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1. Introduction and main results. A simply connected domain in
the Riemann sphere C is called a quasi-disk if it is the image of the unit
disk by a quasiconformal automorphism of the sphere. Since Ahlfors’
investigation [2] in 1963, several characteristic properties of quasi-disks
have been studied by many authors. As a result, quasi-disks are related
to various topics in analysis. A bird’s eye view of these studies are
given in Gehring [9]. Among them, the topics with which we are con-
cerned in this article are the BMO extension property and the Schwarzian
derivative property.

Let W be a domain in C. Then fe Li,.(W) belongs to BMO(W) if

17l = sup 5|, 15 = Foldedy < +<=.,

where B is a disk in W with BC W, |B| = S dady and f, = |BI* | fdudy.

Let &+ Dbe a subclass of BMO(W). We say that W has the BMO
extension property for & if there exists a constant C, > 0 such that
for every fe & there is an F e BMO(C) with F'|W = f and

(1.1) I F e = Cllf llew -

Jones [11] has shown that a simply connected domain 4 (#C) in C
is a quasi-disk if and only if 4 has the BMO extension property for
BMO(4) (see also Gehring [9]).

In the first part, we shall strengthen the “if” part of Jones’ result.

THEOREM 1. Let 4 (= C) be a simply connected domain in C. If 4
has the BMO extension property for ABD(d4), then 4 is a quasi-disk,
where ABD(4) is the space of all bounded holomorphic functions in 4
with finite Dirichlet integrals.

In the second part, we shall investigate Teichmiiller spaces of
Fuchsian groups and the Schwarzian derivative property, independently
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of Theorem 1. Let I" be a finitely generated Fuchsian group of the first
kind acting on the upper half plane U and let T(I") be the Teichmiiller
space of I'. It is well known (cf. Bers [4]) that dim T(I") < + < and
T(I") can be idenified with a bounded domain in the Banach space B.,(L, I')
of all holomorphic functions ¢ on the lower half plane L which satisfy

¢(Y(2))Y'(2)? = ¢(z) for all veI' and
I¢ ]l = sup(Im 2)"| (=) | < + o .

For every ¢ in B,(L,I') there exists a meromorphic function W;
defined on L such that the Schwarzian derivative {W,, z} of W, on L is
equal to ¢(z) and W, satisfies the condition

Wiz) =@+ +0(z+1) as z— —1.

We denote by S(I') the set of all ¢ in B,(L,I') such that W, is
univalent on L. It is known that S(I") is closed and contains T(I")UoT(I").
For every ¢ in By(L,I'), W, yields a homomorphism X, of I" with W07 =
X,(V)o Wy (veI'), and if ¢ is in S(I"), then I'* =X, (") = W, W;* is a
Kleinian group. Furthermore, if ¢ is in T(I"), then I'¥ is a quasi-Fuchsian
group, i.e., a Kleinian group with two simply connected invariant com-

ponents.
We shall show a relation between S(I") and T'(I").

THEOREM 2. Int S(I"), the interior of S(I") on B,(L, ), is connected
and is equal to T(I').

In the proof of Theorem 2, the “A-lemma” (cf. Mané, Sad and Sullivan
[13]) will play an important role.

COROLLARY. Let 4 be a simply connected imvariant component of a
finitely generated non-elementary Kleinian group G. Then 4 is a quasi-
disk if and only if there exists a constant C, > 0 such that every mero-
morphic function f on 4 satisfying
(1.2) {f, 2la| = Co04(2)"
and {f, 9(2)}19'(2)* = {f, 2}, for all g€ G, is univalent, where {f, 2}, is the
Schwarzian derivative of f in 4 and 04(2)|dz| is the Poincaré metric on 4.

When G = {id.}, Gehring [8] obtained a similar property of quasi-disks
called the Schwarzian derivative property,

Furthermore, we shall obtain a geometric property of T(I") which is
an extension of a result in [19].

THEOREM 3. Let I', T(I') and By(L, I') be as above, and let H be a
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hyperplane in B,(L, I'). 1:hen H — HNT{T) is connected and 6(H — HN
T(I')) = HNoT(I'), where 0 s the boundary operator considered in H.

In particular, Ext T(I"), the exterior of T(I') in B,(L, I), is connected
and o(Ext T(I) = oT).

