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0. Introduction. One of the long-standing questions in complex
differential geometry is the following: given a compact complex connected
manifold V with cλ(V) > 0, can one find a simple criterion for the
existence of an Einstein Kahler metric on VΊ At present, there are no
definitive answers, but in view of the partial results recently obtained
by Sakane and Koiso, the following conjecture of Futaki [3] seems to
be reasonable.

(I) GENERALIZED CALABI'S CONJECTURE (FUTAKI). Suppose that the
identity component Aut°( V) of the group of holomorphic automorphisms
of V is a reductive algebraic group. If the Futaki invariant vanishes
for each holomorphic vector field on V, then V admits an Einstein Kahler
metric.

On the other hand, as a characterization of Einstein Hermitian vector
bundles on compact Kahler manifolds, S. Kobayashi [5] posed the
following:

(II) KOBAYASHI'S CONJECTURE. Let E be an indecomposable holomor-
phic vector bundle on a compact Kahler manifold W with Kahler metric
g0. Then E admits an Einstein Hermitian metric if and only if E is
stable (in the sense of Mumford-Takemoto) with respect to gQ.

Recently, Donaldson [2] solved (II) for the case where W is a projec-
tive algebraic surface. One crucial step in his proof is the construction
of a non-linear functional λ from the set of all Hermitian metrics on E
to the real numbers such that (1) any critical point of λ is exactly an
Einstein Hermitian metric on E and that (2) λ is bounded from below if
and only if E is semistable with respect to g0.

Although (I) and (II) look quite different, there is some link between
these conjectures. Actually even for (I), the same procedure as in
Donaldson's work can be carried out to a considerable degree as follows:

Fix a Kahler form ω0 = i/^T Σ Q<^dza/\ dzJ on V. In this introduction,
we assume for simplicity that α>0 represents 2πc1(V)R. We denote by
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the set of all Kahler forms on V cohomologous to ω0. Let f0 be a real-
valued C°°-function on V which is uniquely determined, up to constant,
by the equation

33 log det(gaj) — Σ Qajdz" A dzJ = 33/0 .

The main purpose of this paper is to prove the following theorem an-
nounced earlier in [6].

THEOREM. There exists a mapping μ: 3ίΓ —»R satisfying the follow-
ing conditions:

( i ) An element ω of Js?~ is a critical point of μ if and only if ω
is an Einstein Kahler form, (cf. §3).

(ii) Let Y be a holomorphic vector field on V, and ω be an element
of ST. Put YR:= Y+ Ϋ and yt:= exptYR for teR. Then μ(y*ω) is
a linear function in t. Namely for every t,

d f
—μ(y*Q)) = I (YRf0)c
dt JV

where the right-hand side is the Futaki invariant of V corresponding to
the holomorphic vector field Y, (cf. §5).

(iii) If ω is a critical point of μ, then the inequality

|>,)U > o

holds for every smooth path {Θt \ — ε ^ t ^ ε} in J%Γ such that θ0 — Q),
(cf. §6).

This μ: J Γ —> R is called the K-energy map of the Kahler manifold
(V, ωo) In view of (i) and (ii) above, one can easily see that if

S ( YR/O)(OO Φ 0 for some holomorphic vector field Y on V, then μ cannot
V

have a critical point, i.e., X does not admit any Einstein Kahler metric,
which gives another proof of a fundamental theorem of Futaki [3].
Furthermore, (i) and (iii) above give us some indication that Conjecture
(I) can be weakened in the following more plausible form.

(Ill) CONJECTURE. Suppose that Aut°(F) is a reductive algebraic
group. If μ is bounded from below, then V admits an Einstein Kahler
metric.

Several supplements to this paper can be found in [7]. In a forth-
coming paper (cf. Bando and Mabuchi [1]), we shall show the following
theorem.

THEOREM. Let %? be the set of all Einstein Kahler forms in J%Γ, and



K-ENERGY MAPS 577

be the set of all ω e J%Γ with positive definite Ricci tensor. Assume
that g7 Φ 0 . Then

(i) the restriction μ\jr+: J%Γ+—> R is bounded from below, and μ|jr+
takes its absolute minimum on &.

(ii) For any ω1 and ω2 in <£, there exists an element g of Aut°(F)
such that g*ω2 = ωx.

We shall also give several generalizations of μ in the latter paper.
I wish to thank all those people who encouraged me and gave me
suggestions, in particular Professors S. Kobayashi and H. Ozeki, and
Doctors S. Bando, I. Enoki and R. Kobayashi, who helped me again and
again during the preparation of this paper. Thanks are due also to the
Max-Planck-Institut fur Mathematik for the hospitality and constant
assistance all through my stay in Bonn.

