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Introduction. Recently, several authors studied submaifolds with
“simple” geodesics immersed in space forms. For example, planar geodesic
immersions were studied in [6], [8], [13], [14], geodesic normal sections
in [3] and helical immersions in [15]. In [9], Nakagawa also introduced
a notion of cubic geodesic immersions. Let M and M be connected com-
plete Riemannian manifolds of dimensions n and n + p, respectively. An
isometric immersion ¢ of M into M is called a d-planar geodesic immersion
if each geodesic in M is mapped locally under ¢ into a d-dimesional totally
geodesic submanifold of M. In particular, if a 3-planar geodesic immersion
is isotropic, then it is called a cubic geodesic immersion. In this paper,
we study a proper d-planar geodesic Kahlerian immersion ¢ M — CP™(c)
of a Kahler manifold M into a complex projective space CP™(c) of constant
holomorphic sectional curvature ¢ and proper cubic geodesic totally real
immersion ¢: M — CP™(¢) of a Riemannian manifold M, where “proper”
means that the image of each geodesic in M is not (d — 1)-planar. Here
and elsewhere, m in N™ denotes the complex dimension, if N is a com-
plex manifold.

In a complex projective space CP™(¢) of complex dimension m, an
odd-dimensional totally geodesic submanifold is a totally real submanifold
RPYc/4) of constant sectional curvature c¢/4. In §2 we show that if
¢: M®— CP™(c) is a proper d-planar geodesic Kahlerian immersion of a
Kahler manifold M™ and d is odd, then M" = CP"(¢/d) and ¢ is equivalent
to the d-th Veronese map. Here we recall the definition of k-th Veronese
map (k=1,2, --+). This is a Kdhler imbedding CP"(c/k) — CP™(c) given by

k1 )1/2 ' " }
z I_) < ® z 0 oo z n
[ i]oéisn [ ko! e ku! 0 ” kotee thg=k ?

where [+] means the point of the projective space with the homogeneous

coordinates * and m’ = (n }c‘— k) — 1. More generally, we prove that if
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the image of each geodesic in M" is locally properly contained in a
d-dimensional totally real totally geodesic submanifold, then M™ = CP"(¢c/d)
and ¢ is equivalent to the d-th Veronese map. This result is a geometric
characterization of the Veronese map.

In §3, we consider a proper cubic geodesic totally real immersion
t: M* — CP™(c) of a Riemannian manifold M of dimension n. We shall
prove that ¢(M™) is contained in a totally real submanifold RP"*(c/4) and
apply Nakagawa’s theorem:

THEOREM N. For n = 3, let M be an n-dimensional compact simply
connected Riemannian manifold and ¢ a proper cubic geodesic immersion
of M into an (n + p)-dimensional sphere S *?(c), where p = 2. If ¢ is
minimal, then M = S™(nc/3(n + 2)) and ¢ is equivalent to the immersion
toty of S™ into S™*?, where ¢, is a totally geodesic tmmersion of S¥®(c)
wnto S**, N@B) + 1 is the multiplicity of the third eigenvalue of the
Laplace operator of S™ and ¢, is the third standard minimal immersion
of S* into S¥¥(c).

Here we recall the definition of the k-th standard minimal immersion
of S™ into S**? (cf. [4]). Let H*" be the eigenspace of the k-th eigen-
value of the Laplace operator on S*, where dim H*" = (n + 2k — 1)(n +
kE—2)1/kl(n — 1)! =: N(k) + 1. For an orthonormal basis {f}, * -+, fyuw+}
of H*", an immersion ¢, of S™ into an (N(k) + 1)-dimensional Euclidean
space EV®1! defined by ¢,(x) = (fi(%), - * *, Fyu+.(@))/(N(k) + 1)* is a minimal
isometric immersion into the unit hypersphere S¥*(1) in E¥®** and ¢,(S™)
is not contained in any great sphere of S** (i.e., full). If k¥ < 3, then
¢, is rigid (cf. [23]). The immersion ¢, is called a k-th standard minimal
Tmmersion.

The authors wish to express their gratitude to Professor S. Ishihara
for his constant encouragement.