In the last part, we shall touch upon some results related to the
above topics. In fact, we shall extend Theorem 1 to a finitely connected
Jordan domain (Theorem 4) and we shall study some properties of
Teichmiiller spaces (Theorems 5 and 6). Especially, Theorem 5, which
shows the complexity of boundaries of Teichmiiller spaces in Bers’ em-
bedding, is a (strongly) negative answer to a conjecture of Bers [5].

2. Proof of Theorem 1.

LEMMA 1. Let 4 (#C) be a simply connected domain in C. Then
there exists a comstant C, > 0 such that for every harmonic function u
wn 4 with the finite Dirichlet integral D,(u),

2.1) lulls,s < CoDg(u)"
holds.

ProOF. From Reimann’s theorem (cf. [18]) asserting the quasi-
conformal invariance of BMO, we may assume that 4 in the unit disk.
For a fixed r > 0 we consider a disk B in 4 such that the center is

2, € 4 and the hyperbolic diameter is not greater than ». Then we have
for all z in B

|u(2) — w(zo)| = d%(z, 2,)Ds(u)"*,

where d%(z, 2,) = sup{|v(2) — v(2,)|; v is harmonic in 4 and D,(v) £ 1}. It
is known that d4(z, z,) < 77:'”28 04(2)ldz| < rz~'* (cf. Minda [15]). Hence
20

I_]1§.|_ SB |u(z) — up|dady = I_J}?T SB lu(z) — u(z,) |dzdy
=TT [, r@uwim)dedy = v,

Therefore, from [18, I-B, Hilfssatz 2] and its proof, we have the desired
assertion (2.1). g.e.d.

LEMMA 2. Let 4 (#C) be a simply connected domain in C having
the BMO extenston property for ABD(4). For z, z, in 4, set

is(z,, 2,) = log <ITz(lzT,—a—zj)|— + 1)(% + 1) ,
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where d(-, +) is the Euclidean distance. Then
2.2) hy(z, 2,) = (w/2)(C.Ce")'(Ja(2, 2,) + 2)° + log 2,

where hy(-, +) 18 the Poincaré distance in 4, and C, and C, are the constant
as in (1.1) and (2.1), respectively.

Proor. For z, 2, in 4 there exists a harmonic function  such that
Dy(u) = 1, u(z,) = 0 and u(2,) = d4(z,, 2,). Since 4 is conformally equivalent
to the unit disk, it is well known (cf. Minda [15]) that

(2.3)  u(z)’ = di(z, 2,)* = (2/m) log cosh hy(z,, 2,) = (2/m)(hy(z,, 2,) — log 2) .

Furthermore, # is Re f for some fe ABD(4), because « is harmonic on a
neighbourhood of 4 when 4 is the unit disk. Hence u has an extension
UeBMO(C) satisfying (1.1). Let B; be the disk of radius d(z;, 04) cen-
tered at z; (j = 1,2). From Lemma 1 and the argument in Gehring [9,
Chap. III, 10.2], we have

[ Us, — Usg,| = (€'54(21, 22) + 2€")|| Ulls,c = Cie’(iu(21, 2,) + 2)||ulls s
= CGe(J4(2,y 22) + 2)Dy(u)"” = CiCee*(Js(2, 2) + 2) .

On the other hand, U = u(z) = 0 and Uj, = u(z,), because B, and
B, are contained in 4. Therefore,

(2.4) 0= uz) = CiCe’(3a(21y 2,) + 2) .
By (2.3) and (2.4) we have the desired inequality (2.2).

ProOF OF THEOREM 1. We shall show that 4 has the hyperbolic
segment property, that is, there exist constants A and B such that for
every z, 2, in 4 (z, # 2,) and for all zea

(2.5) la) = Alz, — 2| and minl(e;) < Bd(z, 04) ,

where a is the hyperbolic segment from z, to z, l(a) is the Euclidean
length of @ and «; (§ = 1, 2) are components of a — {z}. If this is done,
Theorem 1 is proved, because a simply connected domain with the hyper-
bolic segment property is a quasi-disk ([9, Chap. III]).

Set r = min(sup,.. d(z, 04), 2|z, — 2,|). First, we suppose that r =<
max;_,,d(z;, 04). Let m; (j =1,2) be the largest integers for which
2mid(z;, 04) = r and let w; (7 =1,2) be the nearest point on a from z;
satisfying d(w;, 04) = 2™id(z;, 34). Obviously, we may assume that
d(w,, 04) < d(w,, 04). Then there exist constants B,, B, which do not
depend on a and the following inequalities hold.
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la(z;, wy) = Bd(w;, 04) ,

28 la(z;, 2)) < Bd(z, 04) for all zea(z;, w;),
and
@ la(w, w,) < Bd(w,, 04) ,

d(w,, 04) £ B,d(z, 04) for all zea(w, w,),

where «a(z, 2') (z, 2 € ) stands for the open subarc of a from z to 2'.

