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1. Introduction. Let 2 be a bounded domain in E, with smooth
boundary 02 and let 7 >0 be fixed. For a vector function v, =
(U, U, v,5;) and a scalar function p, representing the velocity of the
fluid and the pressure we consider in 2 x[0, T'] an initial-boundary value
problem for the linearized Navier-Stokes equation:

Dy, — vAv, + Vp, =f,
1.1 diveo, =0,

vu|t=0 =a, vlﬂo = 0 ’

where a(x), f(x, t) are given vector functions and v is the so-called viscosity
coefficient.

The existence and uniqueness results for (1.1) are now well known
(see, for instance, [1]); whereas the behavior of the solutions, as the
viscosity coefficient v tends to zero, is not yet fully understood, and we
wish to study such a question in this note.

We first introduce our notation. Let L*Q) be the Hilbert space of
square integrable real functions on 2 and let W**(Q2) be the Sobolev space
of functions with square integrable derivatives up to the order k in L*(2).
For vector valued functions v = (v, v,, v,) the corresponding spaces are
denoted by L*Q) and W**(Q2). The norms will be denoted by | |20,
| |lweeq ete. Let C2(R2) = {v = (v, v, vy); v,€C=(R2), supp(v,)CR, 1=
1,2, 8} and Co(Q) = {ve C(2); dive = 0. We define L) and H(Q) as
the closures of C;°,(2) in L*(2) and W**Q2). The orthogonal projection from
L*(Q) (resp. L*(2x (0, T)) = L*0, T; L*2))) onto L2(RQ) (resp. L*(0, T; LX(2)))
will be denoted by P,.

We now assume in (1.1) that ac H(Q) and fe L*(Q2x (0, T)). Then
as will be seen in the next section, we have the solution (v, p,), which
as v — 0 converges weakly in the Hilbert space L*(2 x (0, T)) x L*(2 x (0, T))
to the solution (v, p,), given by
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v(z, t) = alx) + S:P,,f(x, )dz ,
Vpo(x’ t) = (I - Pa)f(x, t) ’

1.2)

of the equations:
Dy, + Vp,=f,
(1.3) divy, =0,
V= = @,

obtained from (1.1) by setting v = 0 and eliminating the physically re-
quired boundary condition due to the viscosity of the fluid.

Our purpose here is to show that the solution (v,, p,) actually enjoys
a better convergence property in a domain strictly away from the
boundary.

We introduce a partial fractional integration

(1.4) I'p(x, ) = A/T (a))SZ ¢ — o 'p(x, D)dr (@ > 0)

with respect to the time variable ¢, where I'(a) is the Gamma function;
also, in this note we always suppose that the pressure function p,(x, t) is
subjected to the condition

(1.5) Sapy(x, t)dz = 0

for almost all ¢ in [0, T], so that p,(x, t) is essentially uniquely determined
from Vp,(x, t).
Our result is now as follows.

THEOREM 1.1. If ac H(RQ), fe L*(2x(0, T)) and if V is an arbitrary
compact subdomain of 2, then as v —0

(1) v, converges strongly to v, in L*(Vx(0, T)),

(2) for any a >0 I*p, converges strongly to I*p, in L*(V x (0, T)).

This result can be stated in a stronger form by assuming the data
a, T sufficiently smooth. Such a result will be presented in Section 5.

2. Weak convergence of solutions for vanishing viscosity. Ac-
cording to [1], we have the following existence theorem:

THEOREM 2.1. Assume that ac HQ), fe L}(2x(0, T)) and (1.5) for
»,. Then, there exists a wunique solution (v, p,) of (1.1) such that
v, € LX0, T; W*%(2)), D,v, e L¥0, T; L*(Q)), p, € L¥0, T; W"*(R)), and more-
over that v, (t)eC(0, T]; H(Q)), i.e., v,(t) is continuous on [0, T] with
values in H(Q). For this solution we have the following estimates:
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3
2.1 | Do, ||e2ax 0,0 + vmg‘{ ]]Djv»||L2(9x(o,T))
3
+ o, ll2iaxo,m = CUIFlle2axo,m + Zl‘ 1 D;at||z2q))
2.2) l0,@®) |20y = C(]|f”L2(9x(o,T)) + || @|lrzq)

Jor te[0, T] where D; = 6/ox; and C is a constant independent of v.
Now, concerning the weak convergence, we have

THEOREM 2.2. Let the assumption on a, f, p, be the same as in
Theorem 2.1, and let (v, p,) be the solution of (1.3) given by (1.2). Then,

(1) the vector v, (resp. Dw,, p,) converges weakly to v, (resp. D, p,)
wn L*(Q2 %0, T)) as v— 0.

