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0. Introduction. One of the long-standing questions in complex
differential geometry is the following: given a compact complex connected
manifold V with ¢(V) >0, can one find a simple criterion for the
existence of an Einstein Kahler metric on V? At present, there are no
definitive answers, but in view of the partial results recently obtained
by Sakane and Koiso, the following conjecture of Futaki [3] seems to
be reasonable.

(I) GENERALIZED CALABI'S CONJECTURE (FUTAKI). Suppose that the
tdentity component Aut’(V) of the group of holomorphic automorphisms
of V s a reductive algebraic group. If the Futaki invariant vanishes
for each holomorphic vector field on V, then V admits an Einstein Kdahler
metric.

On the other hand, as a characterization of Einstein Hermitian vector
bundles on compact Kahler manifolds, S. Kobayashi [5] posed the
following:

(II) KOBAYASHI'S CONJECTURE. Let E be an indecomposable holomor-
phic vector bundle on a compact Kahler manifold W with Kahler metric
do- Then E admits an Einstein Hermitian metric if and only if E is
stable (in the sense of Mumford-Takemoto) with respect to g,.

Recently, Donaldson [2] solved (II) for the case where W is a projec-
tive algebraic surface. One crucial step in his proof is the construction
of a non-linear functional » from the set of all Hermitian metrics on F
to the real numbers such that (1) any critical point of )\ is exactly an
Einstein Hermitian metric on E and that (2) A is bounded from below if
and only if E is semistable with respect to g,.

Although (I) and (II) look quite different, there is some link between
these conjectures. Actually even for (I), the same procedure as in
Donaldson’s work can be carried out to a considerable degree as follows:

Fix a Kihler form @, =1"—1 3, 9.3d2*A dz’ on V. In this introduction,
we assume for simplicity that w, represents 27c,(V)z. We denote by 2#~
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the set of all Kahler forms on V cohomologous to w,. Let f, be a real-
valued C~-function on V which is uniquely determined, up to constant,
by the equation

30 log det(g,5) — 3. g.5d2* A dz? = 64f, .

The main purpose of this paper is to prove the following theorem an-
nounced earlier in [6].

THEOREM. There exists a mapping p: % — R satisfying the follow-
g conditions:

(i) An element w of 2 1is a critical point of p if and only if @
18 an FEinstein Kdahler form, (cf. §3).

(ii) Let Y be a holomorphic vector field on V, and w be an element
of % Put Yeo:=Y+ Y and y,:=exptYr for tc R. Then py*w) is
a linear function in t. Namely for every t,

Luyra) = | Yufdor[| oi,

where the right-hand side is the Futaki invariant of V corresponding to
the holomorphic wvector field Y, (cf. §5).
(iii) If o is a critical point of t, then the inequality

%p(emm >0

holds for every smooth path {6, —e <t < e im 2 such that 6, = w,
(cf. §6).

This p: 2 — R is called the K-energy map of the Kahler manifold
(V,w,), In view of (i) and (ii) above, one can easily see that if

(Yrfo)wr # 0 for some holomorphic vector field Y on V, then g cannot
14
have a critical point, i.e., X does not admit any Einstein Kahler metrie,
which gives another proof of a fundamental theorem of Futaki [3].

Furthermore, (i) and (iii) above give us some indication that Conjecture
(I) can be weakened in the following more plausible form.

(III) CONJECTURE. Suppose that Aut(V) is a reductive algebraic
group. If p is bounded from below, then V admits an Einstein Kdhler
metric.

Several supplements to this paper can be found in [7]. In a forth-
coming paper (cf. Bando and Mabuchi [1]), we shall show the following
theorem.

THEOREM. Let & be the set of all Einstein Kdhler forms in 2%, and
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" be the set of all we 2 with positive definite Ricei tensor. Assume
that & + @. Then

(i) the restriction plo+: 2+t — R is bounded from below, and pt|+
takes its absolute minimum on .

(ii) For any w, and w, in &, there exists an element g of Aut’(V)
such that g*w, = ,.

We shall also give several generalizations of g in the latter paper.
I wish to thank all those people who encouraged me and gave me
suggestions, in particular Professors S. Kobayashi and H. Ozeki, and
Doctors S. Bando, I. Enoki and R. Kobayashi, who helped me again and
again during the preparation of this paper. Thanks are due also to the
Max-Planck-Institut fir Mathematik for the hospitality and constant
assistance all through my stay in Bonn.

ADDED IN PROOF. I am very grateful to the referee for several
improvements of §5.

