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1. Introduction. Throughout this paper, let & be a field, M a free
Z-module of finite rank r ^ 1 and N the dual Hom(M, Z) with the ca-
nonical pairing < , >: MxN-+ Z. We extend this pairing Λ-linearly to
MRxNR where MR — R®ZM and NR = R(g}zN. Let σ be a strongly
convex rational polyhedral cone in NR, i.e., σ = {Σi=i^i^ϊl any non-
negative diβR) for some nteN (1 ^ i ^ s) with αΠ( — σ) = {0}. The
dual cone σy = {xe MR \ (x, y) ^ 0 for all y e σ) is rational and spans MR

as an jβ-vector space. The group algebra k[M] of M over k, whose
spectrum TN is ragarded as a fc-split torus, contains the monoid algebra
k[MΓ\σv] of Mf)σw over k as a fc-subalgebra. Then Specfc[ikfΠ<7v], which
is denoted by Xσ, is exactly a normal affine equivariant embedding of
the torus TN. Moreover, every normal equivariant embedding of TN is
covered by such Xσ's (e.g., [4, Chap. I]). Consequently some properties
on toric singularities should be characterized in terms of convex rational
polyhedral cones.

Let us recall the well known hierarchy "regular" => "local complete
intersection" => "Gorenstein" ==> "Cohen-Macaulay" of conditions on Xσ. We
already know the following results:

(1.1) (Mumford et al. [4]) Xσ is nonsingular if and only if σ is
nonsingular.

(1.2) (Ishida [2]) // r = 3 and Xσ is a local complete intersection,
then k[MΓ\σv] is k-isomorphic to k[x, y, z, w, u]/k[x, y, zy w, u](xz — wbuc,
yw — ua) for a triple (α, b, c) of non-negative integers.

(1.3) (Stanley [5]) k[Mf\σv] is a Gorenstein ring if and only if
ikfnint(σv) = mo + Mf]σv for an element mσeM.

(1.4) (Hochster [1]) k[Mf]σw] is always a Cohen-Macaulay ring.
Moreover Stanley [6] partially and Watanabe [7] completely classified

MΓ)σv such that Xσ is a local complete intersection under the assumption
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that σ is simplicial. Especially in the case where r = 2 and σ is singular,
Xσ has a unique singularity, which is a cyclic quotient singularity of A\
(cf. [4, Chap. I]), and hence if k[MΓ\σv] is a Gorenstein ring then it is
a hypersurface (cf. [2, Example 7.8]).

The purpose of this paper is to determine completely normal torus
embeddings which are local complete intersections. We now explain our
result in more detail. Let us identify N (resp. M) with Zr (resp. the
dual module (Zr)v of Zr) by a fixed isomorphism (resp. its dual isomor-
phism). We consider a sequence g = (gί9 , gu) of length 1 ^ u < r with
nonzero gt = (gil9 , gir) e (Zr)v with respect to the basis dual to the
standard basis of Zr such that gtj = 0 (i < j) and all elements of (gif P8

(i)>
are non-negative. Here P8

(1) = {(1, 0, , 0)} Q Zr and, for 1 < i ^ w + 1,
J?fl

(ί) inductively denotes the convex hull of the union of P8

(ί~1) and
{(xlf x 2 , , x t _ l f ( g t _ l f x ) , 0 , , 0 ) e ( Z r ) R = NR\ a n y x = (xlf - - - , x r ) ( =
(a?!, , xt_u 0, , 0)) ePB

ίM>} in NR. Our main result is the following:

THEOREM 1.5. Suppose that (a (g> lR)(σ) = {αx| α̂ 2/ a? 6 p^imRσ) and
any non-negative a e R} for an automorphism a of the abelian group N
and a sequence g of length dim Rσ — 1. Then Xσ is a local complete
intersection. Conversely, suppose that Xσ is a local complete intersection.
Then there are an automorphism a of N and a sequence g of length
dim Rσ — 1 such that the above equality holds.

Concerning the assertion of this theorem, Ishida [3] showed the first
half and conjectured that the latter half should hold for every σ, in terms
of monoids, at the symposium on commutative algebra held at Karuizawa
in 1978 (cf. Remark 2.3). He also observed that his conjecture is true
when either σ is simplicial or r ^ 3. The present paper was inspired
by this talk.

When σv is strongly convex, a version of our main theorem in Section
3 (cf. Theorem 3.1) gives a complete classification of algebras of invariant
polynomials under linear actions of algebraic tori which are global complete
intersections of given embedding dimensions. It seems to be useful in
studying invariants of certain representations of reductive algebraic groups
in characteristic zero.

We will collect together auxiliary notations and assertions in the next
section. Stanley's criterion (1.3) for k[MΓ\σv] to be a Gorenstein ring
will play a fundamental role in Section 3, when we deal with a combi-
natorial property on the first syzygies of k[Mf)σv].

