 rapidly at infinity, while its partial
derivatives of total orders up to K have limits as x goes to the origin
and its partial derivatives of total order K + 1 are bounded. Then we
have the following asymptotic expansion at t = 0:

- t”‘“’S 8.(0/0x)*G@)dx + OEH—") as t—0,
0sikIsK (Rz)"

where k:= (klr ) kr)e(Zzo)rv lkl = kl + e + k:,, Bk = Bkl e B"r and
(8/0x)k : = (/o)™ - - - (9/dw,)*r.

For each r-dimensional cone ¢ in Y, we have primitive elements
Uy + o+, U, in NNC such that ¢ = Bou, + -+ + Ryu,. Then the function
do(Xu, + +++ + x,u,) is a C~-function on [0, )"\ {(0, ---, 0)}.

LEMMA 3.5. For each positive integer v and r-dimensional cone o
in X, the function
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G, (%) = G, (2} * -+, x,) 1= exD(—go(@,u; + +*+ + 2,u,)7)
and its partial derivatives of all orders temd to 0 rapidly at infinity.

PrROOF. We identify the linear subspace o + (—o) of Np with the
Euclidean space R" by regarding (u,, --+, %,) as an orthonormal basis. It
is clear that g.(x) ™ exp(—gs(x)™) is bounded for z in ¢ with sufficiently
large |||, since g,(x) goes to 0 at infinity.

Now we choose as in Section 2 an open simplicial cone 4 = R,v, +
<+« + R.w, contained in C and containing ¢. Then we have

amty + + oo+ zu,) = K I @l + -+ + gud),
j=1

for a positive constant K,. Hence for any (m, ---,m,) in (Z.,)", we
have

(@/o@,)™ - - - (0/0m, )" rdo(my + + -+ + &,u,)|

= SC fI {ujy 2*)™i exp(—<xu, + + -+ + U, £¥))dx*
* j=1

= SA 11 (ujy )™ exp(— (e, + -+ + XUy, 0F))da*
* j=1

= [(3/34171)"“ -+ (0/0x,)"r K, ﬂ (@ud + - + zud)

This is obviously bounded at infinity. Note that every partial derivative
of G,,(x) is represented as the product of G,, with a polynomial in ¢;*
and partial derivatives of g..

Let k& be any positive integer. Then there exist positive constants
K,, K, and K, such that

el = Ky(2, + +++ + 2,) = K, f[ (2wl + oo + zud)
=
= K4¢c(x1u1 + oo+ .’L',u,.)_"

for |lz|| sufficiently large. Therefore G,, and its partial derivatives of
all orders tend to 0 rapidly at infinity. q.e.d.

To apply Proposition 3.4 to this G,,, we need to investigate the
behavior of G,, and its partial derivatives near the origin.

LEMMA 3.6. For each positive integer v and r-dimensional cone o
in X, let G,, be as in Lemma 3.5. Then G,, and its partial derivatives
of total orders up to ny — 1 have limits at the origin and the partial
derivatives of total order ny are bounded.

Proor. We identify N with the Euclidean space R" by regarding
(#yy +++, u,) as an orthonormal basis. Since ¢,(v) diverges to infinity as v
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in C goes to the origin, G, ,(x) goes to 1 as ||x|| tends to 0.
Let o’ be any point in ¢ with ||#’|| = 1. Then ¢’ is a point in ¢ for

t>0. For each m = (m,, --+, m,) in (Z5,)", we write the value of partial
derivatives of go(x,u, + -+ + x,u,) at ta' as

((0/oz)"po)(ta")

Then we have

|((3/3x)”¢0)(t9;’)| — SC* ;l-jl <uj’ x*>mje_(t¢/,z.>dx*

— t—lml—n S fI <ui7 x*>m,-e—(z',zt)dx* .
Cc* j=1

Let dxf be the Haar measure on the hyperplane H(x', ) := {x* € N};
&, x*) = a} defined by the following condition: For any continuous
function f with compact support on N¥, we have

SN; FaH)dx* = Si:das S*)daxy .