ADDED IN PROOF. I am very grateful to the referee for several
improvements of §5.

1. Notation and Convention. Throughout this paper we fix an
arbitrary ^-dimensional compact Kahler connected manifold X with Kahler
form ω0 = V — 1 Σ ffajdz" A dtf written in terms of holomorphic local
coordinates (z\ z2, , zn). Let

3ίΓ : = {ω I Kahler forms on X which are cohomologous to ω0 in H1Λ(X, R)} .

For each element ω = \/~-iΣ 9(ω)«jdza A dz? of SΓ, we denote by
Σ R(ω)ajdza (x) dzJ the corresponding Ricci tensor. We put R(ώ): =
l / ^ ϊ Σ R((o)ajdza A dzJ. Then R(ω)/2π represents c1(X)R and we have
R(ω) = λ/^ΛddlogdLet(g(ω)aj). Furthermore, let σ(ω) (resp. Π J be the
corresponding scalar curvature (resp. Laplacian on functions):

σ(ω): - Σ g(ωY*R(ω)aj , D . : = Σ g(ω)^/dzadzf,

where (g(ωγa) is the inverse matrix of (g(ω)aj). For each real valued
C°°-f unction φ e C°°(X)R on X, we put ωo(φ) = ω0 + V~^Λ ddφ, and let

={φe C~(X)RIωo(φ) e

Note that the natural map

is surjective. For each φ e §ίf, the corresponding \3ωom> o(<&<(&))>
R(ωo(φ))a-β, g(ωQ(φ))a-βf 9(o)o(φ)Ya will be denoted simply by Π?, σ(φ),.R(φ)9

R(φ)aβ, g(<P)ajf 9(<PΫa, respectively.

DEFINITION (1.1). A one-parameter family {φt\a ^ίt <* b} of functions
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in C°°(X)R is said to be smooth (or a smooth path) if the mapping

[α, 6]xX->Λ, (t,x)^φt(x)

is C°°. We then put <£t: = M/dί and & = d2φjdt\

DEFINITION (1.2). We define the real constants λ and v by

λ : = 2wτr j cι{X)ωΓ1 \ ω? , v : = λ/n .

Furthermore, to each <p e C°°(X)Λ, we associate an (n, w)-form Vo(?0 on
as follows:

This is so normalized that I V0(φ) = 1. Moreover, if ω0 represents

2πc1(X)R, then X — n.

DEFINITION (1.3). Let (z\ z\ , zn) be a system of holomorphic local
coordinates on X. For every feC°°(X)R, we use the following notation:

fa ' = 3 α / , fa - = daf , faβ = da3βf , fάf '. = d«8jf ,

faf = dadjf, /αi97 : = dadβdjf, ,

where we denote by 3α (resp. 3ά» 3̂ , dj, dj) the operator 3/3zα (resp.
3/3z", 3/3̂ ,̂ 3/3^, 3/3«0. Our notation is slightly different from the ordinary
one, because for instance, faβ is not FβFaf.

2. Basic Constructions. This section is crucial in the construction
of the K-energy map μ. We shall introduce the mappings

L: C~(X)R x C~(X)R - R , (cf. (2.5)) ,

M: Sίf x Sίf -> iί , (cf. (2.4)) ,

where the latter immediately defines μ, (cf. (2.7), (3.1)). Although the
functional L is not essential in later sections, it none-the-less plays an
important role in our forthcoming papers (cf. Mabuchi [7], Bando and
Mabuchi [1]).

DEFINITION (2.1). Let y be a non-empty set and A be an additive
group. Then a mapping N: Sf x <9* -> A is said to satisfy the 1-cocycle
condition if

(i) N(σlf σ2) + N(σ2, σλ) = 0 and
(ii) N(σl9 σ2) + N(σ2, σz) + N(σ9, σj = 0

for all σ19 σ2,
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DEFINITION (2.2). For every (<p\ φ") e £(f x
L{φ\ φ"), M{φ', φ") by

(2.2.1)

(2.2.2)

579

* we define real numbers

M{φ', φ"):=
t) - X)V0(φt)}dt ,

where {φt \ a ^ t ^ 6} is an arbitrary piecewise smooth path in £ίf such
that φa — φ* and φh = φ".

THEOREM (2.3). L{φr, φ") above is independent of the choice of the
path {φt I a ^ t ^ 6} and therefore well-defined. Moreover,

(2.3.1) L satisfies the 1-cocycle condition, and

(2.3.2) L(φ19 φ2 + C) = L(φ19 φ2) + C for all φ19 φ2 and all CeR .