The following notations are standard and shall be frequently used;
Z the ring of rational integers
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Q the field of rational numbers
R the field of real numbers
Ro the set consisting of all non-negative real numbers
ZQ the additive monoid consisting of all non-negative integers
Z+ the set consisting of all positive integers
A\B the difference set {x | x e A, x $ B)
card(X) the cardinality of a set X.

2. Preliminaries. Suppose that A is an epimorphic image of a re-
gular local ring R such that the embedding dimension of A coincides with
the dimension of R. Then the homological dimension of A is defined to
be that of A as an iϋ-module and is equal to the difference between the
embedding dimension and the (Krull) dimension of A especially if A is a
Cohen-Macaulay ring. A local ring A is said to be a complete intersection
(CI, for short) if A ~ R/R(glf , gq) for a regular local ring R and an
jβ-sequence (g19 •• ,f/ff). In this case, we can choose R in such a way
that q equals the homological dimension of A. A noetherian ring B or
its affine scheme is defined to be a local complete intersection (LCI, for
short) if, for every prime ideal Sβ of J5, the localization B% of B at Sβ is
a CI. Furthermore, we say that an affine fc-algebra S is a global complete
intersection (GCI, for short) over k if S cz k[T19 -, Tm]/k[T19 - , Tm]
(F19 *'9Fd) for a polynomial ring k[T19 •••, Tm] and some polynomials
Ft9 l ^ i ^dj with d = m — άimS. For simplicity, we denote also by
Φ(x)Ψ the composite A (x)fc B -> R (g)fc R —> R of the tensor product Φ®Ψ
of fc-algebra maps Φ: A —> iϋ, W: B-+R with the canonical multiplication
map R®kR-+ R. A graded version of Nakayama's lemma implies the
following:

LEMMA 2.1. Lei A be a noetherian Z0-graded k-algebra whose graded
part of degree 0 is k. Then A is a GCI over k if and only if its local
ring at the unique homogeneous maximal ideal is a CI.

The proof of [6, Lemma 5.2] suggests:

LEMMA 2.2. Let A be an affine k-domain and A! a k-subalgebra of
A satisfying A = A' 0 ^ as k-vector spaces for an ideal ^ of A. Then:

( 1 ) There are a polynomial ring B over k of finite type and a
k-epimorphism Ψ: B-> A such that Ψ(B') = A', ΨQ) = ^ and B = B'®$
as k-vector spaces for a polynomial subalgebra B' over k of B and an
ideal 3 of B.

(2 ) If A^ is a CI for every prime ideal Sβ of A containing ^ then
A! is a LCI.



88 H. NAKAJIMA

PROOF. The assertion (1) can be easily shown. Using this assertion
and notation, we will show (2). Let Q be a prime ideal of Br containing
B' Π Ker Ψ. Then B^ = J?ό Θ^α+3 as fe-vector spaces and (B' Π Ker Ψ)a

is an epimorphic image of (KerΨ)a+9. Let {6lf — ,bd} be a minimal
system of generators of (J5'ΠKer?F)o as an ideal of JBά. Clearly this
set is extended to a minimal system of generators of (Ker 3F)o+8. Since
AΨm+jr is a CI, (b19 ---,bd) is a U^-sequence. By the decomposition of
I?o+3 into subspaces stated above, we immediately see that (6X, ••-,&<*) is
also a l?ά-sequence, and hence Ay(O) is a CI. •

For a subset X of MR or NR, let X1 be the set of all elements which
are orthogonal to X with respect to the jβ-linear pairing < , >, R0X the
set of all finite sums Σ atxt with α4 6 Ro, RX the subspace generated by
X and Xv the dual cone of X if X is a convex polyhedral cone. When
σy is strongly convex (i.e., σvΠ( — σy) = {0}), σ v is contained in Σί=i R0Wi
for some iϊ-basis {^, , wr} of MΛ. Moreover, as σv is rational and
MQ = Q ® z J l ί is dense in MΛ, every tι;< can be chosen from MQ. By this
observation, we see that the following conditions are equivalent; (i) σv

is strongly convex; (ii) units (invertible elements) of Mf]σv are trivial;
and (iii) Mdσv is a submonoid of a finitely generated free additive
monoid.

