Téhoku Math. Journ.
38 (1986), 269-279.

INFINITESIMAL DEFORMATIONS OF TSUCHIHASHI'S
CUSP SINGULARITIES

SHOETSU OGATA

(Received April 25, 1985)

0. Introduction. Let (X, z,) be a normal isolated singularity of
dimension ». Assume that X is a Stein neighborhood of the singular
point x, and that z, is the only singularity of X. The set of first order
infinitesimal deformations of X is the finite dimensional vector space T%,
which is isomorphic to Extj (2%, Ox). In [FK] Freitag and Kiehl proved
that Hilbert modular cusp singularities of dimension greater than two are
rigid in the sense of Schlessinger [Sc], that is, T% = 0. Behnke and
Nakamura computed T} for two dimensional cusp singularities ([B 1], [B 2]
and [N]).

Here we are interested in deformations of normal isolated singularities
constructed by Tsuchihashi in [T]. Theorem 3 shows that these singulari-
ties of dimension three are not rigid in general.

Thanks are due to Professors T. Oda, M. Namba and M.-N. Ishida for
many helpful conversations.

1. Tsuchihashi’s cusp singularities. Let N be a free Z-module of
rank n >1 and Nz:= NQ;R. Consider a pair (C, ') consisting of a
nondegenerate open convex cone C in N and a subgroup I in GL(N) :=
Autz(N) satisfying the following conditions:

(i) C is I-invariant.

(ii) The action of I" on D:= C/R., is properly discontinuous and
fixed point free.

(iiiy The quotient space D/I" is compact.

In [T] Tsuchihashi has associated to such a pair (C, I') an isolated
singularity, which we may call Tsuchihashi’s cusp singularity. This is a
singular point of the normal analytic space X:= (Nx +1 —1C)/N-I") U {x,}.

Let N* be the dual Z-module of N with the natural pairing {, >:
N*x N—Z, and let dy and dy’ the Lebesgue measures on Ny and N
respectively. Let C*:= {y' € N¥; <y, y> > 0 for all y in C\ {0}} be the
dual cone of C. The characteristic function of the cone C is

Po(¥) = SC‘ exp(—<Y', ¥))dy'
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defined by Vinberg [V], which satisfies the properties that ¢(gy) =
|det(g) |*¢(y) for a linear automorphism g of N, preserving C, that ¢(y)
diverges to infinity when y approaches the boundary of C and that the
Hessian of ¢ is positive definite on C. For a point z = ¢ + 1 —1y in
Ne +17=1C, let ®(z) := ¢(y). The real-valued function ® on N + 1/ —1C,
is N-I-invariant and strictly plurisubharmonic. Let V{c):= {z€ Nr +
V' —1C; 0(2) < ¢} and V(c):= {y € C; #(y) < ¢} for each positive real number
c. Then V(c) = Nx + V' —1V(c). Since the function @ is N-I-invariant,
it may be regarded as a function on X with @(x,):= 0. Let W(c):=
{z € X; @(2) < ¢} for each positive number ¢. Then W(c) = (V(e)/N-I')U {x,}.

The elements of the local ring Oy, can be represented by holomorphic
functions on V(¢)/N-I' for sufficiently large ¢ > 0 which are continuous
at 2,. For a function f in H°(W(c), Oy), the pull-back f to V(c) of f is
an N-I-invariant holomorphic function f(z) bounded for y in V(¢) with
|y| sufficiently large, where z = z + 1/ —1y is in N+ V' —1V(c) and ||
is a fixed Euclidean norm on Ni. Since f(z) is N-invariant, it has the
Fourier series expansion

&) = 3, a2

where e(-) := exp(27i(-)). The coefficients a, vanish for p¢ N*NC*. In-
deed, for pt¢ N* NC*, there exists a y in V(c) such that (g, > is negative.
Since f(x 41 —1y) is bounded for |y| sufficiently large, a,exp(—2x{y, ty))
is bounded for all ¢ > 1. Hence we have a,=0 for ¢ N*NC*. An
element v eI acts on f(z) as