1. Preliminaries. Let M and I be connected Riemannian manifolds
and ¢ M — M an isometric immersion. We denote by V the covariant
differentiation with respect to the Riemannian metric of /. Then we
may write

(1.1) V.Y =V,Y + HX, Y)

for arbitrary tangent vector fields X and Y on M, where V,Y and H(X, Y)
denote the components of %XY tangent and normal to M, respectively.
Then V becomes the covariant differentiation of the Riemannian manifold
M. The symmetric bilinear form H valued in the normal bundle is called
the second fundamental form of the immersion ¢. For a normal vector
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field C on a neighborhood of Pe M, we write
(1.2) ViC = —A.X + ViC,

—A,X and V3C being the components of V,C tangent and normal to M,
respectively, where V* is the covariant differentiation with respect to
the induced connection in the normal bundle 7'M which will be called
the normal connection. Denoting by (, > the inner product with respect
to the Riemannian metric of M, we find that A, and H are related by
(A X, Y) =<H(X, Y), C) for any vectors X, Y tangent to M. Thus A,
is a symmetric linear transformation of T,M.

Let the ambient manifold i1 be a complete, simply connected complex
space form with constant holomorphic sectional curvature ¢. Thus I is
a complex projective space CP™(c). If we denote by J the complex struc-
ture, the Riemannian curvature tensor B of CP™(c) is of the form

(1.3) BX V7 = (Y, 2>X (X, 2)Y + (JY, Z2)JX
— X, ZYTY — 2JX, Y>JZ}
for all vectors X, ¥, Z tangent to CP™(c). _

We denote by Proj,, and Proj;., the projections of T»M to the tangent
space T-M and the normal space T#M, respectively and put J = E’rojmo
J|TM, Jy =Projpiyod | TM, Jp = Projyuod | T*M and J* =Proj;L,oJ | T*M.
Then we can write
(1.4) JX=JX+JyX, JC=J,C+JC
for every tangent vector X and normal vector C of M. Taking account
of J* = —1I, we find that these tensors satisfy
(1.5) J2+JTJN:_I, JNJ‘I‘J_LJN:O,

JY+ Iy = —1, JJ, + JJE =0,
I being the identity transformation, and also we have
(1.6) (JIyX, C) = —<X, J.C)
with the help of (JX, ¥) = —(X, JY).

Differentiating covariantly the left hand side of (1.4), and using

VJ = 0 and (1.4) itself, we can easily see that
(De)Y = AJNYX+ J H(Y, X),

(Dydy)Y = J*H(Y, X) — HJY, X),
(Dxd)C = A;icX — JAKX,

Dy H)C = —JyA:X — H(X, J,C) ,

where D denotes the van der Waerden-Bortolotti covariant differentiation.

1.7)
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Let us denote the curvature tensors of the connections V and V* by
R and R*, respectively. Then, using (1.3), we find that the structure
equations of Gauss, Codazzi and Ricei are respectively given by
1.8) R(X, Y)Z = (c/OW(Y, Z)X — (X, Z)Y + {JY, ZYJX — {JX, Z)JY

- 2<JX, Y>JZ} + AH(Y,Z)X - AH(X,Z)Y )
(1.9) (DLH)Y, Z) — (DyH)(X, Z)
= (c/[IY, ZYIyX — (JX, Z)JyY — 2{JX, Y)JZ},
(1.10) RY(X, Y)C = (c/4){{JyY, C)JxX — {JyX, C)JyY — 2{JX, Y )J*C}
-+ H(Xv ACY) - H(ACX’ Y) ’

where (DyH)(Y, Z) = VE(H(Y, Z)) — H(V,;Y, Z) — H(Y, V3Z). Therefore,

if the submanifold M is complex or totally real, that is, Jy =0 or J =0,
then
(1.11) (DzH)(Y, Z) — (DyH)(X, Z) = 0
because of (1.9). Conversely, if (1.11) is verified at every point of M,
then M is complex or totally real. Thus 3-dimensional complete totally
geodesic submanifolds in CP™(¢) are RP3(c/4).