THEOREM (2.4). M(φ', φ") above is independent of the choice of the
path {φt I a ^ t ^ 6} αwd therefore well-defined. Moreover,

(2.4.1) M satisfies the 1-cocycle condition, and

(2.4.2) M{φι + C19 φ2 + C2) = M(φ19 φ2) for all <p19 φ2 and all Cl9 C2 e R.

PROOF OF (2.3). Let ψ(s,t):=sφt for (s, t) e[0, l ]x[α, 6]. Since
{̂ t I a ^ ί ^ 6} is piecewise smooth, there exists a partition a = a0 < aί<
a2 < < ar — b of the interval [a, b] such that {φt \ a^ ^t^a^ is
smooth for each i e {1, 2, , r}.

Step 1. We shall first show that

ΦtV0(φt))dt = [
ί=α i _ 1

t

di

72 >

0

Ύi

Δ

Ύz

sΎ*

1

FIGURE 1.
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Let Ψ(s, t) : = (j (dψ/ds)Vt(ψ)d8J + (j (dψ/dt) V0(f ))dί. Then in view of
Figure 1, we have

L dΨ = L Ψ = ti \r Ψ

Therefore the proof of (*)4 is reduced to showing dΨ = 0. By routine
computations, we have

- •=! * Λ «. j { f < f ) +

Λ

= 0 .

Step 2. Adding up the equalities (*)t (ΐ = 1, 2, , r), we obtain

Γ ( ( Φ tF 0(φ ()U = \Ί\ φV0(sφ))ds V=Ψ" .
Ja \JX J Jo \Jx / ψ=ψ'

This shows that I (\ ΦtV0(φt))dt is independent of the choice of the path

{g>t\a^t<> b}. (2.3.1) is also immediate. For (2.3.2), let ψt := φ2 + tC
(t G [0, 1]). Then in view of (2.3.1),

L(φlf <P2+C)- L(φιt φ2) = L(φ2, φ2 + C) = [\ CV0(ψt)dt = C .
Jo Jx

REMARK (2.5). The above proof is valid even in the case (φf, φ") e
C°°(X)R x C°°(X)R. Hence L naturally extends to a functional on C°°(X)R x
C°°(X)R. This extended functional (denoted by the same L) can still be
defined by (2.2.1) and satisfies (2.3.1) and (2.3.2).

For the proof of (2.4), we need the following Lemma:

LEMMA (2.6). Suppose that a two-parameter family {f{s, t)\ (s, t) e
[0, 1] x [α, b]} of functions in έ%f is smooth in the sense that the mapping

[0, 1] x [α, 6] x X -> R , (s, ί, x) H+ (ψ(s, t))(x)

is C°°. Then there exists a unique C°°-function F = F{s, t, x) e C°°([0, 1] x
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[α, b] x X)R such that

( i ) dF/ds= -(
(ii) dF/dt = - O * +
(iii) F|(. i f,-(Oi.) =0 in C°°(X)R, and
(iv) R(ψ) - vωo(ψ) = R(ω,) - vωι +

wftere we put ωx := ωo(φ(O, a)).

PROOF. Using the notation in (1.3), we have

(2.6.1)

- -Σ

= 0 .

Hence (3/3ί){(D* + v)(dψ/ds)} = (3/3s){(Π^ + »)(dψ/dt)}. Therefore there
exists F(s, t, x) e C°°([0, 1] x [α, b] x X) satisfying (i), (ii) and (iii). For (iv),
we first observe that it is true for (s, ί) = (0, a). We now have

= ϊ ddF)

vdψlds) - dd(dF/ds)} = 0 .

Similarly, (d/dt)(R(ψ) - vωo(ψ)) - (d/dtXi/^ϊ ddF) = 0. Hence we obtain

(iv).

PROOF OF (2.4). Let ψ(s, t) := sφt for (s, ί) e [0, l]x[α, 6] and Ψ(s, t)
be the 1-form

(L ~Ίh{σ{ψ) ~ χ ) v ^ ) d s + ( L ~
Then similar to the proof of (2.3), that of (2.4) except the equality (2.4.2)
is reduced to showing dΨ = 0.

