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Introduction. For a number field K, denote by Cκ the ideal class
group of K. Let n be a given natural number greater than 1. In [5],
Nagell proved that there exist infinitely many imaginary quadratic fields
with class numbers divisible by n. The corresponding result for real
quadratic fields was obtained by Yamamoto [11] and Weinberger [10]. In
the same paper, Yamamoto constructed infinitely many imaginary quad-
ratic fields K such that Cκ contains a subgroup isomorphic to (Z/nZ)2.
These results were recently generalized for non totally real fields of
arbitrary degrees by Azuhata-Ichimura [1], and for totally real fields of
arbitrary degrees by Nakano [7]. To be more precise, they constructed,
for any integers m, n > 1 and r19 r2 ^ 0 with r± + 2r2 = m, infinitely many
number fields K of degree m with just rx real primes such that Cκ con-
tains a subgroup isomorphic to (Z/nZ)r*+1.

The main purpose of this paper is to prove certain relative versions
of the above results. In this direction, Naito obtained a generalization
of Yamamoto's result on imaginary quadratic fields. He constructed in
[6], for a given totally real field F, infinitely many totally imaginary
quadratic extensions K/F such that Cκ contains a subgroup H isomorphic
to (Z/nZ)2 with Hf]CF = 1. On the other hand, we obtain a generalization
of Yamamoto's result on real quadratic fields (Theorem 1). Our second
result is an analogue of Nakano's result over quadratic fields (Theorem 2).

For n = 3, 5 or 7, it was known that there exist infinitely many real
quadratic fields K such that Cκ contains a subgroup isomorphic to (Z/nZ)2

(for n = 3 by Yamamoto [11, Part II], for n = 5 or 7 by Mestre [4]).
We note that a stronger result for n — 3 was obtained by Craig [2]. Our
third result is a relative version of the above result for n = 3 (Theorem 3),
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Statement of the results.

THEOREM 1. Let F be a number field of finite degree with r2 = 0 or
1, where r2 is the number of imaginary primes of F. Then for any
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integer n > 1, there exist infinitely many quadratic extensions K/F with
the following properties:

(i) the number of real primes of F decomposed in K is 1 or 0
according as r2 = 0 or 1,

(ii) the ideal class group of K contains a subgroup H which is iso-
morphic to Z/nZ and satisfies NκίF(H) = 1, where Nκ/F is the norm map
of the ideal class group of K to that of F.

THEOREM 2. Let F be a quadratic fields m be an odd prime number
and n be an integer with n > 1. Then there exist infinitely many exten-
sions K/F of degree m with the following properties:

(i) both of the infinite primes of F are decomposed into one real
and (m — l)/2 imaginary primes in K if F is real,

(ii) the ideal class group of K contains a subgroup H which is iso-
morphic to Z/nZ and satisfies NK/F(H) = 1.

THEOREM 3. Let F be a number field of finite degree and let S be a
set of real primes of F (S may be empty). Then there exist infinitely
many quadratic extensions K/F with the following properties:

(i) a real prime of F is ramified in K if and only if it belongs
to S,

(ii) the ideal class group of K contains a subgroup H which is
isomorphic to (Z/SZ)2 and satisfies NK/F(H) = 1.

REMARK. We can impose the following additional condition on K in
the above three theorems:

(iii) for any proper subίield FQ of F, K is not a composition of F
with any extension of degree m over Fo (m = [K: F]).

NOTATION. AS usual, we denote by Z, Q and R the ring of rational
integers, the rational number field and the real number field, respectively.
For a field k, denote by &* the multiplicative group of k. For a number
field k of finite degree, denote by Okf Ck, Ek and Wk the ring of integers
of k, the ideal class group of k, the group of units of k and the group
of roots of unity contained in k, respectively. For a prime ideal p of k,
denote by Np the absolute norm of p. If Np is congruent to 1 modulo a

natural number v, denote by ί — j the v-th power residue symbol, that is,

(SL ) = mod p e

for any integer x of k prime to p. For a natural number n, ζn means a
primitive w-th root of unity.
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1. Some lemmas. Let F be a number field of finite degree, m be
a prime number and n be a natural number greater than 1. Let Sf be
the set of all prime numbers dividing n. We fix F, m and n throughout
this section. We begin with the following lemma which is easily deduced
from the theorem on elementary divisors.