Sometimes we denote (D,H)Y, Z) by (DH)(X, Y, Z). It is clear that

DH is a normal bundle-valued tensor field of type (0,3). For k=1, the
k-th covariant derivative of H is defined by

(1.12)  (DH) Xy X -+, Xigw) = VD H)( X, ) Xira)
— ’i(Dk_lH)(XZ’ <o, Vxle ooy Xigo) o

where D°H = H. It is clear that D*H is a normal bundle-valued tensor
field of type (0, k + 2). By direct computation we have

(1’13) (DkH)(le X?.y Xar tt Xk+2) - (DkH)(er XU Xar ) Xk+2)
= R*(X,, Xp)(D*H)(X;, «++, Xiya)

k+2
- % (Dk—2H)(X37 ) R(Xn XZ)Xiv ct Xk+z)

for k= 2.
As for the second fundamental form H, if
(1.14) |HX, X)|* =7

for every unit vector X tangent to M, then the immersion ¢ is said to
be isotropic (or n-isotropic). The immersion ¢ is isotropic if and only if

(1.15) (HX, X), HX, Y)) =0
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for any orthonormal vectors X and Y at every point. The condition is
equivalent to

(1.16) S (H(X,y Xo), HX,, V) = NE(X,, Xp)( Xy Y

where X, (1t =1,2,3) and Y are unit vectors and &, denotes the cyclic
sum with respect to vectors X, X, X..

2. d-planar geodesic Kdahler immersions. Let ¢: M"— CP™(c) be a
Kahler immersion of a connected complete Kiahler manifold M" into
CP™(c). We first prove:

ProPOSITION 2.1. Suppose that for each geodesic 7:R— M™ and
each s€ R, there exist an open interval I, (23s) and a totally real totally
geodesic submanifold P, of CP™(c) such that ¢«(v(I)CP,. Then M™ is a
compact simply connected Hermitian symmetric space.

ProOF. Let xeM™ be any point and X any unit tangent vector at
x of M". Let v be the unit speed geodesic satisfying ¥(0) = x and
7(0) = X. Since P, is totally geodesic, we see that 7, V.t and Vi¢ is
tangent to P, on I,, where ¢ = ¢ov. Since 7 is geodesic, we have
70) = X,

(Vi£)(0) = H(X, X),

(V)0 = —ApanX + (DH)X, X, X) .
From the assumption that P, is totally real, we find
2.1) (JH(X, X), (DH)X, X, X)) =0.

Now we have Jy = 0 and J, = 0, since ¢ is a Kahler immersion. It follows
from (1.7) that

2.2) HJY, X)=J*HY, X), HJY,JX)= —H(Y, X)

for every X, YeT,M. Moreover, Codazzi’s equation (1.11) and (2.2)
imply that

(2.3) (DH)JZ, Y, X) =J*(DH)(Z, Y, X)

for every Z, Y, Xe T.M. Equation (2.1) holds for every Xe T.M. Re-
placing X by JX in (2.1) and using (2.2) and (2.3), we thus have
(2.4) (H(X, X), DH)X, X, X)} =0

for every Xe T.M. Let X and Y be orthonormal tangent vectors. Let
X(@) = cos X + sinfY. Differentiating {(H(X(), X)), (DH)(X(0), X(0),
X)) =0 at ¢ =0, we see that
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2(H(X, Y), (DH)(X, X, X)) + 3{H(X, X), (DH)(X, X, Y)) = 0.

This equation holds for all X, Ye T,M in virtue of (2.4). Replacing X
by JX in the above equation, we have

—2{H(X, Y), (DH)(X, X, X)) + 3<{H(X, X), (DH)(X, X, Y)) =0,
and hence
(2.5) (H(X, Y), (DH)(X, X, X)) =0

for every X, Ye T,M. Symmetrize (2.5) with respect to X. Then for
every X, Y, Z,

(H(Z,Y),(DH)X, X, X)) + 3{H(X, Y), DH)X, X, Z)) = 0.
Replacing Z and Y by JZ, JY respectively, we see from (2.2) that
(H(Z, Y),(DH)X, X, X)) =0
for every X, Y, ZeT.M. By virtue of (1.11), we obtain
(H(X, Y), (DH)(Z, U, V)) =0

for every X, Y, Z, U, Ve T,M, which shows that M" is locally symmetric
because of the Gauss equation (1.8). In [22, Theorem 2.1 and its Corol-
lary], Takeuchi showed that if a complete locally homogeneous Kahler
manifold admits a Kdhler immersion into CP™(c), then it is a compact
simply connected homogeneous Kahler manifold. Using this result, we
have the assertion. q.e.d.