Step 1. By Lemma (2.6) applied to our Ψ', there exists a function
F = F(s, ί, a?) e C°°([0, 1] x [α, 6] x X)Λ satisfying the equalities (i) - (iv).
First by (iv),

n(R(ω0) - vωo)ωoWn

Therefore, introducing the 1-form Φ defined as
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ids 1 n(R(ω0) - vα) o )^o(Ψ) ? ι " 1 + dt \ n(R(ω0) - v<tυ, Λ^ J* 3s J^ dt

we obtain

Ψ=-Φ-

= ~φ - (S, ^
Hence dΨ = —dΦ + Ids A dt, where the coefficient I is

In view of the identities 3 V0(ψ)/dt = Πψidψ/dt) V0(ψ) and 3 V0(ψ)/ds
Πir(df/ds)V0(ψ), (2.6.1) above combined with (i) and (ii) of (2.6) yields

=

= 0 .

Thus, we obtain

dW = -dΦ = ds Λ dt \
dt dt ds

= v/^ϊds Λ \ n(n — ϊ)(R(ω0) — vω0)

- 0 .

Step 2. We shall finally show (2.4.2). Since M{φί + C19 φ2 + C2)
M(9iτ 92) = M92, <P2+C2)-M(φlt φ1 + C1)f it suffices to show M(φ, φ + C)
for all φ and C. Let ψt:= φ + tC, t e [0, 1]. Then

M(φ, φ + C)= - £ (J^ C(<j(<fc) - λ) Vo(V*))dt == 0 .

The proof of (2.4) is now complete.
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(2.7) In view of (2.4.2) above, M\ 3(? Y. 2tf -+R factors through
x J3ίΓ. Hence we can define a mapping M: J%Γ x 3f —> R (denoted by

the same M) satisfying the 1-cocycle condition by

(2.7.1) M(ω', ω"): = M(φ', φ") , for all ω', ω" e J2Γ,

where φ'9 φ" are functions in έ%f such that ωo(φ') = ω' and ωQ{φ") = ω".

We now put ^ : = {φ e Sίf | L(0, φ) = 0}. Then the restriction of the

mapping φ e Sίf ι-> ωo(φ) e J%Γ to Stf^ is an isomorphism:

Hence we can regard J%Γ as the subset ^g^ of Sίf. By this identification,
the mapping M: J%Γ x 3ίΓ —> iί defined just above coincides with the
restriction to ^ x ^ of the original mapping M: £ίf x Sίf -> Λ.

A one-parameter family {a** | α ^ ί ^ 6} of Kahler forms in SΓ is said
to be smooth (or a smooth path) if it forms a smooth path in CCO(X)R via
the identification

3. K-energy maps and their critical points.

DEFINITION (3.1). Let μ: 5ίΓ-* R be the mapping which associate, to
each α > e ^ 7 the real number μ(ω) := M(ω0, ω), (cf. (2.7)). This μ is
called the K-energy map of the Kahler manifold (X, ω0). For every
φ£έ%f, μ((θ0(φ)) will be denoted by μ(φ) for simplicity.

We write the above μ sometimes as μωQ because it depends on the
choice of ω0. If we replace the original ω0 by another ω'o cohomologous
to ω0, then the difference between μωQ and μ^ is just a constant. In
fact, for all ωeJΓ

t*<oo((0) - μωi(ω) = M(ω0, ω[)

which is independent of ω e J?Γ. In particular every critical point of μωQ

is, at the same time, that of μω,Q and vice versa. Hence "critical points
of μ" have an intrinsic meaning in the sense that they depend only on
X and on the cohomology class of ω0 in HlΛ(X9 R).

THEOREM (3.2). Let μ: 3ίr -> R he the K-energy map of the Kahler
manifold (X, ω0). Then for an arbitrary element ω of J%Γ, the following
are equivalent:

( i ) ω is a critical point of μ,
(ii) ω has a constant scalar curvature,
(iiί) ω has the constant scalar curvature λ.

PROOF. Let {φt\— ε^t^ε} be a smooth path in §ίf such that

ωo(φo) = co. Then by (2.2.2) and (2.7.1),
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= \ α)f

which shows the equivalence of (i) and (iii). Thus the proof is reduced

to showing that (ii) implies (iii). Since \ (σ(α>) — x)ωn = 0 for every
JX

ω 6 3ίΓ, the required implication is now immediate.
DEFINITION (3.3). A compact complex connected manifold with ample

anticanonical bundle (or equivalently, with cγ > 0) is called a Fano
manifold. Differential-geometically, a Fano manifold is a compact com-
plex connected manifold which admits a Kahler metric with positive
definite Ricci tensor, (cf. Yau [8]).