1@ = 3wl ) = 3 aem ) = 5 are(th 2)) -
Set F,(2) := Drere({vy, z)) for pe N*NC*. Then
IFu@)| = 3 e(Crem )| = 3 le(re, @ + vV —=1p))| = 3 exp(—22{74, 1))

=K Sc' exp(—2x<y’, ¥))dy = Kopo(y)

for some positive constant K. Hence F,(z) is a holomorphic function on
Nx + V' =1C. Since f(z) is also I-invariant, we can express f(z) as

fy= > bF.()+b.

pe (N*nNC*) /I

Hence an element f in H°(W(c), Ox) is represented by a holomorphic
function f on V(c) which has the Fourier series expansion of the form

f@ = > bF,@)+b.

pe (N*nCo /T
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LEMMA 1. The vmage of HX, Oy) in H'(W(c), Ox) s dense with
respect to the topology of wuniform convergence on compact subsets in
Wi(e) for any positive number c.

PrOOF. Since F,(z) for pre N*NC* is a N-I-invariant holomorphic
function on Ni + 1/ —1C and bounded for y in C with |y| sufficiently
large, it represents an element of H°(X, O;). The function f on V(ec),
representing an element f in H°(W(c), Oy), has the Fourier series ex-
pansion

fy= > bF) +b,,

pe (N¥nC* /I

where the series on the right hand side converges absolutely and uniformly
on any compact subsets in W(¢). Hence f(z) can be approximated by finite
sums of F(2). q.e.d.

2. Main results.

THEOREM 1. Let U:= X\ {x,}. When n = 3, we have canonical iso-
morphisms
z{’ = HI(U; @X) = Hl(Fy NC) ’

where the last term s the first cohomology group of the group I' acting
naturally on N¢:= NQ;C, while @y is the holomorphic tangent sheaf
of X.

We shall prove Theorem 1 in Section 3.
THEOREM 2. When the cone C is decomposable, that is, the product
C,x-++xC, of more than one montrivial convexr cones C, ---, C, then

HYI', No) = 0. Consequently, we have Ty = 0 when n = 3 and when the
cone C 1s decomposable.

PrOOF. We denote by Aut(C) the group of linear transformations of
Ny preserving C. We may assume that C, are indecomposable. Then
I17=, Aut(C,) is a normal subgroup of Aut(C) of finite index. Let I,:=
I'N(TT%=, Aut(C,)). Then I’y is a normal subgroup of I' of finite index.
From the Hochschild-Serre exact sequence

0 — HY(I'/T",, (N¢)" ) — H'I", Nc)
— H'(I"y, N¢)"'™0 — HXI'/T',, (Ng)™) ,
we have an isomorphism
H'I', Ng) =~ HYI"y, N¢)"™'™0,

the right hand side being the invariants with respect to the natural action
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of I'/l",, because higher cohomology groups of a finite group with coef-
ficients in a vector space are trivial. We prove that H'(I",, N¢) = 0. Let
H be the subgroup of i, Aut(C,) consisting of those automorphisms of
C which induce homotheties of C,, thus (R.,)" = HC]I;-, Aut(C,). Since
HNTI, is a normal subgroup of Iy, we have an exact sequence

1-Hnr,—»I,—T,/JHNT,)—1.

Set S:=HNI, and Q:=I/J(HNI,). Let D,:=C,/R., (=1, -+, 7).
Taking the quotient with respect to the action of H/(R.,) = (Rs,)"™, we
have a natural surjective morphism D — (D, x---xD,). Then we have
the fibration

DIy — (Dyx « -+ xD,)[Q
with the fiber (R.,)""'/S, which is compact since D/I', is compact. Hence
S is a free abelian group of rank » — 1. From the exact sequence

1-S—>I',—-Q—1,
we have the Hochschild-Serre exact sequence

0 — HYQ, (N¢)®) — H'(I'y, Ne) — H'(S, Ne¢)® — H*Q, (Ne)®) .