Let M be a Riemannian manifold. A curve z:I— M is said to be
d-planar if there exist an open interval I, (seI,cI) and a d-dimensional
totally geodesic submanifold P, for each seI such that z(I,)CcP,. An
isometric immersion ¢: M — M is called a d-planar geodesic immersion if
T = ¢o7v is d-planar for each geodesics 7 of M.

COROLLARY. Let ¢: M™ — CP™(c) be a d-planar geodesic Kihler immer-
ston of a Kahler manifold M into CP™(c). If d is odd, then M™ is a
compact simply connected Hermitian symmetric space.

Proor. The assertion follows from the fact that an odd-dimensional
totally geodesic submanifold in CP™(c) is totally real. q.e.d.

Secondly, we shall characterize the d-th Veronese map by the shape
of geodesics in the ambient space. Let M be an irreducible symmetric
Kahler manifold of compact type and d a positive integer. In [10],
Nakagawa and Takagi constructed a full equivariant Kahler imbedding
fs: M — CP™c¢) which is called the d-th full Kdahler imbedding of M.
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Moreover Takagi and Takeuchi [20] constructed a full Kahler imbedding
of a (not necessarily irreducible) symmetric Kahler manifold of compact
type into a complex projective space as follows. Segre imbedding
S;: CP™(c) X CP™(c) — CP™(c) (m = (m, + 1)(m, + 1) — 1) is defined by the
tensor product of the homogeneous coordinates:

[zi]oéiéml X [wj]0§j§m2 = [ziwj]oéiéml,oéjémg .

Similarly, we can define a full Kahler imbedding S,: CP™(¢) X  « + X CP™(c) —
CP™c) (m = (m, + )X «++ X (m, + 1) — 1) by the multifold tensor product
of the homogeneous coordinates. Let M be a compact symmetric Kahler
manifold and M, k=1, ---,q) its irreducible components, i.e., M =
M, x:--xM, Let fy,: M,— CP™(c) be the d,-th full Kdhler imbedding
of M,. Then the tensor product f;[X ---Kfs: M—CP™c) (m=
Mici(m +1) — 1) of fz, (k=1,--+,q) is defined as S,o(fy, X+ xfy).
This is a full equivariant Kahler imbedding. In [10] and [22], it was
shown that any full Kahler immersion into CP™(¢) of a symmetric Kahler
manifold of compact type is obtained in this way (cf. [22, Corollary 2,
p. 177]). In particular, we note that if M = CP"(c/d), then the d-th full
Kihler imbedding is the d-th Veronese map whose defining equation is
given in the introduction.

A d-planar curve 7z in I/ is said to be proper d-planar if 7z is not
(d — 1)-planar. A d-planar geodesic immersion ¢: M — M is said to be
proper if T = to7 is proper d-planar for each geodesic v of M.

LemMA 2.2. The d-th Veronese map Vi: CP*(¢c/d) — CP™(c) is proper
d-planar geodesic.

PrROOF. Since the map V7 is equivariant and there exists an isometry
of CP*(¢/d) which maps 7, to 7, for any two geodesics 7, and 7, of
CP~(¢c/d), we have only to consider the geodesic 7:

Y(t) = [cos ¢, sint, O, - -, 0]

in homogeneous coordinates of CP"(¢c/d), where t is a parameter propor-
tional to the arc-length parameter. By the d-th Veronese map V2, 7 is
mapped to the curve

T(t) = [aoy ey Oy, Or ] O] s

B d
@t = <k!(d )1

in homogeneous coordinates of CP™(c). Thus t is contained in the totally
real totally geodesic submanifold RP%c/4) = {[z;]€ CP™(c); z,€ R for 0 <
1=2d,2,=0ford +1=<1<m}. The intersection of two totally geodesic

1/2
> cos*¢tsin®*¢, (k=0,---,d)
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submanifolds in CP™(c¢) is totally geodesic. Thus 7 is proper d-planar,
since Y a,a,(t) = 0. a, € R easily implies ¢, =0 (k=0,1, ---,d). q.e.d.