H(z’,a)
Then we have

S ﬁ {uyy x*Yymie= = dy* = Sm e “da S fI {uyy 2*y™iday .
0

Cc* j=1 H(z',a)NC* j=1

Since H(z', ) NC* is bounded, the volume V(z', @) of H(z', @) NC* and
M, a) := sup{<{u,, *); * € H@@', &) N C*} are fininite for j =1, .-+, 7.
Since H(z', @) is obtained from H(a’, 1) by the homothety with respect

to a, we get V(2', ©) = a*'V(2/, 1) and M,(«’, @) = aM,(«’,1). Therefore
we have

[((@8/62)"po)(ta")| = ™™~ V(a', 1) I=I1 M, 1)mi S: e “a'™ " da

= t-Im -V, 1) IiI M@, Y™ (Im| + n) .

Similarly we have
solta’) = =" V(&' 1) S‘” e~rar-da = t Vo, VI'(n) .
0

Since o N {x € Ng; ||lz]| = 1} is compact, sup{I]5-, M(x’, 1)™i; &' € o and ||«’|| =1}
and sup{V(x',1)™; 2’ € o and ||2’|| = 1} are finite. Thus
[((3/ox)"p5")(ta")| = O@™~'™) as t—0.

Therefore the partial derivatives of G, (x) of total orders up to myv — 1

have limits 0 at the origin and those of total order ny are bounded at
the origin. q.e.d.

By Lemmas 3.5 and 3.6 and Proposition 3.4, we have for
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G,,.(x) = exp(—go(aw,u, + «++ + 2,u,)7)

the following asymptotic expansion at ¢ = 0:
i Go,v(tmv ) tmr)
Myyeesymp=1
= > t”‘HS Bi(0/0x)*G,, (x)dx + O@t™™") as t—0.
0<|klsSnv—1 (Rz )"
Note that G, (tx) = t™G, (x). Hence replacing ¢t by ¢“* above and

applying Proposition 3.1, we have the following:

PropoOSITION 3.7. Let 0 = Ryjit;, + -+ + Roou, be an r-dimensional
cone in X. Then for any positive integer v, the function Z/(o,s) =
Z(o, vs) can be continued meromorphically to the half plane Res > —1 +
r/ny. Hence the partial zeta function Z(o, s) can be continued meromor-
phically to the whole complex plane. For any integer v = 2, we have

3.8 Zo,0)= 3 | 600G, @)z,

k|=r
where G, (x) = exp(—gswu, + -+ + x,%,)7").
This completes the proof of Theorem 2.1.

We now calculate the value Z(C, I'; 0). We reformulate (3.8) as
follows: Since

B(0/ox)* = le B, (0/0)
and
= e = 3 But”,
we can write -
23, Buo/om)t = [H @/ow)(L — e—(a/az,))_ll ’

where [ ], denotes the total degree » part of the formal power series
expansion. Reecall that X(1) is the set of one-dimensional cones in 5. For
any o in 3(1), we denote by 8, the derivation in the direction p, that

is, for a function F(x) on C,
9pF(x) : = Hm{F(z + hu(0)) — F@)}/h ,

where u(p) is the unique primitive element in oNN. Then

3.9) Z(o, 0) = H I ——a”—:ldmaG,(x)dxa ,

péa 1 — e %
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where G,(x) : = exp(—d¢.(x)™) and dz, is the Lebesgue measure on the linear

subspace ¢ + (—o) of Ni normalized so that for a Z-basis {u,, ---, u,} of
N with ¢ = R.u, + -+ + Rxyu, the volume of the parallelotope spanned
by {u,, ---, u,} is one. Therefore we have the following:

ProposiITION 3.10.

G, I50) = aeu%'gn/r Svl: 11 l-—]dlmu G (w)da, -

pea(l) 1 —_ e"‘?p

Since t(1 — e™) ™ = 32, But™, Bo =1, B, =1/2 and Byps; =0 for m =1,
we see that

is a power series in #*, Thus
- (LIS
peIaIm 1 —e % % pea(:!_I)\r(l) 2 p!—rIu) 21 —¢e%/"

Performing integration in the directions p€o(1)\ (1), we thus have

B _—1_ dimg—dim <t QL 1+ e—ap]
PROPOSITION 3.12.
n j dim V(o)
26,1;0 =3 (-2) ' @am + | 5 (-3) " sen Vo)

i re( \{oN/T 2

% S [ I ﬁ1+_e"%]m G (@)dzx. ,

pérw 2 1 — e %

where V(o) is the closure of the Ty-orbit in Z corresponding to the poly-
hedral cone o in X.

Proor. By (3.11) we have

1 dimg—dim a 1 + e—-ap
—_> S[ o 2 —]dim G.(x)da, .