Since (N¢)® = 0, it suffices to show that H'(S, No) = 0. Since C = C,x
«+.xC, is the decomposition of C into the product of indecomposable
cones, we have Ne=V, P :---PV,. An element h in H acts on v =
(v *++,v,)in Ne=V,P--- DV, as hv = (,(h)v,, -+, &,(h)v,) with ¢;(h) >
0, that is, h acts on each V; as a scalar multiplication. Hence we have
HYS, N¢) = @j-, H'(S, V;). We claim that H(S,V,;) =0 for j =1, -, r.
Indeed, a 1-cocycle fe H'(S, V;) is a function from S to V; which satisfies
f(s:8;) = €;(8)f(sy) + f(s,) for all s, s, in S. Since S is an abelian group,
f(s,8,) = f(s:8,), hence we have

(ei(s) — 1S (s,) = (e5(s2) — 1)Sf (s))
Since there exists an s, in S with ¢;(s,) # 1, for any s in S we have
f(8) = (e(s) — 1)(f(s0)/(e5(80) — 1)) -
This shows that f is a coboundary, and hence H(S, V) = 0. q.e.d.
THEOREM 3. When n = 3, we have
3(1 — X(D/IN)) =z dime Ty = —3X(D/I)

where X(D/I") is the Euler number of the compact real manifold D|I.

Proor. First we prove that (N¢)" = 0. It is enough to prove that
(NR)¥ = 0 because (N¢)' = (Np)" @rC. Assume that there exists a non-
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zero element v in N, invariant under the action of all elements in I'.
By the assumption that I acts on D = C/R., fixed point freely, we see
that v is not contained in CU(—C). Set H,:= {# € Ni; V', v) = 0}.
Then H,N(C*\{0}) # @. Set S':= (v’ €C*; ¢s(v') = 1}. Then I'" acts on
S’ properly discontinuously and fixed point freely as well as on D' :=
C*/R-,, and we have S’/[" =~ D'/[I’. For any real number r set H,(r):=
{v' e N¥; (', v) = r}, and we have that H,(r)NS’ is I'-invariant. Set
R :={reR; H(r)NS"' #+ @}. Then R"=R or R.,, Hence we have a
disjoint union U,.z (H,(r)NS’) and a fibration S’/I" — R’. This contradicts
to the assumption that S’/I" is compact, because the image R’ of the
compact set S’/I" by the continuous map must be compact, but R’ is
really not compact. Thus we see that (Nz)" = 0, hence (Nc)" = 0.

Assume that I'" is the quotient group of a free group F' generated
by s (=2) elements. Then we have a natural injection H(I", N¢) —
H'(F, Ng). We take the C[F']-free resolution of the trivial C[F']-module
C as

0—->IF—-C[F]—-C—0,

where IF' is a complex vector space generated by (f — 1) for fe F\ {1}

and is known to be a free C[F']-module of rank s (see, for example,
[HS]). From this we have the exact sequence

0 — Homz(C, Nc) — Homezy(C[F'], N¢) — Homepy(IF, N¢) — HY(F, Ng) — 0,

where Homg;1(C, N¢) = (Ne)” = 0 and Home)(IF, N¢) =~ (N¢)*. Hence
dim¢ H'(F, N¢) = (s — 1)-dim¢(Ng) .

Since I' is isomorphic to the fundamental group of the (n — 1)-dimensional

compact real manifold D/I", we can choose s so that s = 2 — X(D/I") when
n = 8. Thus we proved that

3(1 — X(D/I") = dim¢ H\(I", No) = dime T% .