LEMMA 1. Let K/F be an extension of degree m satisfying (i) Wκ = WF

and (ii) K φ F(ζm, EF

/m). Then a system of fundamental units of F is
extended to that of K.

The second lemma is a relative version of [7, Lemma 1]. Using
Lemma 1 above, it is proved by the same argument as in the proof of
[7, Lemma 1].

LEMMA 2. Let K/F be an extension of degree m satisfying the as-
sumptions in Lemma 1. Let R and r be the Z-rank of Eκ and EF,
respectively. Suppose that there exist alf , as e K* (s > R — r) satisfy-
ing the following conditions:

(i) (α<) = α? for some ideal at of K such that NK/Fai is a principal
ideal of F (1 ^ i ^ s),

(ii) alf , a8 are independent in K*/EFK*1 for all I e£f.
Then Cκ contains a subgroup H which is isomorphic to (Z/nZ)8~R+r and
satisfies NK/F(H) = 1.

We must have m — (R — r) > 0 so that we can apply the above lemma
with s = m. It is easy to see that this occurs only in the following four
cases (under the assumption that m is a prime):

(a) m — 2, F is totally real and K is totally imaginary,
(b) m = 2, F and K are as in Theorem 1,
(c) m ^ 3, F — Q and K is arbitrary,
(d) m ^ 3, F is a quadratic field and K is as in Theorem 2.

The cases (a) and (c) were discussed by Naito and by Nakano, respectively.
We discuss the case (b) in §2, the case (d) in §3. We note that m —
(R — r) = 1 in both cases.

We shall consider a number of congruence conditions in the proof of
our theorems. The next lemma will be often used for the existence of
integers of F satisfying such congruence conditions.

LEMMA 3. Let Fq be the finite field with q elements. Let d be an
integer with d^2 and g(X)eFq[X] be a polynomial of degree n^l.
Suppose that Yd — g(X) is absolutely irreducible. Put

N=#{(x,y)eFqxFg;y
d = g(x)},

Nt = §{x e Fq; g(x) = yd for some y e F*},
N2 = #{x e Fg; g(x) Φ yd for any y e F J ,
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where %A means the cardinality of a finite set A. Then we have

\N - q\ ^ (d - l)(n - l)g1/2 .

// d divides q — 1, then we have

N, ^ q/d - (2n - l)g1/2 ,

N2^(d- l)q/d - (2n - I)?1'2 .

PROOF. The first inequality is a special case of Weil's famous theorem
(the "Riemann Hypothesis for Curves over Finite Fields"). See [8,
Chapter I, Theorem 2A] and [8, Chapter II, §11]. Let NQ be the number
of xeFq with g(x) = 0, and assume d\(q — 1). Then we have No + Nt +
N2 = q, NQ + dNλ = ΛΓ and 0 5g iV0 ^ w. Hence the second and third
inequalities follow from the first one. q.e.d.

REMARK, (i) If (d, n) = 1 or g(X) has a simple root, then Yd — #(X)
is absolutely irreducible (cf. [8, p. 11]).

(ii) By Lemma 3, we have N, > 0 and N2 > 0 if q > 0.
We use Lemma 3 in this form in our later applications.

2. Proof of Theorem 1. Let F, n and £f be as in §1 and let
m = 2. Further we assume that F has at most one imaginary prime.
Following Yamamoto [11], we consider the Diophantine equation

(1) XI - ΪZ? = XI - ±Z?

and a solution in DF of the form

xx = 2tn + {(ί - a)n - (ί - b)n}/2 ,

a8 = 2ί" - {(ί - α) - (ί - δ)»}/2 ,

Si = ί(ί - α) ,

^2 = ί ( ί — &) f (d9 bfte DF, a = b m o d 2 Ό F ) .