For an additive monoid S? we shall define the notations and termi-
nologies as follows: Denote by k[S^] the k-vector space with the λ -basis
{e(s)\s e ^} which has the Λ -algebra structure defined by e{s)e(s') = e(s + s'),
(β, s') 6 Sf x S?. We regard S^BS-+ e(s) e k[S^] as a homomorphism of
monoids and denote by e this map. Sf is said to be affine, if it is a
finitely generated submonoid of a torsion-free abelian group, whose sub-
group generated by S? is denoted < ^ > . S? is said to be normal, if fe[^]
is normal. Every Mf)σv is an affine normal submonoid of M, and con-
versely any affine normal monoid is expressed in the form "Mf)σv" (e.g.,
[4, Chap. I]). An element x e 6^ is said to be fundamental if whenever
x = y + z with y, z in S? then # = 0 or z = 0. We denote by F U N D ( ^ )
the set consisting of all fundamental elements in Sf. When Sf is affine
and without nontrivial units, F U N D ( ^ ) is the unique minimal system
of generators of Sf as a monoid. For an arbitrary nonzero x e S? and
neZ+, let Sf\ x be the affine submonoid

Jn

of ( y ) 0 Z n where {elf « ,βn} is the standard Z-basis of Z \ Clearly
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dim k\ Sf\ x = dim k\S^\ + n, and if S? is without nontrivial units, so

is &\ x. For the sake of simplicity, let S^\x and ̂  respectively denote

\ and ({0}FUND())

REMARK 2.3. The monoid &\x was initially defined by Ishida [3].

Suppose that Sf is an affine normal monoid without nontrivial units. He

observed that if k[Sf\ is a GCI, then so is ύs?\x for any nonzero xeS*

The first half of the assertion of Theorem 1.5 follows immediately from

this. Moreover, he conjectured that if k[^] is a GCI, then &> should

be inductively constructed, i.e., Sf should be isomorphic to [-*-\(z\xA

\x*)\*# j\Xn a s a m o n °ίdfor somea^eZoMO}, xi+1e( ίZ0\XiH )\fiCi\{0}

(X<i<n) and neZQ (cf. [3]).

LEMMA 2.4. Let x be a nonzero element of an affine monoid S^
without nontrivial units. For any neZ+, we have:

(1) The following three conditions are equivalent; (i) x <fc FUND(^);

(ii) F U N D ^ ί x) 2 FUND(^); and (iii) A^Λ x\ is minimally generated

by card(FUND(^)) + n + 1 elements as a k-algebra.

(2) Sf is normal if and only if so is &\ x.
Jn

(3) lc[£?] is a GCI if and only if so is A&\

(4) sΛ x is isomorphic to (mm\\^\χι)\x*)ym')\χn a s a monoid,

where x1 = x, \ e P U N D ^ j ^ X F U N D ^ ) and

FUND((.

1 < i < n .

PROOF. (1) follows easily from the definition of &\ x.
Jn

(2): Suppose that Sf is normal. Let us express an element ye

cλ χ\ = <^> φ Zn as y = u + Σ?-i Viβi with u e <^> and

d sΛ f eZ There exis
and assume myesΛ x for an meZ+. There exist t e y and ξteZQ

(X^i^n + ί) such that

my = v + Σ f A + ξn+i(x - Σ et) .

Since &> is normal, by the above identities we may assume u = 0, which
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implies that ςn+1 = 0 and ηt = ξt — ξn+1 eZ0 (l^i^ri). Thus sΛ x is
/ f \

saturated in \S?\ x) and is normal (e.g., [4, Chap. I, Lemma 1]). The
\ Jπ /

converse can be similarly shown.
( 3 ) : (We can generalize this assertion, but it is not necessary.)

Let Ψ\ A -» k[^] be an <^>-graded epimorphism from an <^>-graded
polynomial A -algebra A of dimension equal to card(FUND(^)) and B an
(n + l)-dimensional polynomial A -algebra k[Xlf , Xn+1\. We consider the
commutative diagram

0 • Ker(l (x) a) > k[^] (x), B —-> U&>\ x] > 0

I \ II

n J

with exact rows, where a:B->k\ S^\ x is a A -algebra map defined by

a(Xt) = e(e€) (1 ^ i ^ w) and a(Xn+1) = e(α? - Σ<"U «<)• Clearly Ker(l (g) a)
is generated by e(ίc) (x) 1 — 1 (g) ΠΓi1 -Xi Let {̂ i, •• ,^d} be a minimal
system of <^>-homogeneous generators of Ker?Γ and y e Ψ~\e(x)) a
monomial of a regular system of <t5^>-homogeneous parameters of A.
Suppose

for some homogeneous elements at (1 ^ i ^ d) in A (g)fc β and let us apply
1 ® /̂  to both sides of this identity, where μ is a A -endomorphism of B
sending all Xt'& to zero. Then K e r f contains (X®μ)(ad) or one of prime
divisors of y in A. But the latter case does not occur, because dim A =
card(FUND(^)). Thus ( l®μ)(α d ) belongs to A(glf •• ,flfd_i), which con-
tradicts the choice of {glf , gd}. From this observation, we deduce that
{#i Θ 1> •> d̂ (8) 1> V Θ 1 ~ 1 (8) I I S 1 ̂ J is a minimal system of generators
of Ker(?P*(x)αO. Consequently we obtain the equivalence in (3), as de-
sired.