THEOREM 2.3. Let ¢: M™— CP™(c) be a proper d-planar geodesic Kahler
immersion of a complete Kahler manifold M™ into CP™(c). Suppose that
for each v and s, we can take P, in the definition of d-planar geodesic
rmmersions to be a totally real totally geodesic submanifold. Then
M™ = CP"(c/d) and ¢ is equivalent to 1oV} where 1: CP™(¢) — CP™(c) 1s
a totally geodesic imbedding.

ProOOF. By Proposition 2.1, we see that M™ is a symmetric Kahler
manifold of compact type. We shall prove that M" is of rank one and
apply [22, Corollary, p. 203] (cf. [2], [11]). Assume that the rank » of
M™ is greater than 2. Let M, (k =1, ---, q) be the irreducible components
of M™ and r, the rank of M,, where r =7, + -+« + r, = 2. It is known
that there is a totally geodesic Kahler immersion

¢: (CPY(c/d,))"* X « -« X (CP¥(c[d))"s — M™ ,
where d,, - -+, d, are certain positive integers (see [20, the proof of Theo-
rem 2, p. 515]). Since r = 2, we thus have a totally geodesic Kahler
immersion

s CPYc/a) x CP'(c/b) > M", a,beZ,.
The composite ¢oq is equivalent to 10 (VL V): CP*(c/a) x CP'(¢/b) —
CP™(c), where 1: CP®****(¢) — CP™(c) is a totally geodesic imbedding. Let
v, (resp. 7,) be a geodesic of CP'(c/a) (resp. CP'(c/b)). Then po7; (5 =
1, 2) is a geodesic in M". By Lemma 2.2, coqro?, (resp. toqro?,) is proper
a-planar (resp. b-planar). Thus the assumption implies that a = b = d.
Hence we have only to prove that

Vi Vi: CPY(c/d) x CP*(c/d) — CP*"%*?(¢)
is not proper d-planar. Consider the geodesic ¥ in CP'(c/d)x CP*(c/d)
defined by
Y(t) = [cos ¢, sin t] x [cos ¢, sin {]
in homogeneous coordinates, where ¢ is a parameter proportional to the
arc-length parameter. The curve ¢ = (V}[X] V}) o7 in CP%%*¥(¢) is given by
7(t) = [ak(t)az(t)]osksd,oszsd ’

where a,(t) is as defined in the proof of Lemma 2.2. This curve is con-
tained in RP%“*?(c/4) = {[v.] € CP*“*?(c); vy, eR for 0 <k, 1 <d}. We
easily see that functions a,(t)a,(t), a,®)a,(t), -+, a,®)a;), a,E)ayE), - -,
a,(t)a,(t) are linearly independent over R. Suppose that there exists a
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(d — 1)-dimensional totally geodesic submanifold P such that z(I)cP, for
some open interval. Then z(I) is contained in RP%“*?(¢/4)N P which is
a totally real totally geodesic submanifold of dimension not greater than
d — 1. Thus the dimension of the vector space spanned by functions
o, (0 =k, 1 <d) is not greater than d. We thus have a contradiction
2d +1=d. q.e.d.

COROLLARY. Let ¢: M™ — CP™(¢) be a proper d-planar geodesic Kahler

immersion of a complete Kahler manifold M™ into CP™(c). If d is odd,
then M™ = CP"(c/d) and ¢ is equivalent to 10 V.

3. Cubic geodesic totally real immersions. Let ¢: M — CP™(c) be a
cubic geodesic immersion of a Riemannian manifold M into CP™(c), where
dimM = 3. LetxeM, X be a unit vector tangent to M at 2 and v the
unit speed geodesic such that v(0) = x, ¥(0) = X. There exists a totally
real, totally geodesic submanifold P, of dimension 8 such that «(I,)CP,
for some open interval I, containing 0, where z = ¢ov. We now assume
that the isotropy A\n(x) at x is positive and hence )\ > 0 on a neighborhood
of . We take I, small enough if necessary and put z,=7 and 7, =
H(z,, )/». Noting that ‘Nhlrl = H(z, 7,), we see that 7, is tangent to P,.
Then C:= %,12'2 is orthogonal to z,, 7z, and tangent to P,. Using (1.2),
we have

AC = —N'1, — Apie,epTi + (DH)(Ty, T3y ) + N7y,
where A = dx(7(s))/ds, from which
3.1) (DH)(yy 7y 71) = N7y + 0C

because of (1.15). The above equation shows that C is normal to M.
Covariantly differentiating (8.1) in the direction z,, we have
8.2)  (DH)(zy T T1y T) = Apmyeyepeps — MWT + N7y + 2VC 4+ AV, C .