Put D = xl- 4z?( = xl - 42?), K = F{y/Έ) and α < = (x, + i/F)/2(i = 1, 2).
We impose some appropriate conditions on α, 6 and t so that αx, a2

satisfy the conditions (i) and (ii) in Lemma 2. For each I e J*f, take two
prime ideals pltl and pitl of F which split completely in F(ζu 21/ι, Eψ).
There are infinitely many such prime ideals by Tchebotarev's density
theorem. We therefore assume that pitl (ΐ = 1, 2,1 e £?) are all distinct,
prime to 6n and have sufficiently large absolute norms. By the choice
of pίtl, we have

Npίfι = 1 mod I ,

() eeEr).
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Take two integers α, 6 of F satisfying

a Φ — b , a Ξ= b = 0 mod 2ΌF , a = b mod 3©^ ,

2an — (a — b)n/2 is an i-th power non-residue mod pltl ,
( 4 )

2bn — (a — b)n/2 is an ί-th power non-residue mod p2tl ,

a =£ 0 mod ftt, , 6 =jέ 0 mod p2>ι (I e £f) .

The existence of such integers α, b is observed as follows. For each pltl,
take any a Φ 0 mod £ l f l and apply Lemma 3 to the case d = ϊ, gr(X) =
2a71 — (α — X)72 mod t>lfl. Then the third inequality of the lemma shows
the existence of such bmoάpia. For each p2tl, repeat the same argument
exchanging a and b.

We fix such a,be£)F and take an integer t of F satisfying

t = a mod pltl , t Ξ= b mod p2fl (I e £f) ,

(ί, αn - bn) = 1 ,

(ί - α, 2αn - (α - 6)72) = 1 ,

(ί - 6, 2671 - (6 - α)"/2) = 1 .

Then the integers #*, «€ (i = 1, 2) of ί7 defined by (2) satisfy

{xiyz%) = 1 , ftjs, (i = 1,2) ,

( 6 ) Xi is an ϊ-th power non-residue mod pitl (i = 1,2),

(a?! + ί»2)/2 is a non-zero Z-th power residue mod p2>ι (I e Jίf) .

Now we assume that if is a quadratic extension of F satisfying the
condition (i) in Theorem 1, Wκ = WF and Kς£F(EF

12). Then it follows
from (3) and (6) that a19 a2 satisfy the conditions (i) and (ii) in Lemma 2
by the same argument as in the proof of [11, Proposition 2]. Hence Cκ

has a subgroup H which is isomorphic to ZjnZ and satisfies NK/F(H) = 1,
by Lemma 2.

Now we ensure the above assumptions by imposing further conditions
on t. We note that D = D(f) is a polynomial in DF[t] of the form

D(t) = 2n{a + b)?71'1 + {terms with lower degrees in t} .

Put

c = (6n)(α + b)(an - bn)(2an - (α - b)n/2)(2bn - (b - α)w/2) Π ft,A,i .

Take a prime ideal q of F which splits completely in F(EF

12), is prime to
c and has a sufficiently large absolute norm. Since 2n(a + b) is prime to
q, D(t) mod q has degree 2w — 1 and Y2 — D(X) mod q is absolutely irreduci-
ble by the remark after Lemma 3. Applying Lemma 3 to the case d = 2,
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g{X) = D(X) mod q, D(t) is a quadratic non-residue mod q for a suitable
choice of t mod #. Then D g i*7*2 and jf£ = Fiy^Ό) is a quadratic extension
of F. Moreover K is not contained in F(E]J2), since q remains prime in
K while q splits completely in F{E)!2). Since D is a polynomial in t of
odd degree, the condition (i) in Theorem 1 is satisfied by a suitable choice
of the signs of t and sufficiently large absolute values of t (for the real
primes of F). If F = Q, then K is a real quadratic field, hence Wκ =
W^ = {±1}. If i*7 =£ Q, then we take a sufficiently large prime number
p which splits completely in F and is prime to cq. Let ps (1 <; j <̂  [JF1: Q])
be the prime ideals of .F lying above p. Applying Lemma 3 again, we
see that D(t) is a quadratic non-residue mod ft and is a non-zero quadratic
residue mod pβ (2 ^ j" <; [J?7: Q]) for a suitable choice of t mod pO^. Then
it is easy to see that Wκ = WF and iΓ does not come from any quadratic
extension of any proper subfield of F.

It remains only to show the existence of infinitely many quadratic ex-
tensions K/F with the properties in the theorem. We claim that K =
F(\/D(t)) represents infinitely many such quadratic extensions as t takes
infinitely many values in £)F satisfying all the above conditions (for fixed
α, 6). Suppose Klf •• ,i£β are such quadratic extensions. Take a prime
ideal τ oϊ F which splits completely in the composition Kλ K8 and has
a sufficiently large absolute norm. By Lemma 3, we can choose t so that
x remains prime in K and K has the properties in the theorem. Then K
is not contained in JBΓj. - K8. This proves our claim, and the proof of
Theorem 1 is completed.