THEOREM (3.4). Suppose that X is a Fano manifold and further-
more that ω0 represents 2πc1(X)R. Consider the K-energy map μ: J?f—> R
of the Kahler manifold (X, ω0). Then for an arbitrary element ω of
J%Γ, the following are equivalent:

( i ) ω is a critical point of μ,
(ii) ω is an Einstein Kahler form,
(iii) a) is an Einstein Kahler form with the constant scalar

curvature n.

PROOF. Note that λ is n, (cf. (1.2)). Since I is a Fano manifold,
every Kahler form of constant scalar curvature in the cohomology class
2πc1(X)R is an Einstein form. Then (3.4) is straightforward from
Theorem (3.2).

4. Another interpretation for the K-energy map. Recall that J%Γ
is naturally identified with the subset ^ J of £ίf, (cf. (2.7)). In this
section, another interpretation for the K-energy map μ: §ίf^ ( = J3Γ)-+R
of ( 1 , 4 (cf. (3.1)), will be given. We shall actually show the
following:

THEOREM (4.1). For each φ e 34?, there exists a unique function
fψ e C°°(X)R (depending smoothly on ψ) such that

(4.1.1) .*(?>)— λ = Q Λ ,

(4.1.2) ( fψVlφ) = 0 if φ = 0 in C°°(X)R, and

(4.1.3) "T"(Λ« ~~ Kt)
 = " ( D f ί + v)Φ% for every smooth path {φt\a <; ί ^ &}

Ov

in ,

where for each ty^Sί?, we denote by kψ the function in C°°(X)Λ defined
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by

= (R(ω0) - vω0) A nωo{ψ)n~1lωQ{ψ)n and

ΐ = 0 .[
JZ

COROLLARY (4.2). Suppose that X is a Fano manifold and further-
more that ωQ represents 2πcι(X)R. Then to each φ e Jg^, we can uniquely
associate a function fΨ e C°°(X)R {which is the same one as in (4.1)) such
that

(4.2.1) σ(φ) -n = •*/*, i.e., R{φ) - ωo(φ) = V^Λ

(4.2.2) μ{φ) = -\ fφVJίφ), and

(4.2.3) -^—fφt = —(D^ί + ϊ)Φt f°r every smooth path {<pt\a ^ t ^ 6} in
oo

In view of (4.2.2), the construction of fψ is crucial to our approach.
The key in the definition of fΨ is the following:

DEFINITION (4.3). For each pair (φ\ φ")e£έ?x£έf, we define a func-
tion H{φ\ φ") e C"(X)R by

(4.3.1) H{φ\ φ"): = - Γ (Πn + v)Φ%Λt ,
Ja

where {φt | a ^ t ^ 6} is an arbitrary piecewise smooth path in £ί? such
that φa = φf and φh = φ".

THEOREM (4.4). H(φ', φ") above is independent of the choice of the
path {φt I a ^ t ^ 6} and therefore well-defined. Moreover,

(4.4.1) H: Sίf x £(f ~> C°°(X)R satisfies the 1-cocycle condition, and

(4.4.2) V^m

PROOF. In view of the proof of (2.3), we may assume that
{φt I a ^ t ^ 6} is a smooth path. Let ψ{s, t): == sφt for (s, t) e [0, 1] x [α, .&].
Then by Lemma (2.6), we obtain a C°°-function F(s, tf x) e C°°([0, 1] x
[α, b]xX)R with the properties (i)~(iv) of (2.6). For each (σ, τ) e [0, l ] x
[α, 6], we set FOtT : = F| ( β > ί ) = ( < 7 > r ). Then by (i),

On the other hand, by (ii) applied to the cases s = 0 and s = lr
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Combining the three equalities obtained just above, we have

& * = (Fl9i - F0>t)\lzb

a = -

The proof, except that for (4.4.2), is then straightforward. For (4.4.2),
applying (iv) of (2.6) to the cases (s, ί) = (1, α), (1, 6), we now conclude
that

{R(fP) - vωlφ)}\%zX, = v^Ϊ35(F l f l - FUa) = ι/=Ϊ39ί%>', ?") .

We shall now define / 9 for each φ e ^g^ and then proceed to the
proof of (4.1) and (4.2).

DEFINITION (4.5). (i) For each φeβέ?, we define fφeC°°(X)R by

(ii) For each ω e 3ίΓy let fω e C°°(X)R denote the function fΨω, where
φω is the unique element of Sff^ such that ω = ωo(φω).

PROOF OF (4.1). Since the uniqueness is easy, it suffices to show
that fφ defined in (4.5) satisfies (4.1.1)~(4.1.3). First, (4.1.2) is obvious
from our definition of fφ. We next observe that (4.1.3) is an immediate
consequence of (4.3.1). For (4.1.1), we apply (4.4.2):

R{φ) - vωάφ) = R(ω0) - vω0 + ι/'=ΊddH(flf φ) .