Since 7,, 7, and C are mutually orthogonal, 6,10 is orthogonal to <z,.
Suppose that C(0) = 0. If necessary, we choose I, so that C(s) == 0 for
every sel,. Put p=|C| and 7, = C/y¢. Vector fields z,, 7, and 7, are
orthonormal and tangent to P,, Therefore, 6,10 is spanned by 7, and 7,
which are normal to M. It follows from (3.2) that

3.3) (DH)X, X, X), HX, Y)) =0

for every Ye T,M orthogonal to X. If C(0) =0, then (3.1) and (1.15)
also imply (8.3).

LEMMA 3.1. The immersion ¢ is constant isotropic.
PROOF. Let xeM, YeT,M with ||Y| = 1 be arbitrarily fixed. Let
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X be a unit tangent vector orthogonal to Y. We shall prove Y-\*= 0.
If a(x) = 0, then )\* attains the minimum at x and hence Y-A\? = 0. Thus
we may assume A@) > 0. Extend X and Y to orthonormal vector fields
X* and Y'*, respectively, on a neighborhood of x so that VX* = VY* =0
at xz. We have

Y-a' = Y- (H(X* X¥), HX*, X*)) = 2{(DH)(Y, X, X), H(X, X)) .
Using (1.9), we obtain

YV =2{DH)X, X, Y), HX, X)) — %c(JY, X){JyX, HX, X)) .

Since P, is totally real, we have (JX, H(X, X)) = 0. Therefore,
Yo\ = 2<(DH)(X7 Xv Y)! H(X, X)>
= 2{X-(H(X*, Y*), HX*, X*)) — (H(X, Y), (DH)(X, X, X))}
=0

by virtue of (1.15) and (3.3). q.e.d.

In the sequel, we assume that the cubic geodesic immersion ¢: M —
CP™(c) is proper and totally real. By means of Lemma 3.1, we may
assume that » > 0. We next prove that g is a nonzero constant and
independent of the choice of the geodesic v. From (3.1), we have

3.4) ((DH)(X, X, X)||* = Mp(X) ,

where g is regarded as a non-negative function on the unit sphere bundle
UM of M.

LEMMA 3.2. The function pt is constant on the unit tangent sphere
U,M for every x¢c M.

ProOOF. Let x be an arbitrary point. Suppose that there exists a
vector X, € U, M such that p(X;) > 0. Put S = {Xe U,M: u(X) > 0}, which
is an open set in U,M because of the continuity of p¢. For each XeS,
we consider the unit speed geodesic ¥ such that v(0) = 2 and 7(0) = X.
Taking Lemma 3.1 into account, we see that (3.3) holds for every
X, YeTM and hence A, xx.nX =0 for any Xe TM. From (3.2), we
have (D*H)(z,, Ty, Ty T) = x%,lC. The right hand side is spanned by =,
and 7,. It follows that (D*H)(X, X, X, X) is spanned by H(X, X) and
(DH)(X, X, X) for XeS. Let Y be orthogonal to X. Differentiate

(DH)(X*, X*, X*), HX*, Y*)) =0

in the direction X where X* and Y* are local vector fields used in the
proof of Lemma 3.1. Then we have
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(DPH)X, X, X, X), HX, Y)) + {(DH)X, X, X), DHXX, X, Y)) =0,
from which
(3.5) (DH)X, X, X), DH)X, X, Y)) =0

in virtue of (1.15) and (3.3). This means that ||[(DH)(X, X, X)|]* is constant
on each connected component of S. Therefore, the component (3 X,) of
S is open and closed. We have proved g is constant on S = U, M. q.e.d.