Our proofs of the inequalities (2.6) and (2.7) are slight modifications
of those for the inequalities (4) and (9) given in [9, Chap. III, 11.3]. But
for completeness, we shall give them.

In showing the inequality (2.6), we may assume that j = 1 and m, = 1.
Now, we take points 2z, =, &, ++*, Cmyy Cmprs = W, On (2, w,) so that
is the nearest point from 2z, on a(z, w,) satisfying d(, 04) = 2¥'d(z,, 04).
Then fix k and set t = l(a(Cs, Lrr))(A(E, 04))". We have

@8  t=[dE, )" |

= 4h4(Cln Ck+1) ’

because (2d(z, 34))™ < p4(z) and d(z, 04) < d(Cyiry 04) = 24(E,, 84) for ze
a(C, Cerr). Hence

dz <2 (e, 04)) | dz|

a(CpCp+1) (5SS k+1

(2.9) 34 Cs) = 10g<|_§1’°(c“_§’2)1|_ +1)( |dc(kC - ng,‘)' +1)
Ick - Ck+l|
= 210g<m -+ 1) = 2log(t +1).

By (2.2), (2.8) and (2.9) we have

t/4 = hy(C, Cird) = (@/2)(C.Ce") ' (3aChy Corr) + 2)* + log 2
and
(2.10) t < 87(C,Coe?)*(log(t + 1)e)* + 4log t .

Obviously, the range of ¢ satisfying (2.10) is bounded and depends only
on C, and C,. Therefore, there exist constants C, and C; depending only
on C, and C, such that ¢t < C, and hy(&,, &) < C,. Thus we have
l(a(Cm Ck+x)) é CAd(Ckr aA) ’
d(Ces1y 04) = d(z, 0)exp(2C;) for zea(l, Gt -

By using the Gehring-Palka inequality (ef. [9, Chap. III, p. 84 and p. 88))
we have

(2.11)

0 <log d(Cuss, 0N(d(2, 04)™" = 2h4(2, Cisa) -
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Hence l(a(z,, w,)) = 352 Ha(, $is)) SC, 2021 A(G, 04) = Ci(2™—1)d(2,, 04) =
Cd(w,, 04). Let ze a(z, w,). Then ze a(,, {...) for some k and l{a(z, 2)) <
LolalC, ) £ C 3k A, 04) = Cd(z, 04)exp(2C;). This completes the
proof of (2.6).
In proving (2.7), we may assume that w, = w, If r = sup,.,d(z, d4),
we set t = l(a(w,, w,))(d(w,, 04))~*. Then we have

t=@w, 00| jazis2| @ 04)7d2] S dhaw, w)

a(wy,wg) a(wy,wy

because d(z, 04) < r < 2d(w,, 34). Hence

t < 4hy(w,, w,) < 87(C,Cee?)*(log(t + 1)e)* + 41og 2
and by the same argument as in the proof of (2.11) we obtain (2.7) in
this case. If r = 2|z, — z,|, then by (2.6)

|w1 - wzl é l(a(zu w1)) + l(a(zu ’1,4)2)) + |z1 - zzl é (3B1 + 1)d(’w1, aA) ’
because d(w,, 04) < r < 2d(w,, 34). Therefore js(w,, w;) < 2log(8B, + 2),
and hy(w,, w,) < 27(C,C,e?)*(log(3B, + 2)e)* + log 2 by (2.2).

For each zeca(w, w, we have hy(w, w,) = hy(z, w;) = 27"|log d(z,
od)(d(w;, 04))™'] (j =1,2) by using the Gehring-Palka inequality again.
Hence

d(w2, aA)eXp(—ZCG) é d(z1 aA) é d(wl, aA)exp(ZCB) ’

where C, = 27(C,C,e®)*(log(8B, + 2)e)* + log 2. Thus we have the second
inequality of (2.7). From this

a(w,, wy) < § d(w,, 04)(d(z, 34))~"|dz|exp(2Cy)

a(wy,wy)

< 2d(w,, 00)hy(w,, w,)exp(2C,) = 2Cd(w;, 04)exp(2C,) .