1. Notation and Convention. Throughout this paper we fix an
arbitrary n-dimensional compact Kahler connected manifold X with Kahler

form w, =1"—1 3, 9.5dz* A dz* written in terms of holomorphic local
coordinates (2!, 2% -:-,2"). Let

¢ := {w|Kahler forms on X which are cohomologous to w, in H*(X, R)} .
For each element w =1"—13 g(w),;dz* A dz¥ of 9%, we denote by
S R(w),5dz* @ dz* the corresponding Riceci tensor. We put R(w):=
V_——IZR(_aL),,gdz“ A dz?. Then R(w)/2r represents ¢,(X). and we have
R(w) =1V —13d0log det(g(®),5). Furthermore, let o(w) (resp. [].) be the
corresponding scalar curvature (resp. Laplacian on functions):
o(@) := 2 9@ R(@)az » o= 3 9(@)"52°92% ,
where (g(w)*) is the inverse matrix of (9(w),5). For each real valued
C=-function @ € C*(X)z on X, we put w,(@) = @, + ' —1 9@, and let
= {peC(X)r|wy(p)e %7} .
Note that the natural map
H — K, P wfP)

is surjective. For each @ € 57 the corresponding [,.), 0(@«(®)), R(w(®)),
R(@(P)atr 9(@o(P)eis 9(@o(P))** will be denoted simply by [y, a(p), E(p),
R(P)asy 9(P)ass 9(@)*, respectively.

DEFINITION (1.1). A one-parameter family {p,|a < t < b} of functions
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in C~°(X)g is said to be smooth (or a smooth path) if the mapping
[a,b]x X —> R, (t x)— @,(x)
is C=. We then put ¢,:= dp,/ot and &, = &p,/dt"
DEFINITION (1.2). We define the real constants ) and v by

Ni= 2n7t§ cl(X)wa'“/S W, y:=\/n.
X X

Furthermore, to each @ € C*(X)s, we associate an (n, n)-form V() on X
as follows:

V@)= oorf] .

This is so normalized that S Vi) = 1. Moreover, if ®, represents
p.q
2me,(X)g, then \ = n.

DEFINITION (1.3). Let (2%, 2% ---, 2*) be a system of holomorphic local
coordinates on X. For every feC=(X)z, we use the following notation:

Jei1=0uf, fa:=0zf, fasi=0.05f, Ja3:= 0205f,
Ja7 1= 0.05F , Sapy 1= 0.0407f, + -,
where we denote by 9, (resp. 0z, 95 07, 07) the operator d/dz* (resp.

/027, 3/028, 8/02%, 3/0z"). Our notation is slightly different from the ordinary
one, because for instance, f,; is not V7, f.

2. Basic Constructions. This section is crucial in the construction
of the K-energy map p. We shall introduce the mappings

L: CM(X)RX Cw(X)R —R ’ (Cf- (25)) ’
M. s¥Fxs¥ —R, (cf. (24),

where the latter immediately defines g, (ef. (2.7), (3.1)). Although the
functional L is not essential in later sections, it none-the-less plays an
important role in our forthcoming papers (cf. Mabuchi [7], Bando and
Mabuchi [1]).

DEFINITION (2.1). Let & be a non-empty set and A be an additive
group. Then a mapping N: ¥ x.& — A is said to satisfy the 1l-cocycle
condition if

(i) N(oy, 0,) + N(o, 0,) = 0 and

(ii) N(oy o) + N(oy 05) + N(gs, 0) =0
for all gy, 0., 0;€ .S
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DEFINITION (2.2). For every (¢', ¢”") € 57 x 57, we define real numbers
L(¢', "), M(#', ") by

2.2.1) L@, 9" := | (] 2Viea)at

(2.2.2) M@, ) i=— | {|_osotp) - nViplat,

where {p,|a <t < b} is an arbitrary piecewise smooth path in 57 such
that @, = ¢’ and @, = @".

THEOREM (2.3). L(¢', ") above is independent of the choice of the
path {p,|la <t < b} and therefore well-defined. Moreover,
(2.3.1) L satisfies the 1-cocycle condition, and
(2.8.2) L(p,, ¢, + C) = L(p,, ;) + C for all ¢,, ¢, and all CER .

THEOREM (2.4). M(¢', ") above is independent of the choice of the
path {p,|a <t < b} and therefore well-defined. Moreover,

(2.4.1) M satisfies the 1-cocycle condition, and
(24.2) M, + C, @, + C) = M(p,, p,) for all ¢, ¢, and all C, C,€ R.