On the other hand, since I' is isomorphic to the fundamental group
of D/I", the chain complex of the universal covering space D of D/I" gives
a finite C[I']-free resolution of the trivial C[I']-module C (cf. [Se]); more
precisely, let ¥ be a finite triangulation of D/I". The triangulation ¥
determines a I-invariant triangulation § of D. Let C.(3) be the chain
complex with coefficients in C obtained from 5. Since D is contractible,
we have an exact sequence of complex vector spaces

0-Ci(E) >+ = CE) - C(E)—-C—0,

which is also an exact sequence of C[I']-modules. Then we see that the
Euler-Poincaré characteristic X(I') := 322} (—1)i-dim¢ H(I', C) of I is



274 S. OGATA

equal to the Euler number X(D/I") of D/I"'. Moreover, since H(I", N;) are
the cohomology groups of the complex consisting of the invariants of
Homy(C.(¥), N;) with respect to the action of I, we have

2 (—1)9 dimg Hi(I", Ne) = dime(No)-X(T") .

Since HYI", N¢) = (Ng)© = 0, we have
dim¢ T} = dime H'(I', Ng) = —8-X(D/I") if n=3. q.e.d.

REMARK. Tsuchihashi proved in [T] that if the compact real manifold
D|I" is a two-dimensional real torus, then the normal isolated singularity
X associated to (C, I') is a Hilbert modular cusp singularity and that
D/I' cannot be a Klein bottle. Hence we see from Theorem 3 that
Tsuchihashi’s cusp singularity X of dimension three is not rigid if the
cone C is indecomposable, since X(D/I") is then necessarily negative.

REMARK. Recently Tsuchihashi proved that dim¢ Tt = —8X(D/I") when
n =3, and he succeeded in constructing a versal family of Tsuchihashi
cusp singularities of dimension greater than two by using our main result,
namely Theorem 1. His results say that Tsuchihashi cusp singularities
of dimension greater than two are not taut and that these singularities
have no smoothing.

3. Proof of Theorem 1. We utilize a method partly analogous to
that employed by Freitag in [F].

LEMMA 2. The complex mam’fﬂ Y := (Ng + 1V —1C)/N and the com-
plex analytic space X = (Ng + 1V —1C)/N-I')U {x,} are Stein spaces.

PrOOF. The algebraic torus NQ,C* = (N®,C)/N is obviously a
Stein space. Since Y is a strictly pseudoconvex domain in N&),C*, it
is a Stein space as well.

The continuous function @: X — R., is strictly plurisubharmonic on
Y \{x,}. Hence the relatively compact subset W(c) = {ze X; @(z) < ¢} is
a Stein space for any positive number ¢. Indeed, since Wi(c) is a strictly
Levi pseudoconvex domain in X, there exist a Stein space W(c) and a
proper morphism qr: W(c) — W(g) satisfying the following conditions

(@) H(W(e), Owy) = H'(W(c), Oy o), _

(b) there exist finite number of points =z, ---, z, in W(c) such that
(z;) are compact subvarieties in W(c) of positive dimensions and that
s W(e)\ U=, v (z5) — Wee)\{z,, - -+, 2.} is an isomorphism ([GR, Chap. IX,
Theorem C.4]).

From its proof, we see that +: W(c)\ {x,} — ¥ (W(c)\ {x,}) is an isomorphism,
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because @ is strictly plurisubharmonic on W{e¢)\ {x,}. Henece +p'(4r(x,)) = {2},
and + is an isomorphism.

Let {c¢,} be a sequence of positive numbers with 0 < ¢, < ¢, < »+« — oo,
Then W{e,)C W(ec,,,) and X is the union of Stein spaces Ug, W(c,). Since
H(Wi(e,,,), Oy) is dense in H(W(c,), Ox) by Lemma 1, we see that X is
a Stein space ([GR, Chap. VII, Theorem B.10]). q.e.d.