This completes the proof of (2.7).
By the definitions of » and w; (j=1,2) and by assumption
max;.,, {d(z;, 84), d(w;, 64)} < r. Hence we have

Ua) = Ualz, w) + Ua(ze, w,) + Ua(w,, w,) = (2B, + B,)d(w,, 04)
= (2B, + B)r = 2@2B, + B)|z — 7|,

by (2.6) and (2.7). This establishes the first inequality of (2.5). As for
the second inequality, if z€a, then either zc a(z;, w;) and

r,rzllirzl la(z;, 2)) = lal(z;, 2)) = Bd(z, 04)

by (2.6), or z¢€ a(w,, w,) and
r,glirzl la(z;, 2)) = Ua)/2 = 2B, + B,)d(w,, 04)/2 < B,(2B, + B;)d(z, 04)/2
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by (2.7). Hence we have also obtained the second inequality of (2.5).

Next, we suppose that » < d(z,, d4). Then r = 2|z, — 2z,|]. For any
z on the Euclidean line segment B from 2z, to 2z, we have d(z, 04) = d(z,,
04)/2 = |z, — z,|, and hence

hy(z, 2) < §52<d<z, ad) " dz| < 4|z, — 2,/d(z, 04) S 2 .
By the Gehring-Palka inequality, we have
la) < etd(z, 34) 5 Az, 04))~dz| < 2¢'d(z,, 30z, 2,) < 8¢'|2, — 2] -

For zea, la(z,?) = l(a) < 4¢'d(z,, 04) < 4¢d(z, 04). This establishes
(2.5) in the case where r < d(z,, 04). Similarly we obtain (2.5) in the
case where r < d(2,, 04). Hence we completely proved (2.5).

3. Proofs of Theorem 2 and Corollary.

PROOF OF THEOREM 2. Zuravlev [21] showed that T(I") is equal to
the component of Int S(I") containing the origin. Hence it suffices to
show that Int S(I") has no other component than T(I"). Let S be such a
component of Int S(I"). Then for each ¢S, I'* = X, (") = W,[(W,)™" is
a Kleinian group with a simply connected invariant component W,(L).
Indeed, let 2, be a component of containing W,(L). Suppose that there
exists a point p in 2, — W,(L). Then for any ¢ >0, N,p) = {z€C;
|z — p| < &} is not containd in W,(L)U {p} because W,(L) is simply con-
nected. This implies that N,(p) contains infinitely many points of 2, —
W4(L) for any ¢ > 0 and the Riemann surface £2,/I'¢ contains infinitely
many points which are not contained in W,(L)/I'¢ conformally equivalent
to L/I'. However, L/I" is a Riemann surface of conformally finite type
and, by Ahlfors’ finiteness theorem, so is 24/I'*. This is absurd because
LI’ =2 W4(L)/I'*. Thus 24 = W,(L). Clearly, W (L) is invariant under
I'Y. Hence W,(L) is a simply connected invariant component of I'¢.

Therefore I'¥ has one or two simply connected invariant components
by a theorem of Accola (cf. [4], [14]). Namely, I'* is a quasi-Fuchsian
group or a b-group.

If I'* is a quasi-Fuchsian group, then the limit set A(I™) of I'¢ is a
quasi-circle (Maskit [14]). Therefore, W, has a quasiconformal extension
to € by a theorem in Ahlfors [3] and ¢ belongs to TN B,L, I'), where T
is the universal Teichmiiller space. On the other hand, Kra [12] showed
that T(I") = TNBy(L,I') if I' is a finitely generated Fuchsian group of
the first kind. Thus, ¢ is in T(I"). But this is a contradiction. Hence
I'? is a b-group.
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Since a function (trace X,(7))* for a fixed v eI is analytic on B,(L, I')
and I’ consists of countable number of elements, there exists a ¢ in S
such that (trace X4(7))* + 4 for every non-parabolic element 7 in I", namely,
a b-group I'* is not a cusp. Therefore, I'? is a totally degenerate group
with 2(I'?) = W4(L) by Maskit [14, Theorem 4], where 2(I"?) is the region
of discontinuity of I"%. From now on, we shall consider such ¢ and I%.

Here, we note the following fact called the “\-lemma”.