Taking the wedge product with nωo(φ)n~\ and then dividing both sides
by a)0(φ)n, we finally obtain

σ{φ) - λ = UΨQOΨ + H(fl, φ)) = Uψfψ .

PROOF OF (4.2). Since R(ω0) and ω0 are cohomologous, we have
Jcφ = f0 for every φ e Stf^ where f0 e C°°(X)R is the function defined by
the conditions I /oα>? = 0 and R(ω0) — ω0 = V^Λddfv Since (4.2.3) is
then obvious from (4.1.3), the proof is reduced to showing (4.2.2) for fφ

defined in (4.5). Fix an arbitrary φ e gίf^ and we put ψt := tφ — L(0, tφ),
16 [0,1]. Note that {ψt \ 0 ^ t ^ 1} is a smooth path in Sίf^ connecting 0
with φ. In view of (4.1.2), the proof is further reduced to showing

for every ί e [0, 1]. We can now finish the proof by the following
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computation:

t) = - j ^ (σ(ψt) -

5. Futaki invariants as derivatives of the K-energy map. Let
Aut(X) be the group of holomorphic automorphisms of X, and let Aut°(JSΓ)
be its identity component. For each holomorphic vector field Ye
Γ(X, έ?(T(X))) on X, we put

γR:= γ+ γ9

and we later consider the corresponding one-parameter group yt: =
exp t YR, (teR). For each ω e 3ίT, let fω e C°°(X)R be the function defined
in (4.5). Recall that

σ(ω) - λ = ΠJo , (cf. (4.1.1)) .

Then a fundamental theorem of Futaki [4] states the following:

(5.1) For every YeΓ(X, έ?(T(X))), the real number Cγ>ω: =

\ (YRfω)o)nl\ ω% does not depend on the choice of ω in 3Γ but depends

possibly on the Kcίhler class J%Γ. (Therefore CYt(ΰ will be denoted by

(5.2) 1/ there exists a ώe J%Γ such that (X, ώ) is a Kdhler manifold
of constant scalar curvature, then CYtJr = 0 for all YeΓ(X, έ?(T(X))).

The main purpose of this section is to show that the first derivative
of the K-energy map μ: 3ίΓ —> R along each orbit {yfω\teR} of the one-
parameter group {yt}teR is nothing but CYiJr. Using this fact, we shall
give another proof for both (5.1) and (5.2). In a subsequent paper (cf.
Bando and Mabuchi [1]), a thorough study of these properties will be
given in a more general situation.

THEOREM (5.3). Let Y be an arbitrary holomorphic vector field on
X. Then for all teR and

PROOF. For each teR, there exists a unique function φteS^ such
that yfω = ωo(φt). For simplicity, we write yfω and fy*ω as ωt and ft,
respectively. We furthermore put F : = 1 cύofnl. Note that
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LγR0)t = —OOt = V^ΐddΦt .
at

Since 0 = ( LYR(ftωΐ) = \ (YRft)ωΐ + nV^Λ \ ftωΓι Λ ddφt9 we have,
Jx JX )x

for every t e JB,

(Y*ft)ω7/(nl V) = - w / ^ ϊ ( Λα)?-1 Λ
Jz

= v/^T \ dft A dφt A a>ΓΊ((n -1)\V) = (1/V)(dft, J^
J X

= dμ(ωt)/dt ,

from which the required equality immediately follows.

PROOF FOR (5.2) IN FUTAKI'S THEOREM WITH (5.1) TAKEN FOR GRANTED:

By Theorem (3.2), μ: J%" —> R has a critical point at ώ. Hence, for an
arbitrary YeH\X, έ?(T(X))),

CY,^ = - ^ - M » f ώ ) , < β 0 = 0 .

DEFINITION (5.4). To our Kahler class J%Γf we associate the closed
subgroup Gjr of Aut(X) as follows:

Gjr : = {9 e Aut(X) | g*3ίT = J Γ } ( D Aut°(X)) .

LEMMA (5.4.1). // geG^, then M(g*ωlf g*ω2) = M(ωlf ω2) for all
ωlf ω2 e J%Ί

PROOF. Let {φt \ a ^ t ^ 6} be a smooth path in §ίf such that α>χ =
(DoiΦa) and <y2 = ωo(φb). Note that, by # e G^, we can write ^*α)0 as
ωo(ψg) for some ^ e £ί?. In view of the identities g*ωo(φt) = ωo(ψg + g*φt)
and σ(g*ωQ(φt)) = g*σ(φt), we obtain

= M(ωl9 ω2) .