LEMMA 3 (Schlessinger [Sc]). Let i: X — C* be a closed embedding.
Then there exists an exact sequence

0 T — H\(U, 6,) 5 H (U, i*644) .

Since I' acts on the Stein manifold Y properly discontinuously and
freely, H*(Y, Oy) = H*(Y, ©;) = 0 for all vy > 0 and R*p,0, = R*p,0y =0
for all vy >0 (p: Y — U = Y/I' is a canonical projection). Hence we have:

LEMMA 4 (Grothendieck [G]). In our situation, we have natural iso-
morphisms

H*(U, Oy) = H*(I', H(Y, 0y))
and

H*(U, 6,) = H*I", H(Y, 6y)) ,
Jor all v.

PROPOSITION 1. The canonical inclusion C— H'(Y, Oy) as constant
holomorphic functions induces the natural homomorphisms

H/(I', C) — H(I", H(Y, Oy)) ,
which are isomorphisms for 1 <y < n — 2.
PrOOF. The vector spaces H*(I", H(Y, O,)) are finite dimensional for
1<vyv=<mn—2. Indeed, we have
HY(I', H'(Y, Oy)) =~ H*(U, Oy) and
H"(U, Oy) = H; (X, Ox) for all v.
The local cohomology groups H/ (X, Oy) are finite dimensional vector spaces
for j < m, since U = X\ {x,} is smooth ([BS, Chapter II, Corollary 4.5]).
Put M:= {f: Nx+V —1C— C holomorphic functions such that f(¢+z)=

f(z) for all e N}. Then H Y, Oy) = M. A function f in M has the
Fourier series expansion

flz) = #g.wa,le(w, 2)),

and the coefficients a, = a,(f) are written as
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a,(f) = vol(D(N))“‘SD(N) Fz + we(— <t 2 + wy)du ,

which are independent of z, where du denotes a fixed Lebesgue measure
on Ng, D(N) is the fundamental domain of N in N and vol(D(N)) is the
volume of D(N) with respect to du. Set M°:= {feM; a,f) = 0}. The
I'-module M decomposes into M = C@ M°. The proposition is equivalent
to H(I', M) =0 for 1=y =<n—2. Set Nf:= N*\{0}. An element of
M° is a convergent Fourier series

f@) = 3, 0.0(th2)) »
on which v eI acts as
vf(z) = F%ga,,e((/x, v2)) = "%*a#e((ﬂe, 2)) = ﬂ%‘,v‘ar—l,,e((y, 2)) .

We can decompose M° into I'-invariant submodules. We associate to
¢ € N the submodule

M):={feM’a(f)=0 for verly .
If py «--, pt,, are elements in Ng* such that I'y,, ---, I'y, are disjoint, then
we have
M° = le@...@M/‘Z"L@L,
where any element f of L has the Fourier coefficients a,,,(f) = 0 for all
Yyin " and j=1,:---,m. When g, =ry¢ (r=1, .-+, m), the modules
M;, M3, -+, M,, are isomorphic to each other under the mappings
M; 5 f(z) — flrz) e M;, .
Therefore
dim¢ H*(I", M°) = m dim¢ H(I", M) 1=v=n—2)

for all positive integers m and pge NF. Since H*(I', M°) are finite dimen-
sional, we have H*(I', M;) =0 for 1 = v <n — 2 and pe N

Note that M° is a Fréchet space with the topology of uniform con-
vergence on compact subsets. We can calculate the cohomology groups
H*(I', M°) by H*(I', M°) = Ext%(C, M°) where A = C[I'] is the group ring
of I'.

Since I' is isomorphic to the fundamental group of the compact real

manifold D/I", there exists a finite A-free resolution of the trivial A-
module C

o> E>KE —-E—>C—0.