(4): We inductively see that F U N D ^ . ( V U ) \ ) U n ) / F U N D ( ^ )

consists of n + 1 elements and the sum of all elements of this set equals

x. The assertion follows immediately from this observation. •

For any n e M and an Λf-graded module L = φ ί 6 3 f L t over a M-graded
Λ-algebra A, L(n) denotes the ilί-graded A-module whose underlying A-
module is L and the ikf-grading is given by L{n)i — Ln+i, ίeM. When
A is a Cohen-Macaulay ring and possesses a dualizing complex 3Γ\A) in
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the category of M-graded A-modules, the unique non-vanishing M-graded
module Hd(J%Γ\A)) is said to be an M-graded canonical module of A and
is denoted by ΩM(A). Moreover if A is a Gorenstein ring and has a unique
ikf-homogeneous maximal ideal m with A/m ~ k, then ΩM(A) is isomorphic
to A(a) for some a e M.

The interior of σv, which is denoted by int(σ v ), equals {xβσv\ </, x) >0
for all nonzero feσ}. We have Mf]mt(σv) = Mf)σvnZϊ, if M is a sub-
group of Zn satisfying MΠσv = MnZo

n and MϊΊ<7vnZΐ ^ 0 .

THEOREM 2.5 ([4, Chap. I, Theorems 9 and 14], [5]). ΩM(k[MΓ\σv]) can
be identified with the ideal (&xeMninHav)ke(x) of k[Mdσv].

Let ω(MΓ\σv) be an element of MTlint(σv) which satisfies z = 0 when-
ever ω(ΛfΓκτv) = y + z with τ/eMTlint(<7v) and zeMθσv. By Stanley's
theorem (1.3), fc[MΊΊσv] is a Gorenstein ring if and only if

Recall that a directed graph £& consists of a finite non-empty set
and a set DED(^) of ordered pairs of distinct elements of

VER(^). The elements of VER(^) and DED(^) are respectively called
vertices and directed edges of ^ . For e = {x, y) 6 DED(^) with x,
y eVER(^), let us set t(β) = sc and f(β) = y. An alternating sequence
(fico> βn »i» β2, , en, ajj (n ^ 2) of vertices and directed edges (i.e., a di-
rected path) is said to be a directed circuit of length n in ^ , if xό_λ —
x(fi3), Xj = f(ey) (1 ^ i ^ n), α?n = α?o and xi Φ xό for any 0 ^i < j ^n with
(i, j) 9̂ (0, n). We then express this sequence by the sequence (a?0, a?i, , ^ . J
of distinct vertices. 3ί is said to be acyclic, unless it contains directed
circuits. The following elementary characterization of acyclicity of directed
graphes is probably well known.

LEMMA 2.6. Let & = (VER(^), DED(^O) be a directed graph. Then
£& is acyclic if and only if there is a linear ordering ^ on VER(^)
satisfying i(e) •< f(e) for all eeDED(^).

PROOF. Suppose that & is acyclic. Then there is a vertex x in £2ϊ
which is unequal to f(e) for every eeOED(£&). Let £&' be a directed
subgraph of 3f defined by VER(^") = YΈR(^)\{x}, ΌΈD(&') =
{e 6 DED(^) I i(e) Φx). Because 2ff is acyclic, we can inductively define
a linear ordering on VER(^), as desired. The converse of this assertion
is trivial. •

3. The main theorem. The latter half of the assertion of Theorem
1.5 is a consequences of the following:

THEOREM 3.1. For a non-negative integer h, k[Mf]σv] is a LCI
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whose local ring at the prime ideal, maximal in the set of proper M-
homogeneous ideals, is of homological dimension h if and only if Mf)σv

is isomorphic to (•••((Zo

πo\ xλ\ x2)\ )\ xh@ Zr' as a monoid where
\ \\ Jri! /Jn2 /Jn3 /Jnh / / / f \

n,eZ+ (O^i^h), r' = r - dim Rσ, xxe{Z^f and &i+1e(( •••(Zo

no\ xΛ

...) xλ (l^j<h).

PROOF OF THEOREM 1.5. Suppose that (a®lR)(σ) = R0P^ff) for an
automorphism a of N and a sequence g satisfying the conditions in
Theorem 1.5. Without loss of generality, we may assume that a is the
identity. Let {ef, , β?} be the Z-basis of (Z r) v = M dual to the standard
basis of Z r = N. Set Ξx = Zoeί + ΣΓ=2 Zef and

Bi = Σ ^oβ* + Σ ^o(ίi-i - e?) + Σ ^β? (2 ̂  i ^ r") ,

where r" = dim Rσ. Then we inductively have (iJ0S'i)
v = ΛoΛ(<) f o r ! ^

i ^ r". Because Sr// is normal (cf. (2) of Lemma 2.4) and generates ikf,
ffr,, = MΠ((ie0S'r")v)v (e.g., [4, Chap. I]), and consequently Ξr>, = Mn<xv.
By this equality and (3) of Lemma 2.4, we see that k[M(~]σv] is a LCI.