DEFINITION (5.5). We define the mapping m^\ G^ -> R+ by

rn,jr(g): = exp(M(ω, flr*ω)) , (ω e ^Γ) ,

where iί+ denotes the multiplicative group of positive real numbers.
Since M satisfies the 1-cocycle condition, Lemma (5.4.1) above assures
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that m^{g) is independent of the choice of ω. (This independence obvi-
ously gives us a very simple proof of (5.1).)

For glt g2 e G^ and ω e 3tΓ, we have

*α>) = M(ω, gfω) + M(g?ω,

)) , i.e., m^g^

Recall that the identity component of G^ is Aut°(X), and hence
H\X, έ?(T(X))) is naturally regarded as the Lie algebra of G^. We
can now interpret Theorem (5.3) as follows:

THEOREM (5.6). m^-: G^ —> J?+ is α Lie group homomorphism.
Moreover the corresponding Lie algebra homomorphism
H\X, έ?{T{X)))->R is the "Futaki invariant" of 3ίT, i.e., (m
Cγ>sr for all YeH°(X, έ?(T(X))).

COROLLARY (5.6.1) (cf. Futaki [3; (2.2)]). m^ is trivial on [G^, G^\.

We conclude this section by showing the following group-theoretic
analogue of (5.2).

THEOREM (5.7). (i) Suppose that the "Futaki invariant" of 5ίΓ
vanishes (i.e., (m^)* = 0). Then m^ is trivial, whenever 7Γ0(G^): =
GjrlAnt°(X) is finite.

(ii) Assume that X is a Fano manifold (where it is not necessary
to assume that ω0 represents a specific class such as 2πc1(X)R). Suppose
furthermore that there exists a Kdhler form ώ e J%~ of constant scalar
curvature. Then m^ is trivial.

PROOF. (i) Since πo(Gjr) is finite, each g e G^ satisfies ga e Aut°(X)
for some positive integer a = a{g). On the other hand, (m^)^ = 0
implies Aut°(X)cKer m^ by Theorem (5.6). We now have m^-{g)a = 1,
from which m^(g) = 1 immediately follows.

(ii) Since X is a Fano manifold, there exists an reZ (r > 1) such
that the line bundle Kχr is very ample. In particular, Aut(X) is regarded
as a closed (algebraic) subgroup of PGL(iV; C) = Aut(P(iΓ(X, <?(Kϊr)))),
where N = h\X, έ?(Kχr)). Hence the subset πQ{G^) of the finite set
τro(Aut(X)) is also finite. Furthermore, by (5.2), we have (m^)* = 0,
Applying (i) above, we conclude that m^ is trivial.

6. The second variation formula for K-energy maps. Throughout
this section, for simplicity, we assume that X is a Fano manifold with
a Kέΐhler form O)0 = ] / - 1 Σ 9ajdza A dz^ representing 2;rc1(-Xr)Λ, (cf. §1).
We furthermore fix a smooth path {φt \ a ^ t ^ 6} in
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We denote by F* the covariant derivative on the space of 1-forms of
the Kahler manifold (X, (O0(φt))9 and let Λt be the Λ-operator

Λt(Σ a«-βdza Λ dz>): = -±= Σ 9(<Pt)laaaj
V — 1 <*,β

of (X, ωo(φt)). Let fΨt e C°°(X)R be the function defined in (4.5), and
denote this function simply by ft. Then

Λ = -(Πψt + l)Φt , and

R{φt) - ωo(φt) = V^Λ ddft , i.e., σ(φt) - n = Q^/t »

for every ί e [α, 6], (cf. (4.2)). We shall first prove:

LEMMA (6.1). Let Y{ — ̂ ay
adldza) be an arbitrary complex valued

global C°°~vector field of type (1, 0) on X. Then for every ψ e

(6.1.1) \/=ΪΛtd{-(Yft)dφ + F*ydφ} + V^Λ Λt{φY){ft) Λ dψ -

(3 Y)(ft) : = Σ*a,β y
aβ(fXdzβ and V\γdψ : = ΣaΛvaβdzβ A V\/dzad<f). (We

use such notation yaj— dya/dzβ, (/ t)β:= dfjdz", as explained in (1.3).)