PrOOF OF (2.8). Let w(s, t):= sp, for (s, t)€[0,1]x[a, b]. Since
{p.la £t < b} is piecewise smooth, there exists a partition a = a, < a, <
a, < +++<a,=0b of the interval [a,b] such that {p,la,_, <t =Za;} is
smooth for each 2¢{1,2, ---, 7}

Step 1. We shall first show that

ay . 1 P
G N (1, ovipo)a = § (1, ZEvien s

t=a

t=a;—1

A

71
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FIGURE 1.
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Let (s, t) : = (SX (@/65) Vi()ds) + (L (@9/3t) V() )dt. Then in view of

Figure 1, we have

far=],r=$1,7
-, vl (s

Therefore the proof of (x), is reduced to showing d¥% = 0. By routine
computations, we have

ar = at A ds | {-2(2v) - 22 vn))
T ] (5C8) « oA i

=v=Tat nds| {—o(2L) A 5(2L) - 5(ZE) A o(2L))

A no= | ws
=0.
Step 2. Adding up the equalities (), (¢ =1,2, ---, r), we obtain

[ vt - () rvme]

b
This shows that S (S <,DtV(¢>t))dt is independent of the choice of the path

{p;la =t =b}. (2.8.1) is also immediate. For (2.3.2), let 4, := @, + tC
(t€[0,1]). Then in view of (2.3.1),

L@y @+ C) = Lipy ) = Lipu 2.+ O) = | | CVipoat =

REMARK (2.5). The above proof is valid even in the case (¢’, ¢")e
C*(X)rXC>(X)r. Hence L naturally extends to a functional on C=(X), X
C=(X)g. This extended functional (denoted by the same L) can still be
defined by (2.2.1) and satisfies (2.3.1) and (2.3.2).

For the proof of (2.4), we need the following Lemma:

LEMMA (2.6). Suppose that a two-parameter family {y(s, t)| (s, t) €
[0, 1] x[a, b]} of functions _’in 57 18 smooth in the sense that the mapping

[0, 1]x[a, b)]x X — R, (s, ¢, x) > (y(s, t))(x)
18 C*. Then there exists a unique C*-function F = F(s, t, x) € C([0, 1] x
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[a, b] X X)r such that

(i) oF/os = —(dy + v)(9v/0s),

(ii) oF/ot = —(Ly + »)(@v/ot),

(i) Flun=0w =0 tn C(X)r, and

(iv) R(y) — vo(y) = R(w,) — vw, + V' —143F,

where we put ®, := @,(y(0, a)).
Proor. Using the notation in (1.3), we have

(2.6.1) (0/0t)([(y(0vr/0s)) — (_5/58)(D¢(3~Ir/3t)) )

= (0/at)(>. gg«lf)"’(aﬂlr/as)ﬁ) - (0/08)(32 () *P(0/0t) 4z)

= =3 {gW)H18)sz0 ) (04105)3)

+ 23 {9()*7(0/38)159 (1) (0/0t) sz }

=0.
Hence (0/0t){(Cy + v)(04/08)} = (0/0s){((Ty + v)(@v/6t)}. Therefore there
exists F(s, t, x) € C=([0, 1] X [a, b] x X) satisfying (i), (ii) and (iii). For (iv),
we first observe that it is true for (s,t) = (0, a). We now have

(2/0)(R() — veon(a) — (3/05)0/ =1 93F)
=V —1{30([J(34/3s)) — 30(vd/ds) — d0(0F/ds)} = O .

Similarly, (8/0t)(R(y) — vwy(y)) — (8/6t)(V —160F) = 0. Hence we obtain
@iv).

PROOF OF (2.4). Let (s, t) := sp, for (s, t) €[0, 1]X[a, b] and ¥(s, t)
be the 1-form

(1, 2w —nviwn)ds + (| -2t — v Vi)t

Then similar to the proof of (2.3), that of (2.4) except the equality (2.4.2)
is reduced to showing d¥ = 0.

Step 1. By Lemma (2.6) applied to our ¥, there exists a function
F =F(,t x)eC~(0, 1] x[a, b]X X)r satisfying the equalities (i)~(iv).
First by (iv),

w(R(@) — vogo =[]

= n(RO) — vwop) — V' =1 aémwowf)"-‘/ [ s

= (0(y) — N — [y F) V() .
Therefore, introducing the 1-form @ defined as
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fas L n(R(@y) — »wo)%“fwo(«/r)"‘l +dt Sx n(R(@q) — »wo)aa—“fwow)n-l} / Sx o3,

we obtain

v=—-o-(| L Vi) )ds — ({, 2 (B Vi) )dt

= —o— (| (02 rvin)is - (| (D ZE)Fvien it

Hence d¥ = —d® + Ids A dt, where the coefficient I is

) (@3E)rve) - | 705 )Fviw).