Conversely, suppose that k[Mf]σv] is a LCI. Then, by (4) of Lemma
2.4 and Theorem 3.1, M has a Z-basis {εf, •••, ε?} and contains nonzero
gi (1 ̂  i < r") such that ^ e f , and ikfΠσv = Γ r- + Σ*=r"+i^β*. Here
r" = dim iί(7, Λ = Zoef and

Λ = Λ. ! + Zoef + Zofo-x - εf) (2 ̂  i ^ r") .

Put δ< = (Λ0(Λ + Σ i = i + i ^ * ) ) v (1 ̂  * ̂  O and let {εlf , εr} be the Z-
basis of N dual to {ef, , εr*}. Clearly δr,, = (σv)v = σ and gi e (Σί^+i -B^)1

ΠiWfW = Γ< (e.g., [4, Chap. I]). We may assume that {elf , εr} is the
standard basis of Z r = N. Then g = (g19 , gr»_ύ satisfies the conditions
in Theorem 1.5 and the convex polytopes Pfl

(ί)'s are well defined. We can
inductively show R0P^ = <5έ for 1 ̂  i ^ r", which implies R0P^ff) = σ. Q

The rest of this paper is devoted to the proof of Theorem 3.1. When
J k f n ^ ^ ^ Θ Z * for an aeZ+ and an affine submonoid ^ k[MΠσv] is
a LCI if and only if so is k[^] (e.g., Lemma 2.2). Thus the "if" part
follows immediately from (1) and (3) of Lemma 2.4 and it suffices to show
the "only if" part under the assumption that σv is strongly convex (see
the proof of the "only if" part of [4, Chap. I, Theorem 4]). Hereafter,
assume that σv is strongly convex and k[Mf)σv] is a singular LCI (and
so a GCI). We need the following further notations and terminologies.

Put m = card(FUND(Λfn<7v)). Let R be an m-dimensional polynomial
fc-algebra k[Tlf , Tm] and Φ a fc-algebra epimorphism from R to k[MΠσy]
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satisfying {Φ(TJ, , Φ(TJ} = {e(x) \x e FUND(ifcf n σv)}. By [1, Proposition
1], there is a free abelian group Z n of rank n which contains M as a
subgroup such that Mf]Zo

n = MΓ\σv and Mf)σvΓίZϊ Φ 0 . We fix this
Zn and regard k[Mf]σv] as a Zn-graded algebra in a natural way. Define
a unique Zn-gradation on i? so that Φ is a Zn-graded map of degree
0 G Zn. Put 7 = {1, , n) and J = {1, , m}. When a; is an element of
the i-th homogeneous part of a Zn-graded object with i = (iίf , in) e Zn

f

we put deg(ίc) = i, ||deg(a?)|| = Σ?=i HA and supp(α ) = {jel\ij Φ 0}. For
a monomial # = aTi1- T£» with j = (j l f , i j eZo

m and α efc* = fe\{0},
logjrix) and supp^(ίc) stand respectively for j and {i e J\JiΦθ}. Conversely
T3' denotes the monomial Γ/1 Tfr in R, and ^ denotes the multiplica-
tive monoid consisting of all Γ''s in R.

Recall that a monomial L in ^ is said to be square-free, if L is a
product of distinct Γ/s. An element ί7 of iϋ is said to be standard if
F = Lλ — L2 with distinct L* 6 ̂  (i = 1, 2) and Lλ square-free. In this
case we denote Lx (resp. L2) by aF (resp. jS )̂.

For a finite set ^ of standard Zn-homogeneous elements in R, let
&& be the directed graph defined by VER(^^) = & and DED(^^) =
{(Fi, F2) e ^ x ^ IFί Φ F2 and supp^(a^) Π supp^(^2) Φ0} Furthermore,
a sequence ((Llf L[)9 (L2, L'2), , (Ltt, L'M)) in ^~x^~ is defined to be a
^-path from x e ^ to ye^~ if a;ei2LJ, XUJZ\L5eR Πi=iL'ά (2 ^ i ^ w),
^ ΠJ=i Tvj 6 Ry Πj=i ^ί and, for each 1 <* i ^ u, Lt — h\ or L\ — L€ belongs
to ^ .