PROOF. Fix an arbitrary pair (£, p)eRxX. We then choose a
system z = (z1, z2, , zn) of holomorphic local coordinates of X centered
at p such that

g(<Pt)aj(p) = δaβ and d(g(φt)aj)(p) = 0

for all α and /3. Since there is no fear of confusion, the following
g(<Pt)«jf 9(<Pt)Jr, R(<Pt)ajf ft, V\ Λt, Πn will be denoted simply by Gaj,

GJr, Rajy f F, Ay •> respectively. Then at the point (t, p)eRxX,

(6.1.2) ι /^ l Λd{-(Yf)dψ

= Σ (»V
a,β

+ Σ {-
a,β

= Σ ίiTί-Λ
a,β

+ Σ ί-yalψβa - Vψβla) ~ Σ yRalf,

+ Yί-f-cw +

On the other hand, at the same point (ί, p),

(6.1.3) l / ^
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Adding up (6.1.2) and (6.1.3), we obtain (6.1.1).

THEOREM (6.2). (Second variation formula). For every t e [α, &], we
have

(6.2.1) ±
dr v

S - .

X * a,β * * β

where

V:=\ ωi/n] and Yt:=YJQ(.<Pt)H<Pt)jdltea-
ix <*,?

PROOF. We integrate, on X, the equality (6.1.1) applied to (ψ, Y) =

(Φt, Yt). Then by t i / ^ T ^ }Vt(ψt) = 0, we obtain

(6.2.2) J χ l /^U{(3 Yt)(ft) A dφt - F*jrtdφt} V0(φt)

On the other hand,

(6.2.3) JίJ"to> = ~dl\χ -φt(

= -\ Σ g<ψtΫr(Φt)rΊg(<pty
i'(ΦtWXVt(φt

JX a,β,γ,δ

+ \ Σ,
JX a,β

+ \

Since/ί = — (Π?t + 1)Φ«» t h e right-hand side of (6.2.2) coincides with the
sum of the last two integrals of (6.2.3). Hence

(6.2.4) £-
dt

+ \ ΊL
JX a,β
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+ \ i/=U{(5rt)(/4) Λ dΦt - rytdψt}
J X

Note the following identities:

(6.2.5) 0 = \ -V/=ΪΛtd(Σ19(<Pty
a(Ψt)l(Φt)adft)V0(φt)

JX a,β

(6.2.6) ( Σ g(<pt)HΦt)j(fX VM = (1/ V)φφt, dft)Lhx,»om»
JX a,β

= (1/V)(φt, -Π<Ptft)Lhx,ωQ{Ψt)) = - \ ψtiβ{φt) - n)V0(φt) .
J X

Adding up (6.2.4), (6.2.5) and (6.2.6), we obtain

•§-μ{φt) = \ hV0(φt),
at Jx

where h = hit, x) e C°°([α, b] x X) is the function defined by

h : = - Σ {9(ψtYr(Φt)rJ9(φty
a(Φt)j(ft)a} - ΦMφt) - n)

<χ,β,r,δ

t){ft) A dΦt - v\YtdΦt Σ
cc,β

On the other hand, writing Yt as Σ« Vad/dza (in which we put ya: =

Σ ^ g(<Pt)Ja(Φt)j), we have

(Right-hand side of (6.2.1)) = ( JcVQ(<pt) ,
JX

where k = k(t, x) e C%([a, 6] x X) is the function defined by

k:= {Σg(φt)aj9{φtΫ\ya)r{¥)*} - (ft - ΣgiφύHΦtUΦάjKσfa) - n ) .

We fix an arbitrary pair (£, p) G [α, 6] x X and choose a system (z1, z2, , zn)
of holomorphic local coordinates of X centered at p such that

g(<PXj(P) = δα^ and d(g(φt)aj)(p) = 0

for all α and /S. Then at the point (t, p) 6 [α, 6] x X

h = {Σ (ΦJTίCΦJrJ ~ ft(α(9>ι) - Λ) + Σ (ΦtUΦt)άfπ
<χ,r a,r

= {Σ ( Φ , ) F ; ( & W - (^. - Σ (ΦtUΦt)τKσ{φt) - n) = k

as required.

COROLLARY (6.3). If ω is a critical point of μ: <3ίΓ —• R,

inequality
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holds for every smooth path {θt\ — ε ^ t ^ ε} in J3ίΓ such that θ0 = (o.

REMARK (6.4). Another interpretation for (6.2.1) will be given in a
forthcoming paper [7].
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Note added in proof. The author recently received a preprint: A.
Futaki, On a character of the automorphism group of a compact complex
manifold (to appear in Invent. Math.), which gives a very explicit formula
for the Lie group homomorphism in Theorem (5.6) under the assumption
that J%Γ is the Kahler class in 2πcι(X)R.
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