In view of the identities oV (y)/0t = [y(0/0t) Vi(y) and o Vy(y)/0s =
[(Jy(04r/08) Vo(ap), (2.6.1) above combined with (i) and (ii) of (2.6) yields

1= (0v2)Lwvim - | (3:2L) 2 F Vi)

= | A(O) (-0 % - %) + (O ) (D) | Vi)

S AEATEE -5+ (B FRESE) v

=0.

Thus, we obtain

dW:—d@:dS/\dtS n(R(w)—»w)(W o _ oy " ( ) )/S

s ot ot 95
=1/—_1ds/\dtgxn(n—1)(R(wo)—»wo)(—%aa(%’)—"alé’aa(%“—g))wo(«w / SX o3

=/ "ds A dtS nn — 1)(R(@,) — vo,)

oy oy oy 3w/f /
*(3(5E) n a(5E) + o(55) A 3(5E) Joswr = o
=0.
Step 2. We shall finally show (2.4.2). Since M(p, + C, @, + C,) —
M@, ) = M(p;, 9.+ C))—M(p, p,+C), it suffices to show M(p, p+C)=0
for all @ and C. Let «,:= @ + tC, t€[0,1]. Then

M@, 9 +0) == (| coe) - nvia)i=o.

The proof of (2.4) is now complete.
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2.7) In view of (2.4.2) above, M: ¥ x5¥ — R factors through
¥ x 2%. Hence we can define a mapping M: 52 X % — R (denoted by
the same M) satisfying the l-cocycle condition by

(2.7.1) M, 0") := M(¢', "), for all o', 0" € 5%,

where @', " are functions in 5# such that w,(9’) = ®' and w,(¢") = @".
We now put 5% := {pe#|L, ) = 0}. Then the restriction of the
mapping @ € 57 — w(p) € 7% to 5%, is an isomorphism:

= T, P wl(p) .

Hence we can regard .2¢" as the subset 5%, of 5#. By this identification,
the mapping M: 5% x 2% — R defined just above coincides with the
restriction to 5%, x 5% of the original mapping M: 57 X 5 — R.

A one-parameter family {w,|a < t < b} of Kahler forms in .22 is said
to be smooth (or a smooth path) if it forms a smooth path in C=(X); via
the identification .= 57,

3. K-energy maps and their critical points.

DEFINITION (3.1). Let p: 2" — R be the mapping which associate, to
each we€ 2, the real number p(w):= M(w, ®), (cf. (2.7)). This p is
called the K-energy map of the Kahler manifold (X, w,). For every
@ e 27, uw,(p)) will be denoted by () for simplicity.

We write the above p¢ sometimes as p,, because it depends on the
choice of w,. If we replace the original w, by another w, cohomologous
to w, then the difference between , and p,, is just a constant. In
fact, for all we o

#mo(m) - #wé(w) = M(C!)o, CD;)
which is independent of we 2. In particular every eritical point of #,,
is, at the same time, that of oy and vice versa. Hence “critical points

of ¢” have an intrinsic meaning in the sense that they depend only on
X and on the cohomology class of w, in H"'(X, R).

THEOREM (3.2). Let p: 2 — R be the K-energy map of the Kdahler
manifold (X, w,). Then for an arbitrary element w of 9%, the following
are equivalent:

(i) o is a critical point of L,

(ii) w has a constant scalar curvature,

(iii)  has the constant scalar curvature .

PROOF. Let {p,|—e <t < ¢} be a smooth path in 5# such that
(@) = w. Then by (2.2.2) and (2.7.1),
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L @@l = | Phinsto@) = 0| oz,

which shows the equivalence of (i) and (iii). Thus the proof is reduced

to showing that (i) implies (iii). Since S (o(w) — N)w™ = 0 for every
X

w € 2%, the required implication is now immediate.

DEFINITION (3.3). A compact complex connected manifold with ample
anticanonical bundle (or equivalently, with ¢, > 0) is called a Fano
manifold. Differential-geometically, a Fano manifold is a compact com-
plex connected manifold which admits a Kahler metric with positive
definite Ricci tensor, (cf. Yau [8]).