3. Proof of Theorem 2. We fix a quadratic field F, an odd prime
number m and a natural number n > 1. Let £f be the set of all prime
numbers dividing n We denote by τ the non-trivial automorphism of F.
If F is a real quadratic field, we fix an embedding of F into R. The
following lemma is a relative version of [7, Lemma 2] and is proved
similarly.

LEMMA 4. Let f(X) e CV[X] be a monic irreducible polynomial of
degree m, θ be a root of f(X) and put K = F(θ). Suppose there exist
prime ideals pίtι of F with Npifl = 1 mod I (1 ^ i ^ m, I e Jtf) and integers
Ajf Cj (1 ^ j ^ m) of F such that

( i ) f(Ad) = C; (1 ^ j :g m),
(ii) (/'(A,)f Cy) - 1 (1 ^ i ^ m, I e Sf\
(iii) /(0) = 0, /'(0) * 0 mod j}<fI (1 ^ i ^ m, Z e

(iv) (A) = if ( A )
^Pi I ' l ^ Pi I ' l

^m, leSf),
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(v) (-L) = 1 (εeEF, 1 ^ i ^ m,

/'(X) is the derivative of f(X). Then the m elements aό — Θ — Ad

(1 ^ j ^ m) satisfy the conditions (i), (ii) m Lemma 2.

Following Nakano [7], we try to use a polynomial /(X) which is
defined by

π V - A ^ + C* (AifCeO,)

and satisfies

(**) f(AJ = Dn for some Am, DeDF .

The following lemma is deduced from Lemmas 2 and 4.

LEMMA 5. // there exist prime ideals \>itl of F with Npi>t = 1 mod I
(1 ^ i <; m, ϊ e .SP) and integers As (0 ^ j ^ m), C, .D of F satisfying the
following conditions (C.I) through (C.ll), ίfee^ i ί = F(θ) is an extension
of degree m over F with the three properties (i), (ii), (iii) in Theorem 2,
where f{X) is defined by (*) and θ is a root of f(X).

(C.I) 1

Π
i=o

(C.2) i f (-A y ) + Cn = 0 mod t><fI (1 ̂  i ^ m, ϊ 6

(c.3) Γ Σ Π Ait π π

(C.4) (A) = l, (A) ^ i (l^j<ί£m, le(A)

(C.5) (-?-) = 1 (s e EF, l^ί^m, le

(C.6) (Ah -AitC) = lQ.£j<k£m- 1).

(C7) ( S Π (Am - Aό), D) = 1.

(C.8) /(X) is irreducible over F.
(C.9) if ΐs noί a composition of F with any extension of degree m

over Q.
If F is a real quadratic field, we add the following two conditions.

(CIO) K<£F(ζm9 η
ι/m), where η is a fundamental unit of F.

(C.ll) both f{X) and fτ(X) have just one real root.

REMARK. The conditions (C.8) and (C.9) imply Wκ = WF, since m is
an odd prime number.

First we must consider the global condition (C.I) which is viewed as
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a Diophantine equation. We use the following solution of (C.I) in OF

which is different from Nakano's and has a simpler form.

A = ™n - 1 + (t - u)n - (ί - v)n ,

Aj = w» - 1 - (t - α, )n (1 ^ i ^ m - 1) ,

Am = ww - 1 ,
( 7 )

C = (ί - w) Π (ί - α,) ,

Z> = (ί - v) Π. (ί ~ αy) (αy, ί, w, v, w 6 £),.) .

For each I e «Sf, take m distinct prime ideals pitl (1 ^ i <; m) of i*7

which split completely in F(ζu E%1). We may assume that pitl (1 ^ i ^ m,
ϊ e ^ P ) are all distinct, prime to ti and have sufficiently large absolute
norms. In particular, we may assume Nptιl > m + 1. Then the condition
(C.5) is satisfied.