PRrOPOSITION (Mané, Sad and Sullivan [18]). Let A be a subset of C
and {i;} be a family of imjections of A into C, where \ is in the unit
disk D. Furthermore, let 1,(z) be analytic with respect to n €D for each
zeA and () =2z. Then 1, for each N€D is automatically a quasi-
conformal mapping on A, that is, i, is a homeomorphism of A into C
with

sup Iim inf{6(i,(2), 1,(2")): 8(z, 2') = r, 2’ € A}

zea 0 Sup{0(3,(2), 1:(2)): 0(z, 2') = r, 2’ € A} < e

where 0(-, +) is the spherical distance in C.

We proceed to prove Theorem 2. Since ¢ is in S, there exists a con-
stant » > 0 such that {y-€ B,(L, I'): ||y — ¢|| < r} is contained in Int S(I").
For each v e D we set ¢, = ¢ + My, — ¢) and ¢, = W, o (W)™ on Wy(L),
where +, is in By(L, I') with 0 < [[4, — ¢|| < 7. Then 4; is conformal on
W4(L) = 2(I'*) and satisfies the condition of the above proposition for
A = Q(I'*). Hence i, for each ne D can be extended to 2(1%) = C quasi-
conformally. On the other hand, ¢, is a I'®-compatible quasiconformal
mapping and I'? is a finitely generated Kleinian group. Thus, the Beltrami
differential of %; vanishes almost everywhere on A(/™¢) from Sullivan’s
theorem in [20]. This implies that %, is conformal on C for each neD
and {i;, 2} = 0 on C. But this is absurd because {%;, 2} = My, — #)(W3'(2))-
(W39'(2))* # 0 for » #+ 0. Therefore, we complete the proof of Theorem 2.

PrROOF OF COROLLARY. We may assume that «~e4. Let  be a
conformal mapping of L onto 4 satisfying h(z) = (z + %)™ + O(z + %]) as
z— —1. Then I' = h~'Gh is a finitely generated Fuchsian group of the
first kind and {&, 2} is in B,(L, I') by Nehari’s theorem in [16]. So, if all
f satisfying (1.2) are schlicht on 4, then {f o k, 2} = {f, h(2)}(h'(2))* + {h, 2}
is in S(I"), and {h, z} is in Int S(I") because {f, h(2)}(h'(2))* is in By(L, I
and suD,.s 04w) 2 {f, w}| = ||[{f, h(2)}(W'(2))*||. Hence {h, 2} is in T(I") from
Theorem 2, that is, h(L) = 4 is a quasi-disk.

Conversely, if 4 is a quasi-disk, then 4 has the Schwarzian derivative
property (cf. [8], [9]). Hence all f satisfying (1.2) are schlicht on 4.
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4. Proof of Theorem 3. Suppose that H — HN T(I') is not connected.
Then there exists a bounded component of H — HNT(I') in H, say V,
because HNT() is bounded in H. Obviously, dVcS(I") and therefore
we can show that V is contained in S(I") by the same argument as in
the proof of [19, Theorem 2]. For convenience, we shall sketch the
proof.

For each ¢ € B,(L, I') we set wy(z) = 20 W,(i(1 — 2)(1 + 2)™") on {|z| > 1}.
Then w, is schlicht on {{z| > r} for some » = 1. So, we can define the
Grunsky coefficients b,;(¢) (¢,5 =1, 2, --+), namely,

log ’l,w(zz) : 2045(&) — _iil bij(@)z L

holds on |z|, |{]| > r. Itis known (cf. [17]) that w, is schlicht on |z] > 1
if and only if

@1 |35 buenas| = 2 hatim

holds for an arbitrary sequence {\,} of complex numbers.
Let ¢ be in dV. Then w, is schlicht on |z| > 1. Hence we have

(4.2) té.l bii(BINN;

N
= 3 Il

for an arbitrary natural number N. Since b,;(¢) is analytic with respect
to ¢ By(L, I'), we can verify that (4.2) holds for all ¢ in V by the
maximum principle, and (4.1) holds for every ¢ in V. 8o, V is contained
in S(I').

For a non-parabolic element v eI, (traceX;,(7))’ — 4 is analytic in
B,(L,I') and does not vanish identically on H, because HNT{I) + @.
Therefore, {4 € V; (trace X4(7))? — 4 = 0} is a nowhere dense subset of V,
and by the same argument as in the proof of Theorem 2 we can take
such a ¢ in V that (trace X,(7))* =4 for every non-parabolic element
vel. Since ¢ is in S(I') — T(I"), I'* is a totally degenerate Kleinian
group. By using Proposition (the \-lemma) and Sullivan’ theorem [20]
again as in the proof of Theorem 2 for a small disk in V centered at ¢,
we have a contradiction. Since we have already shown that a(H — HiN
T >HNIT) in [19, Theorem 2], we have 8(H — HN TW)) = HNaT(I')
by a general relation §(H — HNT(I))cHNAT(). Thus, we complete
the proof of Theorem 3.