THEOREM (3.4). Suppose that X is a Fano manifold and further-
more that w, represents 2mc,(X)z. Consider the K-energy map p: ¢ — R
of the Kahler manifold (X, w,). Then for an arbitrary element @ of
57, the following are equivalent:

(i) o s a critical point of p,

(ii) o s an Einstein Kdahler form,

(iiil) ® 18 an FEinstein Kdahler form with the constant scalar
curvature n.

PrROOF. Note that A is n, (ef. (1.2)). Since X is a Fano manifold,
every Kahler form of constant scalar curvature in the cohomology class
2nc,(X)r is an Einstein form. Then (3.4) is straightforward from
Theorem (3.2).

4. Another interpretation for the K-energy map. Recall that .o
is naturally identified with the subset 5% of 5%, (ef. (2.7)). In this
section, another interpretation for the K-energy map p(: 54 (=) — R
of (X, w,), (cf. (8.1)), will be given. We shall actually show the
following:

THEOREM (4.1). For each @ € 5%, there exists a unique function
[, € C*(X)r (depending smoothly on @) such that

4.1.1) ol@)— N = "ofos
(4.1.2) Sxf¢ Vi) =0 if ¢ = 0 in C*(X)a, and

(4.1.3) ‘;T(f"" —ky,) = —(y, + V)P, Sfor every smooth path {p,la <t < b}
m S,
where for each € 57, we denote by ky the fumction in C*(X)x defined
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by
D’ﬁ‘k% = (R(w,) — vw,) A\ ’I‘b(l)o("l")"_l/c”o("r”’)n and

S} kyw? =0 .
x

COROLLARY (4.2). Suppose that X is a Fano manifold and further-
more that w, represents 2mwc,(X)z. Then to each @ € 5%, we can uniquely
associate a function f,€C*(X)r (which is the same one as in (4.1)) such
that

@4.2.1)  o@) — n=ufp ie., R®) — of@) =V —133f,,

“22) ) =—| LVip) and
(4.2.3) -gt—f”‘ = —([y, + 1)@, for every smooth path {p.la <t <Db} in
At
In view of (4.2.2), the construction of f, is crucial to our approach.
The key in the definition of f, is the following:

DEFINITION (4.8). For each pair (', ¢"") € 57 x 5%, we define a func-
tion H(9', ") € C=(X)r by

b
@3.1) H@', 9")i= = @b, + vt ,
where {p,|la <t < b} is an arbitrary piecewise smooth path in 5# such
that @, = ¢’ and @, = @".

THEOREM (4.4). H(p', ") above is independent of the choice of the
path {p,la <t < b} and therefore well-defined. Moreover,

(4.4.1) H: 57 x 57 — C>(X)r satisfies the 1-cocycle condition, and
(4.4.2)  {R(@) — vo (@)} szp =V —160H(®', ") .

ProOF. In view of the proof of (2.3), we may assume that
{p.la <t < b} is a smooth path. Let (s, t) := sp, for (s, t) €[0, 1] x[a, b].
Then by Lemma (2.6), we obtain a C=-function F{s, ¢, z) € C=([0, 1] X
[a, b] X X)r with the properties (i)~ (iv) of (2.6). For each (g, 7) €[0, 1] X
[a, b], we set F,.:= F|,y=w.n- Then by (i),

1
F= Fop= = Opun + s .

On the other hand, by (ii) applied to the cases s = 0.and s =1,
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F,=F,,,

Fio=Foo= = @b, + vt .
Combining the three equalities obtained just above, we have

b 1
-\ @+ vt = F - Rtz = = Qe + vipadsliz:

The proof, except that for (4.4.2), is then straightforward. For (4.4.2),
applying (iv) of (2.6) to the cases (s,t) = (1, a), (1, b), we now conclude
that

{R(p) — v (@}$zt: = V' =133(F,, — F.,) = V' —100H(¢', 9") .

We shall now define f, for each ¢ € 52 and then proceed to the
proof of (4.1) and (4.2).

DEFINITION (4.5). (i) For each @€ 5%, we define f,eC=(X)z by
Jo 1=k, + H(O, ®).

(ii) For each we 7] let f,€C”(X)r denote the function f,, where
@, is the unique element of 5% such that w = w,(p.).