Now we impose some congruence conditions modulo piΛ on aj9 t, u, v
and w so that the conditions (C.2), (C.3) and (C.4) are satisfied. Take an
integer w of F satisfying

wn — 1 is an Z-th power non-residue mod pmtl (I e

w(wn{m-ι) - 1) m 0 mod pitl (1 ^ i ^ m, I e

The existence of such w is guaranteed by Lemma 3 (apply the lemma to
the case d — l, g(X) = Xn — lmod p^)- Next we take integers aά (1 ^
"̂ ^ m — 1) of F satisfying

aά ΞΞ 0 mod £ M (1 <; i ^ m, 1 ^ i ^ m — 1, j Φ i, I e

wn — 1 — (w — a0)
n is an i-th power non-residue mod pitl ,

(w - α , ) " ^ 1 * - ^ - 1) + wn - 1 Φ 0 mod J3<tl ,

a^w mod p<tI (1 ^ % ̂  m — 1,1 G .=5̂ ) .

The existence of such α/s is also guaranteed by Lemma 3 (apply the
lemma to the case d — l, g{X) = wn — 1 — (w — X) n mod£ M ) . Take an
integer t oί F satisfying

(10) t = w mod ft>z (1 ^ i ^ m, I e

In view of (7), (9) and (10), we have

A,- ΞΞ - l m o d t > M (1 <: i ^ m, 1 ^ i ^ m - 1, i ^ ΐ,

A ΞΞ w» - 1 - (w - a,)71 mod piΛ (1 ^ ί ^ m - 1,1 e

Then it follows from (8), (9) and (11) that (C.4) is satisfied. Put
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6, = (w - at)
n(wnlm~2) - 1) + wn - 1 ,

c < = wn{m-2)(w - α,)n{l - (m - 2)AJ .

Take two integers uf v of F satisfying

(w - v)n = (1 - w n ( m - 1 } ) O - π ) n + w71 - 1 mod ί>m,z ,

(m - l)w n ("- 1 }(w - u ) n =£ 1 mod ft.,, (i 6 j ^ ) ,

(12) Alw - ^)TO Ξ bi(w - u)n + A^w" - 1) mod pitl ,

u 3= w , v ^ w mod ^<f l ,

Ci(w - ^ ) n ^ A? mod fttl (1 ^ i ^ m - 1,1 e

In view of (8), (9) and (11), we have

(1 - wn{m~γ))(wn - 1) = 0 mod pUtl (l

biAtίw" - 1) ΞΞ 0 mod pitl (1 ^ i <> m -

Hence the existence of such u, v is also guaranteed by Lemma 3. Then

it follows from (7), (10), (11) and (12) that (C.2) and (C.3) are satisfied.

Now we consider the conditions (C.8), (C.9) and (CIO). Put

fo(X) = Xm - mX™-1 + 16 Q[X] .

Since (X - l)m/0(l/(Z - 1)) = Xm - mXm~l + + m is an Eisenstein poly-
nomial with respect to m, fQ(X) is irreducible over Q, hence over F. Let
θ0 be a root of fo(X) and put Ko = F(β0). If F is imaginary, take a prime
ideal q of ί7 which remains prime in KQ. Since m is a prime number,
there exist infinitely many such prime ideals by the density theorem. If
F is real, we have K0Γ)F(ζm, ψm) = F since fo(X) has just three real
roots. Hence we can take a prime ideal q of F which remains prime in
Ko and splits in JP(ζTO, η

ι/m) by the density theorem. We may assume in
both cases that q Φ qΓ, Nq is prime to (n) Π Pi,ι a n d Nq is sufficiently
large. We may also assume that q is prime to the discriminant of fo(X).
Then fo(X) mod q is irreducible, and Xm — η mod q is not if F is real. We
impose the following condition on α/s.

(13) dj ΞΞ 0 mod qqr (1 ^ j ^ m - 1) .

Further we impose the following conditions on u, v and w.

{(w — v)wm~1}n ΞΞ wmn — mwn^~γ) + 1 mod q ,

(14) v Έ£ W mod q ,

(w — u)™™''1 ΞΞ 1 mod q .

w{wn[m~ι) - 1) Φ 0 mod qτ ,

(w - v)n + (w"**-1* - ΐ)(w - u)n = wn -1 mod qΓ ,
(15)

u ^ w f v ^ w mod qΓ ,

(m - l)wn{m-1](w - u)n Έ£1 mod qr .
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The existence of such u, v, w mod qqΓ is guaranteed by Lemma 3. If t
satisfies

(16) t ΞΞ w mod qqΓ ,

then it follows from (7) and (13) that

Aj = — 1 mod qqΓ (1 ^ j ^ m — 1) ,

Ao ~ wn — 1 + (w — u)n — (w — v)n mod qqΓ ,

C ΞΞ (w — u)wm~1 mod qqΓ .