ZC, I';0) = ae(:%‘g))/l" %( 2 perm 2 1 — 7%

Since the integral is independent of the choice of representatives z, we
have

zer;0=3 s (-4 1 2] 6wds

c€3/I ae(S\{0)/T 0>t 2 pez) 2 1 — e %

Separating the summation into the term for z = {0} and the summation
over 7€ (3\{0}) modulo I, we have
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dime —a
s (-D)"+ 3 ([ n@lier] g,
ae S\ jon/r 2 cedVio/r Jeloérw 2 1 — e~ % laime
1
2

dimog—dimr
cel, o>t

Obviously we have

Z(C, I;0) =

i (5) = B () e

Since the r.p.p. decomposition {¢€3;0 >t} gives a torus embedding
V(z) for = in X \ {0}, the following lemma shows that

Z (_1/2)dima—dimr — (_1/2)dimV(f) Sgn V(z-) .

CE€L,0>T

LemMA 3.13 (Ehlers [4]). Let Z' = Ty.emb(E) be a compact nonsingular
torus embedding of dimension r'. Then we have

sgn(Z') = j'z:’a(_z)j W — ) = %(_2)1,_&]15
—_ (_2)d1mz' gg(_l/z)dime .

When ' s odd, both sides vanish.

Since t(1 + ¢7)/2(1 — e7*) is a power series in ¢}, we see that

9 1+ e‘ap:|
|:p;fl;];l) 2 1 — e % _dime

vanishes if dim ¢ is odd, while sgn V(g) = 0 if dim V(¢) =n — dim ¢ is
odd. Thus when n is odd,

(-5 senvin) | [ @ 21EC]  Gada,

o) 2 1 — e %

vanishes for all ¢ in ¥\ {0}. Hence in the notations in Section 1, we
have the following:

PROPOSITION 3.14. When n is odd,
Z(C, I 0) = 3, (— 12V (SGIT) = 33 (~1/2)*03) .
LeEmMA 3.15 (Satake [9], [10]).
3, sen(X;) = (=1 3} (=2~ 0(5)

= —3 (~2r ) + 2" 3 (=1 00) .
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Consequently, when n is odd,
3, sen(X,) = 27 33 (=11 '0(j) .

PROOF. By our definition in Section 1, we have X; = V(g(J)) for
Je®. By Lemma 3.13, we have
sgn(X;) = 3, (=2,

tel,t>a(J)

hence

JZe.mSgn(XJ) =3 3 (—2rtmc,

Jed tel,t>alJ)

Since for 7 in 3 with z > ¢(J) there exists J’ in @ such that ¢ = g(J")
modulo I', we may change the order of the summation to get

Jz‘w sgn(X;) =JZ¢(_2)n—d1mu(J') Hre IN{0}; 7 < a(J")}
= I (—2)r-timow) (uimet) _ 1)

Jev

= 9 2 (__1)n—dlmo(-l) — E (_z)n—dimau)

Jed Jes
= 2"1,2,:1(—1)""' ‘o(5) — gl_l (=2)"7*(j) .
On the other hand, we may write

Sgn(XJ) — (_1)n—dima(]) ZZ (_Z)n—dimr )
tel,r>a(J)
because both sides vanish when dim X; = n — dimg(J) is odd. Thus we
have

Jze‘a sgn(X,) — Jze:p (_1)n—dimo(J) Z (_z)n—dimr

rel,r>a(J)

— (_1)n leslw (_2)n—dlma(J') E (_l)dlmr

e\ {0},7<a(J")

= (=1 3, (—2)rUmewif(] — 1)mewn _ 1}

J'ed
— (__1)n+1 Z (_2)n—dima(J')
J'es

n

= (=" X (=2)"7*0(j) . q.e.d.

i=1
By Lemma 3.15, we have

n n

J%Sgn(XJ) = —2"3,2:1(—2)“" 0(5) = —2"1221(—2)-" Q) .
By this and Proposition 3.12, we complete the proof of Theorem 2.2. By
Proposition 3.14, we have
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Z(C, I'; 0) = —e(D/T)/2

when 7 is odd, since @ gives a triangulation of the (» — 1)-dimensional
compact manifold D/I" and since X(k)/I" is in bijective correspondence
with the set of (k¥ — 1)-simplices in @ for each positive integer k. Thus
we conclude the proof of Theorem 2.8.
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