By Lemma 3.2, we see that p is a function defined on M. If u(x) > 0,
then for each Xe¢ UM
(3.6) wD’H)(X, X, X, X) = (X-()(DH)(X, X, X) — (#H(X, X)
because of (DH)(X, X, X) 1L HX, X), {D*H)(X, X, X, X), HX, X)) =
=\ and 2{(D*H)(X, X, X, X), (DH)(X, X, X)) = V(X ).

LemMMA 3.3. £ 18 a monzero constant.

Proor. If g vanishes identically on M, then the image 7 of each
geodesic v is a circle in P = RP%c/4). Thus ¢ is contained in a totally
geodesic submanifold RP?*c/4) of RPa(c/4).N This contradicts the assump-
tion that ¢ is proper cubic geodesic. Put S = {xe M: u(x) > 0}. Let zeS
and Ye UM be fixed. Let Xe UM be orthogonal to Y. Then from
(3.4), we have

7\’2(17-'#2) = 2<(D2H)(Yr Xy X’ X)7 (DH)(Xr X7 X)> .
Making use of (1.10) and (1.13), we find

(D'H)(Y, X, X, X) - (D*H)(X, X, X, Y)
= RYY, X\)HX, X) — 2HR(Y, X)X, X)
= T X, HX, X0 Y = (JnY, HOX, X))J X
- 2<JY’ X>JLH(X, X)} + H(Yr AH(X,X)X) - H(AH(X,X) Y, X)
— 2HR(Y, X)X, X) .
Using the fact that {(JyX, HX, X)) = {(JzX, (DH)X, X, X)) =0, J =0,
Apx.nX =2X and (3.3) holds for every X, Ye U, M, we have
AN(Y ) =2((DPH)X, X, X, Y), DH)X, X, X)) .
Differentiate (DH)(X*, X*, X*), (DH)(X*, X*, Y*))> = 0 (cf. (3.5)) in the
direction X. Then
(D'H)(X, X, X, X), DH)(X, X, Y))
+ (DH)X, X, X), D’H)Y(X, X, X, Y)) =0.
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Substitute (3.6) into the above equation and use Lemma 3.1 and (8.5).
We obtain Y-g¢* = 0. It follows that s is a nonzero constant on each
connected component of S. q.e.d.

Next we shall prove that there is a totally real, totally geodesic
submanifold @ of CP™(¢) such that ¢«(M)cQ and ¢ M — Q is full. In
contrast with Erbacher [5], our proof is based on the situation that
¢: M — CP™(c) is proper cubic geodesic, totally real immersion.

Since each geodesic is mapped locally into a 8-dimensional totally real,
totally geodesic submanifold, the discussion up to this point yields

3.7 JX, HX, X)) =0, <(JX, (DH)X, X, X)) =0
(JH(X, X), (DH)(X, X, X)) = 0.

for every Xe TM. Moreover we have, from (3.6) and Lemma 3.3,
3.8 C(DPHY(X, X, X, X) = —pH(X, X)X, X)

for every X€ TM. Let O, denote the third osculating space Sp{X, H(X, X),
(DH)(X, X, X): Xe T,M} at a distinguished point z.

_ LEMMA 3.4. The third osculating space O, is totally real, i.e.,
JO, L O,.

PrROOF. We must show (1) <JX, Y) =0, 2) <JX, HY, Z)) =0, (3
(JX, (DHXY, Z, W)y =0, (4) (JHX, Y), HZ, W)>) =0, 6) JHX, Y),
(DH)Y(Z, W, U)> = 0 and (6) <J(DH)(X, Y, Z), (DH)(W, U, V)> = 0 for any
XY, Z UV, WeT,M.

(1) is the definition of totally real immersions.

The first equation (1.7) with J =10 gives A, X+ J H(Y, X)=0
and, consequently, {JyX, H(Y, Z)) = {JyY, H(Z, X)>. On the other hand,
the first equation of (3.7) implies @3<.7X, H(Y, Z)) = 0. Thus we obtain
2).

(8) is shown as follows. From the second equation of (8.7) it follows
that ©JX, (DH)Y, Z, W)) = 0. Differentiating <JX*, H(Y*, Z*)> =0
in the direction W, we have

(3.9) (JH(W, X), HY, Z)> + JX, (DH)Y, Z, W)) = 0.