Since Λ[ikΓΠσv] is a GCI (e.g., Lemma 2.1), KerΦ is minimally gen-
erated by d = m — r Zn-homogeneous elements. For any /' £ I, we define
the following notations: Put &>v = {# 6 ikί Π σv | supp(e(ίc)) C /'}, Jj^ =
{je JlsuppC?7,) C /'} and, for a set ^ of Zn-homogeneous elements of a
Zn-graded object, ^ n r = {F6^ | supp(F)S/ ' } . Let SYZ^Γ) be the set
consisting of all minimal systems of ZVhomogeneous and standard gen-
erators of k[T3\jeJ7,]ΠKerΦ as an ideal. (When this ideal coincides
with the zero ideal, we can regard SYZ^J') as {0}.) Obviously &>? is an
affine normal submonoid of Mf\σv and {e(s)\s eFUND(^)} = {Φ(T£)\jeJr}.
For K'eφ-\e(ω(^)))Π^Ί a system ^eSYZ^Γ) is said to be (Γ,K'y
tiled, if Jv is a disjoint union of all supp^α^'s, F e ^ , and supp^(ίΓ')
We will show the existence of a tiled system of relations of k[Mf)σv] in
jβ, which will play an essential role in our proof of Theorem 3.1.

LEMMA 3.2. Let Γ be a subset of I and 3? a minimal system of
Zτ'-homogeneous generators o/KerΦ. Then:

(1) ^ n r minimally generates k[Tj\j6/r]ΠKerΦ as an ideal.

(2) k\SΆ ^ a GCI.
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(3 ) SYZX(/') is non-empty.
(4) deg(e(ω(^))) = Σyβ,,, degίΓ,) - Σ ^ n / , deg(F).

PROOF. Both (1) and (2) follow immediately from the proof of Lemma
2.2. When k\S^A is a polynomial ring over fc, (3) is trivial and (4) follows
from the well known isomorphism 42Zπ(fc|\9/>]) ~ k[<9Ί*](—Σiejj,deg(Ty)) of
Zn-graded fc[^/]-modules. Thanks to these assertions, we need to show
(3) and (4) only in the case where Γ = 7 (recall that k[Mf]σv] is assumed
to be a singular LCI). Let Ft (1 <£ i ^ d) be all elements of &.

(3 ): We may assume that each Ft is expressed as Ft = cCi — βt with
av fte^Γ Suppose SYZ^J) = 0 . Then there is an index i0 with 1 ^
ίo ^ c? such that neither aiQ nor /3ίo are square-free. Hence aio = xa! and
βi0 = Vβ' for some a\ β'f x and y in ^ satisfying supp(Fίo) = supp(α') =
supp(/3') Let z be an element of Φ~\e{ω{^uvv{Fi^))) Π ^ T Because k[&ϊunιFiQ)]
is a Gorenstein ring, by (1.3) we can choose monomials x', y' from J?~ in
such a way that both a! — zxf and βf — zy' belong to Ker Φ. Clearly

FiQ = (α' — zx')x — (βr — zyf)y + z(xxf — i/t/') .

Thus xxf — yyf e Ker Φ, and F ί o is in the ideal product of Ker Φ and the
Zn-homogeneous maximal ideal of R. This contradicts the minimality of
the system ^ .

( 4 ) : (This assertion was essentially obtained in [5].) Since (F19 , Fd)
is a Zn-homogeneous i2-sequence,

k[Mf)σw](-deg(e(ω(Mf)σv)))) ~ ΩZn(k[Mf]σw])

~ (Ωzn(RIR(Flf , Fd

~ (Ωzn(R)/(Flf . . . , ^

as Zn-graded i2-modules. Hence the identity in (4) follows directly from
these isomorphisms. •

LEMMA 3.3. Let K be a monomial in φ-\e(ω(Mf) σv))) 0 ^~. If a
monomial x e J7~ is not divisible by K in R and satisfies supp(#) = 7,
then there is a ^-path from x to K for any 3? e SYZ^/).

PROOF. Let Ft(X^i^d) be all elements of a fixed system & e SYZX(/).
According to (1.3), there exists a monomial x' satisfying x — Kx' eKerΦ.
Then x — Kx' is expressed as

x - Kx' = Σ UtjFi ,
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where ^ is a finite subset of {1, ---,d}xZ+ and u^eR, (i,j)e&, are
nonzero monomials of {Tlf , Tm}. Let Θijf (i, j) e <&, denote {\ogjr(ui:iaFi),
log^Uijβjr.)} and ^ be a graph (i.e., a finite one-dimensional simplicial
complex) of which the set of vertices is & and the set of edges is {{(ΐ, j),
(i', j')}\ distinct (ί, i), (i', /) in ^ with ^ Π θ i T ^ 0}. Put τ0 = log^(a>).
Let (i0, jQ) be a vertex of ^ satisfying τ0 e θ<oio and ^ " a maximal con-
nected subgraph of & containing (i0, jQ) as a vertex.

Suppose \ogj?-(Kx') ί Θiά for every vertex (i, j) of g?'. Then we have

» = Σ UijFt 6 Ker Φ ,
iR'

where VER(^') denotes the set of all vertices of &'. Hence a Tt must
belong to KerΦ, a contradiction.