Hence we obtain

In view of (14) and (17), we have f(X - 1) = fo(X) mod q. Hence f(X) is
irreducible over F, that is, the condition (C.8) is satisfied. In case F is
real, f{X) mod q is irreducible while Xm — η mod q is not. Hence (CIO)
is satisfied. In view of (15) and (17), we have /(0) ΞΞ 0, /'(0) =έ 0modqΓ.
Hence qτ splits in K while q remains prime in K. Hence (C.9) is satisfied.

Now we consider the conditions (C.6) and (C.7). We impose the
following condition on a/a, u and v.

(18) u ΞΞ v ΞΞ αλ ΞΞ . . . ΞΞ αm^ ΞΞ 0 m o d p

for all prime ideals p of F with Np ^ m + 1. This condition is consistent
with the other ones, since Npi)t and Nq are sufficiently large. If t satisfies
(10) and (16), then it follows from (8), (9), (12), (14) and (15) that CD is
prime to qqτ Π fo.i Now we fix u, v, w and α/a satisfying (8), (9), (12)
through (15) and (18). Then f'{As) is a polynomial in t, so we write it as
f(A3)(t) (1 ^ j ^ m). It is clear that there exist infinitely many teDF

satisfying (10), (16) and the following condition (19).

(ί - u, f\A3.){u)) - 1 (1 ^ j ^ m - 1) ,

(19) (t - v, f\Am){v)) - 1 ,

(* — α*> f'(A/)(αd) = 1 (1 ^ i ^ m — 1, 1 ^ i ^ m) .

If £ satisfies (10), (16) and (19), then the conditions (C.6) and (C.7) are
satisfied.

It remains only to ensure the condition (C.ll) in case F is real. We
claim that (C.ll) is satisfied if t and tτ are sufficiently large. In general,
we consider a polynomial h(X) e R[X] defined by

L / γ " \ T T /V" Z ? N _ L 7 " (~Q T r* T>\

rl\j\. ) — J[J[ \Λ. — JDA) -f- JLJ \-DJ9 J^ b tt) .

We may assume Bo ^ Bλ <; ^ Sw_i. Since m is odd, we see from the
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graph of Y = h{X) that h(X) has just one real root if the following
inequality holds.

(20) Max) Π1 \x - Bs\; Bo ^ x ^ Bm_\ < \L\ .

If Bk <; x <; jBfc+i, then we have

\x - Bk\\x - Bk+1\ ^ \Bk+1 - Bk\>/4 .

This inequality and trivial estimates yield

(21) Maxff f \x ~ Bά\; Bo ̂  x ^ Bm_X ^ \Bn^ - J?0|-/4 .
v i=o

We return to our case. Inview of (7), we see that Ao is a polynomial in
t of degree n — 1, A3 (1 ^ j ^ m — 1) are of degree w with leading
coefficient —1 and C is monic of degree m. Hence we have

(22) lim|( Max Ad) - ( Min ^ ) | m / | C n | = 1 .

The same holds if we replace Ajf C and t by their conjugates. If we let
t and tτ be sufficiently large, then the inequality (20) holds for h(X) =
f(X), fτ(X) by (21) and (22). This proves our claim.

We have just proved the existence of at least one extension K/F of
degree m satisfying (C.I) through (C.ll) for any given natural number
n. By Lemma 5, such a K/F has the properties in Theorem 2. Then
there exist infinitely many such extensions because of the finiteness of
class numbers. This completes the proof of Theorem 2.

4. Proof of Theorem 3. Let F be a given number field of finite
degree. We prove Theorem 3 by the same method as in the proof of
[11, Part II, Theorem 2]. We need the following lemma.

LEMMA 6. Let a, b be integers of F such that f(X) = X* — aX + b
is irreducible over F. Let L be the splitting field of f{X) over F and
put D = 4α3 - 2762, K = F(yΊX). If (α, 36) = 1 and Dgί 7* 2, then L/K
is an unramified cyclic extension of degree 3 and GSL\(L/F) is isomorphic
to the symmetric group Ss of degree 3.