5. Remarks.

(1) Let W be a bounded domain in C whose boundary consists of a
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finite number of mutually disjoint closed Jordan curves, say ay, a,, -+, ay,
and let W; (j =1,2, ---, N) be a domain in C with W, = a, and W,D> W.
Then we have the following:

THEOREM 4. If W has the BMO extension property for Ui, ABD(W;)| W,
then a,, a,, - ++, ay are all quasi-circles.

ProOOF. From the hypothesis, there exists a constants C, > 0 such
that for every geUJ, ABD(W,) there exists a G € BMO(C) with G|W =
g|W and
(6.1) 1Glle=CllgIWlw -

We may take g as an arbitrary function in ABD(W;) for a fixed j 1 =

J = N). Let B; be a circle in C — W; and let 4; be the component of

C — (B; containing W;. We define a function G in 4; by

Gk, zed;— W;

g(z), zeW;.

Set d; = minfhy(a;, au): k # j}, .where hy,(-, -) is the hyperbolic distance

in 4;. Then d; > 0 and for every disk B in 4; whose hyperbolic diameter
is not greater than d;, we have

(5.2) Gk) = {

1 ~ . ~ . 1 _ <
57 1,16 = Galdedy = - 1o — guldudy < g,
if B is contained in W;, and
1 (g-¢ =1 - <
57,16 — Galdady = 7 | 16 = Guldady < G l.c

= CllglWlw = Cligllw;
if BN(4; — W;) # @. Therefore, from [18, I-B, Hilfssatz 2] and its proof
we conclude that G belongs to BMO(4;) and
(5.3) G ll.a; = C@, CIllg Il

where C(d;, C,) is a constant depending only on d; and C,. On the other
hand, 4; is a (quasi-)disk. Hence there exists a constant C] not depending
on G such that G has an extension G;€ BMO(C) satisfying

(5.4) 1G;llec < ClllIGl.s; < CIC@y, CHNlG lluw; -

Since G;|W; = @[W,. = g from (5.2), the inequality (5.4) implies that
W, has the BMO extension property for ABD(W)). Thus a; must be a
quasi-circle from Theorem 1, if ¢ W;. If -« e W;, then we consider a
certain Mobius transformation A such that A(W;)3 . By using the
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conformal invariance of BMO, we have also the assertion in this case.

NoTE. Since BMO(W)DABD(W)D UL, ABD(W,)|W, we see that if W
has the BMO extension property for ABD(W) (BMO(W)), then a,, ---, ay
are all quasi-circles. Conversely, if «,, -+, ay are all quasi-circles, then
W has the BMO extension property for BMO(W) (Mr. Y. Gotoh, oral
communication).

(2) Bers conjectured that for every ¢€oT(I"), there are complex
manifold M isomorphic to a product of Teichmiiller spaces, with ¢ € MC
dT(I') and a quasiconformal deformation I'¥ of I'* for every + in M (cf.
[6, p. 296]).

Abikoff ([1, §5, Corollary]) showed that the conjecture is affirmative
when I'* is a regular b-group. In contrast with this result we have the
following theorem for ¢e€odT(I") corresponding to a totally degenerate
group, which is a strongly negative answer to the conjecture.

THEOREM 5. For each ¢ corresponding to a totally degemerate group
there exists mo complex manifold in T(I") containing é.

PrOOF. If such a complex manifold exists, then there is a holo-
morphic injection f of the unit disk in C into T(I") with f(0) = ¢. Set
0(z) = Wey o Wi'(z) on (%) for xeD. By the same argument as in
the proof of Theorem 2, we have {i;,2} =0 on C for all x €D and this
yields a contradiction, because f(\) # ¢ for n e D — {0}.

(83) We shall suppose that I" has no elliptic transformation and
dim T(I") = 1. Then Bers [6] showed that all modular transformation of
T(I") can be extended to dT(I") continuously. Since T(I') is compact and
the complement is connected in B,(L, I') (= C) from Theorem 3, we have
the following from Mergelyan’s theorem (cf. [7]).

THEOREM 6. Let I’ be as above and consider T(I") as a bounded
domain in C. Then every modular transformation can be approrimated
uniformly on T(I") by polynomials.
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