From g?' we choose a path, which is represented as in Figure 1 in

(ίi, ji) (ί*2, h)

FIGURE 1

-o

an obvious way, of the shortest length in such a way that 70eθildι and
logjrCKa/) £@ihjh- Put Ίh = log^(iΓίc')- For each 1 ?ί q < h, we see that
β ί g i g and θiq+ljq+1 intersect exactly at one element and denote by Ύq this
element. Then θίqjq = {Ύq_lf 7 j (l^q^h). Put

for 1 ^ q ^ Λ. Clearly L9 — L'q or L̂  — Lq belongs to &. Since we in-
ductively have log^(# ΠSU ̂ «/(IK«i ^1)) = Λ, the sequence ((Lx, LJ), ,
(Lh, L'h)) is a ^-path from a? to if. Π

PROPOSITION 3.4. For any Γ £ / α^d £: ε Φ~\e(ω(^)))
βxisίs α system 3? e SYZ^/') which is (/', K)-tiled.

PROOF. Let us prove this by induction on card(J'). When
a polynomial ring over fe, by Lemma 3.2, we see that Φ~\e(ω(&ί>))) =
Πίβ/j, Γ,, SYZ^J') = {0} and this empty system 0 eSYZ^Γ) is (Γ, K)«
tiled. Thus we may assume that I — V (recall that k[Mf]σv] is assumed
to be a singular LCI). For an arbitrary ^eSYZ^J), let Δ^ (resp. V^)
denote the fraction Πϊej ^/Γ^ (resp. TΓΠFe^α^/ZV) in R where Γ<̂  is
a product of distinct Γ/s such that ie UFe^supp^-ία^Usupp^ίίΓ). Let
& 6 SYZ^J) be a system satisfying ||deg(Δ*)|| =min{||deg(Δ^)|| |^» e SYZ^/)}.
When ||deg(Δ^)|| = 0, we have J = U^β^ supp^(α,.)Usupp^-(JB:) and, by (4)
of Lemma 3.2, easily infer that & is (7, if)-tiled. So let us assume that
||deg(Δ*)|| > 0. Put I" = supp(Δ^).
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Suppose J " = I. According to Lemma 3.3, there is a <^-path ((Llf LJ),
(L2, LO, , (Lh, L'h)) from Δtf to K. Since Δ* is divisible by L[ in i2, L[
is square-free and L[ = /3F for some F e ^ . Put <^ω = ( ^ X ^ - LJ})U
{L[ - LJ. Obviously ^ ( 1 ) e SYZ^/), and

Hence A^LJL[ is divisible by Δ^ω in R, which shows ||deg(Δ^u))|| ^
\\άeg(Δ*LJL[)\\ = ||deg(Δ^)||. By the choice of ^ , we must have Δtf<u =
A&LJL[. Obviously ((L2, LJ), , (£*, Li)) is a <^(1)-path from Δ*<i> to iί.
For i<Λ, let us inductively put a*{i+1) = (&U)\{Li+ι-L[+ι])\J{L'i+ι-Li+1}.
Then we can similarly and inductively show that Lt+1 — L'i+1e ^5>{i),
<&{i+1) eSYZ^I) and Δtf«+u = Δtf«jLi+1/L!+1. On the other hand, if is a
divisor of Δ^ Π*=i Lί/(Πẑ =i LJ) in Λ. But this contradicts the definition of
Δ ί̂fc), because Δ (̂*) = Δ&a-i)LJL'h = = Δ^ Πi-iLi/dlf^iLί). Thus I " is
a non-empty proper subset of /.

For any &> 6 SYZ^/) and j" eJ, j e supp^(V^) if and only if the square
of Tj is a divisor of KJ[Fe^aF in R. Moreover, by the identity in (4)
of Lemma 3.2, we have deg(Δ^) = deg(V^) and supp(Δ^) = supp(V^).
Clearly Δ^ is a divisor of ΐ[jejIff Ts in R and

( *) J\Jzn C U supp^fe) U supp^(ίΓ) .

Assume &nV, = 0 . By (1) of Lemma 3.2, Φ induces a Zn-graded fc-
isomorphism k[Tj \ j e J,,,] ^ fc[^/,]. Thus we have Φ(lίiBJl,t T3) = e(ω(SI»)),
which implies that ΐlJ9Jl,f Tβ is a divisor of Δa in R (cf. (1.3)), i.e.,
Πyβ/j,, Ts = A#. Consequently, J\JZ*, = Uir6^ supp^Cα^) U supp^(if). Since
V^ is a divisor of K]JFe£?aF in i2, supp(V .̂) does not coincide with /",
a contradiction. Hence ^ n i " ̂  0> i e » k[&i"] ^ n o * a polynomial ring
over & (cf. (1) of Lemma 3.2).