This lemma is well-known. For example, see Honda [3]. Put

αx = tB + 9ί a2 = tf -9t

&! = «* + 2? + 27 , b2 = t" - 2f + 27 ( ί G F) '

For i = 1, 2 set /^X, t) = X3 — ajί + 6<β Then the two polynomials
, t) and /2(X, ί) have the common discriminant

D(t) = 22ί9 - 33ί8 - 2233ίβ + 223δί5 - 2 SΨ - 39 .
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By a simple computation, we see that D(t) has no multiple roots as a
polynomial in t. Hence the affine curve Y2 = D(X) has genus 4.

Let t0 be a rational integer satisfying

(23) t0 Ξ 1 mod 3 , ί0 Ξ 0 or 4 mod 5 , t0 = 3 mod 7 .

Then we have D(t0) = 2 or 3 mod 5. Hence Iζ, = Q(i/jD(t0) ) is a quadratic
field. Further we have

fx{X, t0) = X{X - 1)(X - 2) mod 3 ,

f^X, to) = X3 - 5X + 1 mod 7 (irreducible over F7) ,

/2(X, to) = X3 - X - 1 mod 3 (irreducible over F3) .

Hence both fx(X910) and /2(X, t0) are irreducible over Q and have the
Galois group isomorphic to S8. Let Li>0 be the splitting field of ft(X, t0)
over Q (i = 1, 2). Then we have L l t0 =£ L2>0 by the above congruences.
Hence Gal(Llf0L2f0/-Ko) ίs isomorphic to (Z/3Z)2. Since the affine curve
Y2 = D(X) has genus 4, there exist only a finite number of integral
points on the curve in a fixed number field of finite degree by SiegeΓs
theorem (cf. [9]). Hence, for infinitely many values of t0 satisfying (23),
Ko represents infinitely many quadratic fields. On the other hand, we
see easily that a prime number p is ramified in each subfield (ΦQ) of
LML2)0 if v is ramified in Ko. Hence we have LltOL2)o Π F = Q for a
suitable choice of t0. We fix such a t0. By the density theorem, we can
take two prime ideals plf p2 of F such that the decomposition field of pt

for Llf0L2>QF/F is Li>0F (i = 1, 2). We may assume that Npt is prime to
D(ί0) (ΐ = 1, 2). Then we have

flX, t0) mod pt splits completely ,
(24)

ft(X, to) mod pj is irreducible (i, j = 1, 2, i ^ i) .

Take a sufficiently large prime number q which splits completely in F
and is prime to SOiVftiVft,. Let q̂  (1 ^ j ^ [F: Q]) be the prime ideals of
F lying above g. By Lemma 3, we can take an integer t of F satisfying

D(t) is a quadratic non-residue mod qx ,

D(f) is a non-zero quadratic residue mod q3- (2 ^ j ^ [F: Q]) ,

(25) t = t0 mod pjfo ,

t Ξ 4 mod 6DF ,

(t - 1, 5) = 1 .

Then K = F(\/D(t)) is a quadratic extension of F. Moreover K does not
come from any quadratic extension of any proper subfield of F. Let Lt

be the splitting field of ft(X, t) over F (ί = 1, 2). In view of (24) and
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(25), we have

(26) GΛ\(LJF) = S3 , (α<f 36,) = 1 (i = 1, 2) , LλΦL2.

By Lemma 6 and class field theory, (26) implies that the 3-rank of CK is
greater than or equal to 2, where Cκ = Ker(Nκ/F: Cκ —> CF). Hence Cκ has
a subgroup H which is isomorphic to (Z/3Z)2 and satisfied NK/F(H) = 1.
Since D(t) is a polynomial in t of odd degree, the condition (i) in Theorem 3
is satisfied by a suitable choice of the signs of t and sufficiently large
absolute values of t for the real primes of F. Finally, since the affine
curve Y2 = D(X) has genus 4, for infinitely many values of t satisfying
(25) and the above condition on the signs of D(t), K = F(\/D(t)) represents
infinitely many quadratic extensions with the properties in Theorem 3 by
SiegeΓs theorem. This completes the proof of Theorem 3.
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