The first term on the left hand side is symmetric with respect to W and
X. Thus we see that (JX, (DH)Y, Z, W) = (JW, H(Y, Z, X)>. There-
fore, we have (3).

Combining (3) with (3.9), we have (4).

Differentiating (JH(X*, Y*), H(Z*, W*)> = 0 in the direction U, we
find
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(JWDH)U, X, Y), H(Z, W)y + (JH(X, Y), (DH)(U, Z, W)) = 0.

By virtue of Codazzi’s equation (1.11), we see that (fH(-, 9, (DH)(-, «, +)
is a symmetric 5-form on T,M. Thus the third equation of (3.7) shows (5).

Finally, we prove (6). Differentiating (JH(X*, Y*), (DH)(Z*, W*,
U*)» = 0 in the direction V, we find

(J(DH)V, X, Y), (DH)(Z, W, U))
+ (JH(X, Y), (D*H)V, Z, W, U)> =0.

Thus it suffices to show that <(JH(X, Y), (D*H)(V, Z, Z, Z)) = 0 for any
X, Y, Z Ve T,M. Equation (3.8) gives

(D’H)V, Z, Z, Z) + 3(D’H)(Z, Z, Z, V)
= — P H(V, Z)(Z, Z) — 22 H(Z, Z){Z, V' .

Since (D*HXV, Z,Z, Z) — (D*H)(Z, Z, Z, V) is a linear combination of
H(V, Apz.0Z), HAnz,5V, Z) and H(R(V, Z)Z, Z) (see the proof of
Lemma 3.3), (D*H)V, Z, Z, Z) is a linear combination of vectors H(-:, :).
Thus (4) implies (6). q.e.d.

LEMMA 3.5. There exists a totally real, totally geodesic submanifold
Q ~ RP""(c/4) in CP™(c) such that (M)CQ and the immersion ¢: M — Q
18 full, where n = dim M and ¢ = dim O, — n.

Proor. Let xe€M be fixed. Since O, is totally real, there exists a
unique totally real, totally geodesic submanifold @ such that x<€@ and
T.Q = O,. Let ye M and v be a unit speed geodesic from x to y. The
curve 7 = ¢o7 satisfies the Frenet equation:

t=1,, e,lz'l = AT, 6,12'2 = —\7, + Uz, %,lz'a = —pr,,
where A and g are constants. Let 7(0) =« and ¥(0) = X. The initial
conditions of the above differential equation are z(0) ==z, 7,00) = X,
7,(0) = H(X, X)/» and 7;(0) = (DH)(X, X, X)/anpt which are elements of
0,. Consider a helix w in @ whose curvature and torsion are A and g,
respectively, and which satisfles w(0) = 2z, w,(0) = X, w,(0) = H(X, X)/\
and w;(0) = (DH)(X, X, X)/A¢, where ®,, @, and ®, are unit tangent,
principal normal and binormal vectors, respectively. Since @ is totally
geodesic, the fundamental theorem of ordinary differential equation implies
7 = ®. Therefore, we have ye Q. It is clear that ¢: M — Q is full. q.e.d.

THEOREM 3.6. Let M be an n(= 3)-dimensional compact simply con-
nected Riemannian manifold and ¢: M — CP™(c) be a proper cubic geodesic,
totally real immersion. If ¢ is minimal, then M is isometric to a sphere
S™(nc/12(n + 2)) with curvature nc/l2(n + 2) and ¢ is equivalent to tomwot,
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where 1. Q — CP™(c) s the inclusion, w: S**(c/4) — Q the covering and
t: S"(nef12(n + 2)) — S™(c/4) the third standard minimal immersion.

Proor. By Lemma 8.5, we have only to consider the immersion
t:M— Q~ RP"c/4). We can apply Theorem N stated in the introduc-
tion to a lifting &: M — S"+9(c/4) of ¢, since ¢ is also proper cubic geodesic
(¢ is a helical immersion of order 8 in the sense of [15]). Noting that
the immersion ¢ is full, we see that M = S*(nc¢/12(n + 2)) and ¢ is equiva-
lent to ¢;. Thus clearly ¢ is equivalent to woc,. g.e.d.
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