Let K' be any monomial in Φ~\e{ω{S^v))) Π ^ T By our induction
hypothesis, there exists a non-empty system ^ e SYZ^J") which is (/", K')-
tiled. Put &' = ^ U ( ^ X ^ n i - ) . Clearly ^ ' 6 SYZ^J) (cf. (1) of Lemma
3.2) and supp^-(Δ^0 is contained in

(JV'\( U supp,(a F )))U((J\/r0\( U

By (*) and the definition of ^lf we see that the last set coincides with
supp^(iΓ). As Φ(Δa) 6 ΩZn{k[^Ilf]) and A*, is square-free, ||deg(Δ^OII^
||deg(ίΓ')|| ^ ||deg(Δ^)||. From the choice of ^ , we deduce that Δ^eΦ" 1

(e(o)(^-))) Π ^ " and A*, = K'. The last equality implies

(**) supp^(lΓ) Π ( U supp^fe) U supp^(if)) = 0 ,
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which is independent of the choice of K' e O~\e(<o(&i»))) Π ^ 7
Let ^ e S Y Z ^ J " ) be a (/", Δ*)-tiled system and set <&" =

O By the above observations, Δ*» = Δ^ and
(recall that deg(Δ^,,) = deg(V^,,)). Then, apply-

ing (**) to Kf = V̂ //, we have

U supp^(αF) U supp^(2£)) = 0 .

Consequently, V#,, can be expressed as a product of all Γ/s whose squares
are divisors of IL e^α*.. Since supp^(αF), Fe&>29 are disjoint, we must
have deg(Δ .̂) = deg(Δ^) = deg(Vtf//) = 0, a contradiction. •

We now fix a monomial K e Φ~\e{ω(Mn σv))) Π ^~ and a (/, K)-tiled
system ^eSYZ^I).

PROPOSITION 3.5. &<? is acyclic.

PROOF. Assume that && is not acyclic. Let (Fί9 , 2^) (U > 1) be
a directed circuit of the shortest length u in ^ , . Then we see that
i = i - l (mod u) for 1 ̂  i, j ^ % if (ί7,, i^) e DED(^^). Let ̂ , 1 ̂  i < %,
(resp. a?,) be a product of all Γ/s with i esuppJ^(αi,.)nsupp^(/3i..+1) (resp.
iesupp^(α^)nsupp^ίiS^)) and put α = aFJxt (l^i^u), β't = βFi/xt-i
(Ki^u) and β[ = βFjxu. Clearly

Fu Π a[ = a?. II α{ + x-tβ'-iβ* II αί (mod 222^.0
i=l i=l i=l

= a;. Π αί - s.-./SLi/SLi/S', Π αί (mod i?(Fa_2) F%_,))

α{ + (-1) Π /Sj) (mod Λ(FU , F._J) ,
l <=1 /

and hence the prime ideal R(Flf , Fu) contains Πf=i «ί + ( — 1)M Π?=i /3ί
As deg(Πf=i α!) = deg(Π?=i /3 ) and Σ?=i Ft Φ 0, we see that Π?=i αί ̂  l
Moreover, Π?=iαί and Π?=i/Sί a r e relatively prime in 22. Thus IL"=i«ί
is divisible by αF.o or βFio in 22 for some 1 ̂  i0 ^ u (recall that
UU αί + (- l ) u ΠLiVί e 22(FX! , Fu)). Since supp^Cα^'s are disjoint
and supp^(αί) Φ B\xpp^-(aFi)9 the first case does not occur. Consequently,
we can choose an index ix with 1 ̂  ix ^ u in such a way that supp^(a^) Π
supp^(/SFio) ^ 0 . As (Fΐχ, FiQ) e DED(^^), we must have ix = ί0 — 1 (mod w),
which contradicts the definition of αίx. Π

PROOF OF THEOREM 3.1. Let us complete the proof of the theorem
by induction on r. Thanks to Lemma 2.6 and Proposition 3.5, we can
define a linear ordering ^ on & satisfying i(e)<f(β) for every e
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Let Fd be the largest element of & with respect to this ordering ^ and
put Jd_λ = J\suwAocFd) and &%-ι = {seJlίnσv\e(s) eΦ(fc[Γy|ie Jd_J
respectively. From the commutative diagram

0 > Ker(Φu (g) 1) >A®k B—> Λ[^-J ®* 5 > 0

can. 1®Φ|5

0 > RP > R -

with exact rows, we immediately deduce

k[M Π <7V] ^

where A=k[T3\j e Jd_J, J?=A;[Γ?.|t; e supp^Cα^)] and ^=card(supp^(α^)) —1.

Thus MΓ\σv is isomorphic to v92_i\ e~\Φ(βF)) as a monoid. Hence the
Ju

assertion follows from (1.1), Lemma 2.4 and our induction hypothesis. •
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Note added in proof. By a slight modification in Lemma 3.3, we can
somewhat simplify the proof of Proposition 3.4.