For example, the chain complex determined by a I'-invariant triangulation
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of D as in the proof of Theorem 8 is a finite free resolution of the trivial
A-module C (see [Se, Proposition 9]). Then we have complexes L’ and
L, from which we can calculate the cohomology groups of M° and Mj:
L:0-L—->L'—>SL"~---
and
L:0—->L,—>L,—>L,— -+,
where L* and LY are the direct sums of finitely many copies of M° and
M}, respectively. By Z* and B* we denote the subspaces of cocycles and
coboundaries in L*, respectively. By Z: and B; we denote those in L.
Since Z; = B; for 1 <y <n —2 by the vanishing of the cohomology
groups H*(I", M}) and since the direct sum of the submodules M; is dense
in M° the direct sum of the submodules B;c B*, where ¢ runs through
N modulo I', is dense in Z*. Hence B* is a dense submodule of Z*.
Note that L* is a Fréchet space, since it is the direct sum of finitely
many Fréchet spaces. It remains to prove that B*CL* are closed sub-
spaces for 1 <y < n — 2.

Since Z*/B* is finite dimensional for 1 <y < n — 2, there exists a
finite dimensional vector subspace V of Z* such that Z*=V + B* and
that the natural mapping

V@ Lt — Zv
is surjective. By the open mapping theorem (see, for instance, [Y]), this

mapping is open, i.e., Z* can be identified with the quotient space of
V@ L**. Therefore the image B* of L** is closed in Z*. q.e.d.

COROLLARY. We have isomorphisms
HY(I', No) = H(I', H(Y, 0y)) for 1<yv<n-—2.

PROOF. The dimensions of the cohomology groups H*(U, 6y) for 1 <
vy =n — 2 are finite since the local cohomology groups H;'(X, ) for
1=v=n—2 are finite dimensional and since H*(U, 6y) = H;}'(X, Oy)
for 1 <y <n— 2. Thus we can apply the argument in Proposition 1 to
this case by noting H*(Y, 6y) = N Q. H*(Y, Oy). q.e.d.

PROPOSITION 2. The morphism H'(U, ©y) — H*(U, 1*@ca) is the zero
map, t.e., Ty = H"U, O).

PROOF. For any element f in Oy,, there exists a positive number

¢ such that f is a holomorphic function on (Ni + 1 —1V(c))/N-I'. The
pull-back of f has the Fourier series expansion

2 0t 2)) -

peN*
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We can easily see that a,, = a, for all ¥eI" and that the maximal ideal
of Oy, is generated by elements of the form F,(z) = 3;.re({7g, 2))
with pe N¥*NC*. Let f, -+, f; be generators of the maximal ideal of
Oy,., so that f;(z) are of the form F,(z) for some peN*NC*. Let
x,, +++, x; be the coordinates for C* such that x; = f;(z). The tangent
sheaf of C¢ is free with {9/ox,, ---, 8/0x,;} as a basis:

H'Y(U, i*6¢i) = EB HY(U, OU)—— = éj HYI', H(Y, OY)).a—ax; .
Let
%: HYY, 6;) > @ HY(Y, 0,)@/o)
be the linear mapping with components X; (f =1, --+, d), where

135 m01020) = (3 ha(@fifon) )(@fox,)

for any section >}p_, h,(0/0z,) of 6y.
To calculate the mapping

Xi: H(I', H(Y, 6y)) — H\I", H(Y, Oy))(3/0x;) ,

we consider the composite

*) N®:C= HYY, 6y) = N®, H'(Y, 0) 2 H(Y, O) = C® M" .

Let {u, ---, u,} be a Z-basis of N. Then a point z in N, is expressed
asz=2u, + +++ + 2,u,. Taking z,, ---, 2, as the coordinates for N;, we
have

oF (2)/oz, = TZF27ZI/———1—<’Y#, wye({rY, 2)) .

Hence the image of the composite (*) is in M°. By Corollary to Proposi-
tion 1, the mapping X} factors as

HYI', No) > HYI", H(Y, 6y)) — H\(I', M*) = H'(I', H(Y, Oy)) .
By Proposition 1, we have H'(I', M°) = 0 hence X} = 0 for all 5. q.e.d.
This completes the proof of Theorem 1.
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