PrOOF OF (4.1). Since the uniqueness is easy, it suffices to show
that f, defined in (4.5) satisfies (4.1.1)~(4.1.8). First, (4.1.2) is obvious
from our definition of f,. We next observe that (4.1.3) is an immediate
consequence of (4.3.1). For (4.1.1), we apply (4.4.2):

R(@) — vo(@) = R(w,) — v, + V' —100H(0, p) .
Taking the wedge product with nw,(®)"!, and then dividing both sides
by w,(®)", we finally obtain
o(@) — » = (ke + HO, @)) = o fy -
PrROOF OF (4.2). Since R(w, and w, are cohomologous, we have
k, = f, for every @€ 5%, where f,eC*(X)r is the function defined by
the conditions S fiwr =0 and R(w,) — w, =V —10df,. Since (4.2.3) is

then obvious froirﬁ (4.1.3), the proof is reduced to showing (4.2.2) for f,
defined in (4.5). Fix an arbitrary @ € 5%, and we put 4, := to — L(0, tp),
te[0,1]. Note that {4,|0 < ¢ < 1} is a smooth path in 5%, connecting 0
with . In view of (4.1.2), the proof is further reduced to showing

L sery) = =L Fr Vi

for every t€[0,1]. We can now finish the proof by the following
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computation:

_% Sxfm Vilops) = Sx (Op, + v) Vi) — SX Fo (O V(o)
= —|_m@dovir = | ©ow) - ViV = gf“("") ,

5. Futaki invariants as derivatives of the K-energy map. Let
Aut(X) be the group of holomorphic automorphisms of X, and let Aut’(X)
be its identity component. For each holomorphic vector field Ye
I'X, o(T(X))) on X, we put

YR = Y -+ ? ’

and we later consider the corresponding one-parameter group ¥,:=
exptYg, (te€R). For each we 5% let f,e C=(X)r be the function defined
in (4.5). Recall that

o) — x=[lfo, (cf. (4.1.1)).

Then a fundamental theorem of Futaki [4] states the following:

(6.1) For every YelI(X, (T(X))), the real number Cy,:=
Sx (Y,,fa,)co"/s w? does not depend on the choice of w in 2% but depends

possibly on tZe Kahler class 2. (Therefore Cy, will be denoted by
Cy,ox)

(6.2) If there exists a &€ 2% such that (X, @) is a Kahler manifold
of comstant scalar curvature, then Cy o = 0 for all YeI'(X, 2(T(X))).

The main purpose of this section is to show that the first derivative
of the K-energy map #: % — R along each orbit {y*w|t € R} of the one-
parameter group {¥.}.cx is nothing but Cy ,. Using this fact, we shall
give another proof for both (5.1) and (5.2). In a subsequent paper (cf.
Bando and Mabuchi [1]), a thorough study of these properties will be
given in a more general situation.

THEOREM (5.3). Let Y be an arbitrary holomorphic vector field on
X. Then for all teR and we %

Lyo) = pw) + tCy .o .

PROOF. For each t € R, there exists a unique function @, € 54, such
that y*® = w,(@,). For simplicity, we write y¥w and f,;, as o, and f,

respectively. We furthermore put V:= Sx w/n!. Note that
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Ly, = -a-t—w, =1"—1809, .

Since 0 = L Ly (fiw}) = SX (Yrfdw? + nv =1 Sxfth'“ A 00¢,, we have,
for every te R,

Crw = | (Yafdotn1 V) = =V =T fuor A 300 J(n1 V)
=v=1 Sx of. A\ 0P, A @ Y((m — 1)1 V) = A/ V)@, 0P 12 x,0p)

= — UV Ceo Piran = = | _dal@) = N Vi2)
= dp(w,)/dt ,
from which the required equality immediately follows.

PROOF FOR (5.2) IN FUTAKI’S THEOREM WITH (5.1) TAKEN FOR GRANTED:
By Theorem (3.2), p: 9% — R has a critical point at @. Hence, for an
arbitrary Y e H'(X, 2(T(X))),

Cyrr = 'd;dt‘#(?/?(b)lmo =0.

DEFINITION (5.4). To our Kahler class 9%, we associate the closed
subgroup G, of Aut(X) as follows:

Gr:={gcAut(X)|g*2% = % (DAut'(X)).
LemMMA (5.4.1). If geG., then M(g*w, 9*w,) = M(w, w,) for all
,, W, € 4.

PROOF. Let {p,|a <t < b} be a smooth path in 5# such that w, =
w(p,) and w, = w,(p;). Note that, by geG.,, we can write g*w, as
@y(+,) for some +, € 57, In view of the identities g*w,(®,) = Wy (v, + g*P,)
and g(9*w(®,) = g*o(p,), we obtain

b .
Mg*w, g*0) = —| {|_g*po@ e — Ng* Vi)t

_ —HL Po(@) — N) V0(¢,)}dt = Mo, ) .

DEFINITION (5.5). We define the mapping m: G» — R, by
ma(9) := exp(M(w, 9g*®)), (wWe %),

where R, denotes the multiplicative group of positive real numbers.
Since M satisfies the 1-cocycle condition, Lemma (5.4.1) above assures
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that m.(g) is independent of the choice of w. (This independence obvi-
ously gives us a very simple proof of (5.1).)

For ¢,, 9.€ G and we 9%, we have
log(m(9.9,) = M(w, (9.9,)*®) = M(w, gfw) + M(g¥w, 959 w)
= log(mx(g,)) + log(m(g,) , ie., Mmx(9.9,) = ms(g)M(9,) .

Recall that the identity component of G, is Aut’(X), and hence
H'(X, 2(T(X))) is naturally regarded as the Lie algebra of G,. We
can now interpret Theorem (5.3) as follows:

THEOREM (5.6). m4:G,— R, 18 a Lie group homomorphism.
Moreover the corresponding Lie algebra homomorphism (M. )y:
HY(X, 2(T(X))) — R 1is the “Futaki invariant” of 9%, t.e., (my)(Y) =
Cy o for all Ye H(X, 2(T(X))).

COROLLARY (5.6.1) (cf. Futaki [3; (2.2)]). m. is trivial on [Gx, G5].

We conclude this section by showing the following group-theoretic
analogue of (5.2).

THEOREM (5.7). (i) Suppose that the “Futaki invariant” of 9%
vanishes (i.e., (My), = 0). Then m, 18 trivial, whenever wy(Gs):=
G /Aut’(X) is finite.

(ii) Assume that X is a Fano manifold (where it is mot mecessary
to assume that w, represents a specific class such as 2mwe,(X)r). Suppose
furthermore that there exists a Kdahler form &€ % of constant scalar
curvature. Then m, s trivial.

Proor. (i) Since z,(G.) is finite, each g € G, satisfies g€ Aut’(X)
for some positive integer a = a(g). On the other hand, (ms), =0
implies Aut’(X)cKer m. by Theorem (5.6). We now have m,(9)* =1,
from which m,(g) = 1 immediately follows.

(ii) Since X is a Fano manifold, there exists an re€Z (r > 1) such
that the line bundle K3 is very ample. In particular, Aut(X) is regarded
as a closed (algebraic) subgroup of PGL(N; C) = Aut(P(H (X, Z(Kz")))),
where N = (X, ©(K%")). Hence the subset 7,(G,) of the finite set
w(Aut(X)) is also finite. Furthermore, by (5.2), we have (m.), = 0.
Applying (i) above, we conclude that m, is trivial.

6. The second variation formula for K-energy maps. Throughout
this section, for simplicity, we assume that X is a Fano manifold with
a Kahler form w, = V' —13, g.5dz* A dz? representing 2me,(X)x, (cf. §1).
We furthermore fix a smooth path {p,|a <t < b} in 5~
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We denote by /¢ the covariant derivative on the space of 1-forms of
the Kahler manifold (X, w,(®,)), and let 4, be the A-operator

A apda® A\ d2f) 1= %1 3 9P e
of (X, wy(p,). Let f,,eC~(X)z be the function defined in (4.5), and
denote this function simply by f,. Then
fi= =y, + VP, and
R(p) — ofp) =V —1d0f,, ie., o@)—n=[Cf,
for every te[a, b], (cf. (4.2)). We shall first prove:

LEMMA (6.1). Let Y(=3,,9%0/02%) be an arbitrary complex valued
global C=-vector field of type (1,0) on X. Then for every + € C*(X)r,

(6.1.1) V' =1 43— (YF)oy + Vioy} + V' =1 AL@GY)(f) A oy — Virdy}
= Y("‘st{'/" — ) + (th)Dwﬂl" ’

where @Y)(£)) 1= s Y5(£)ad?’ and Vipdh 1= S sy 502" A Vijasadep). (We
use such motation y*z = 0y*/02%, (f,).:= 0f./02%, -+ as explained in (1.3).)

Proor. Fix an arbitrary pair (¢, p)e RxX. We then choose a
system z = (2}, 2% ---, 2") of holomorphic local coordinates of X centered
at p such that

9(P)az(®) = 0us and  d(9(P)az)(P) = 0

for all @« and B. Since there is no fear of confusion, the following
9@z, 9@, R(®)es, fo V', Ay [,, will be denoted simply by Gaz,
G*, R,z f, V, 4, [, respectively. Then at the point (t, p)e Rx X,

6.1.2) V' =1 A3{— (Y )op + Vyor}
= % (yaﬁ-fa"/’ﬁ + yafa_ﬁ"l’ﬁ + yafa"l"ﬁf)

+ {5 — Yas + Y* D G /02°02)}
= aZ;a Y5 fats + Y (Bap — Out)¥st + (Y Oy
+ az;. (=Y 5Vse — Y'V85a) — g; Y Rasys
= az; W5 Vs — Y5vea) + Y(—y—[Iy) + (YN .
On the other hand, at the same point (¢, p),
6.1.3) V=14@Y)f) A oy — Virdy} = —5. W5 fabe — Y5Vsa) -
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Adding up (6.1.2) and (6.1.3), we obtain (6.1.1).

THEOREM (6.2). (Second variation formula). For every te€la, b], we
have

(6.2.1) Z%{F(?t) = % ”5 Yt“iz(x,wo(m))

—Sx -3 9P D@5} o) — M) V()
where
Vi= SX wiint and Y= 3 g(@)F(@I5olos
ProoF. We integrate, on X, the equality (6.1.1) applied to (¢, Y) =
(@, Y.). Then by Sx V' =T4,3{+ -} V@) = 0, we obtain

(6.2.2) § VTG YNF) A 39, — Pty 09} Vi)

= |, V-0 - 20Vie) + | (XTI Vi)
On the other hand,

623  Lup) =L 4 0 f)Vie)
= L 1/V)OP0 3 dircx mger)
I M ICNECITEARACH)
i P R L CALCORFICALCT AR ACH
+ |, 3 0@ @£, Vil

+{ WAV + | (T2 Vi) -

Since f, = — (e, + 1)¢;, the right-hand side of (6.2.2) coincides with the
sum of the last two integrals of (6.2.3). Hence
d2

(6.2.4) 73

we) = =, 3 9@ @a@I @i . Vi

+ |, S oG Vi)
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+ | VIIMGYIS) A o, — P pd Vo)) .
Note the following identities:

(6.2.5) o={ -v VL WICHECA GO ACHE

626) | S 0@ @i Vie) = UVIEBy )i

= WV)@0 ~DeLdvaasn = —|_$0@) = Vi) -
Adding up (6.2.4), (6.2.5) and (6.2.6), we obtain

Lup) =\ nvi),

dt
where h = h(t, x) € C~([a, b] x X) is the function defined by
h:= '—a% » {g(@z)gr(‘,bz)ﬁg(¢t);a(¢z)F(ft)a} - .d’t(o'(¢’t) - n)

+ V=A@ YIS) A 0P, = Vir 0% — U 9@ (@7(P)F} -
On the other hand, writing Y, as >, ¥%9/02* (in which we put y*:=
> 9(P)*(#1)5), we have
(Right-hand side of (6.2.1)) = S EVi)
X

where k = k(t, x) € Ci([a, b] x X) is the function defined by

k:= {3 0@)as9(@)° W5 WP} — (B, — 2 9@ )P )u(PD)7)0(P) — m) .

We fix an arbitrary pair (¢, p) € [a, b] X X and choose a system (2!, 2% -+ -, 2%)
of holomorphic local coordinates of X centered at p such that

9(P)az(P) = 0up and  d(9(P.)uz)(P) = 0
for all & and 8. Then at the point (¢, p) €[a, b] X X,
h = {g} (P7a(Porat — Polo(@) — n) + aZT‘. (P P)afr7
= {gr'. (PI7a(Pret = (Pe = X (P PIN0(P) — 1) = ke
as required.

COROLLARY (6.3). If w 1s a critical point of p: 2 — R, then
the inequality

d2
Et'*”(e‘)“”’ =0



K-ENERGY MAPS 593

holds for every smooth path {0,| —¢ =t < ¢} in & such that 6, = w.

REMARK (6.4). Another interpretation for (6.2.1) will be given in a
forthecoming paper [7].
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Note added in proof. The author recently received a preprint: A.
Futaki, On a character of the automorphism group of a compact complex
manifold (to appear in Invent. Math.), which gives a very explicit formula
for the Lie group homomorphism in Theorem (5.6) under the assumption
that .2 is the Kahler class in 27¢,(X)g.
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