(2) For every te|0, T] the vector v,(t) converges weakly to v (t) in
L:(2) as v— 0.

Proor. Let @ be an arbitrary continuous function on [0, T] with
values in C;,(2). We then have the identity

STS D,v,-(bdxdt—kvi‘,ﬁ Dy, D,0dudt = H P,f-0dudt
0Ja j=1JoJaQ 0J2
where the dot - means the pointwise scalar product of two vectors.
From the estimate (2.1), follows therefore
lim STS Dy, ®dedt = STS P.f-®dudt .
y—0 0JR2 0Ja

By continuity, this relation holds for every @ e L*0, T; L*Q)); also for
every @ € L*0, T; L*(2)), since both D,v, and P,f belong to L*0, T; LXQ)).
Hence Dy, converges weakly to Dw, = P,f in L*(2x(0, T)) as v— 0.

Let ¥ e L*(Q). Then

S v(t) Tdx = S a-Tdx + Stg D (7) - Tdxdr
2 2 0J Q2
for every te[0, T]. From the result just obtained there now follows the
weak convergence of v,(t) to v(t) = a + \ P,f(z)dz in L*R), which proves
0

(2). The weak convergence of v, to v, in L*(Q2x (0, T)) is also clear, since
v,(t) € C([0, T']; H(2)).

As regards the pressure p,, we consider the relation
H D, ®dwdt +»§;ST§ Dy, D,®dxdt + H Vo, Odudt = STS £ Odadt

0J2 =1 JoJa 0Ja 0JQ2

which holds for every @ e L*0, T; Wy*(2)). Here W*R2) is the closure
of C2(Q) in W**(Q2). We now let vy — 0 in this relation. Then since D,
converges weakly to D,y,= P,f and the second term vanishes in the
limit, we obtain
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lim STSDVp,-(Ddxdt - SSQ (I — P)f-®dedt — SS” Vo, Odedt

y—0 Jo

in view of (1.2), or equivalently

lim Hg pXdedt = STSD pXdadt

v—0

with X = div @, since @(x, t) vanishes on the boundary 0R2. Now let
D={XeLl}2x(0, T)); X=div®, & L*0, T; W*(2))} and let D' denote
the orthogonal complement of D in L*(2x (0, T)). Then L*2x(0, T)) =
D@ D*, D being the closure of D, and we easily infer that D* contains
only the functions independent of the variable xz. By our assumption
(1.5), the above relation therefore holds for every element in L*2 x (0, T")),
and the proof of Theorem 2.2 is thus complete.

3. Solonnikov’s integral representation. Let 2,={xe®;inf, .,, |z —
y| > 6} and let there be given a compact subset V of 2. Taking o
sufficiently small we shall suppose that V is in £,;. Let {(x) be a C~-
function which is equal to unity on 2,, and vanishes identically outside
2, Weput w, = Cv,, q, = {p,, and regard these as functions on E;x[0, T']
with supports in 2,x[0, T]. Now multiplying (1.1) by {, we obtain a
system of equations in E,x[0, T
Dw, — vAw, + Vq, ={f + g,
3.1) divw, = V¢-v,,
w/,-, = Ca,
where g, denotes the vector —2v >}3_, D,{D,v, — vAlv, + p,V{. Thus, we
may think of (w,, q,) as the solution of this Cauchy problem. Let
K(x) = —1/An |« ],
(dmyt) 3 exp(— |z |*/4vt) for ¢ >0,
for t<O0,
T, 1) = {Tus(@ Dhissae = D, I — Hess(T, x, K, 1)

(3.2) I'(z,t) =

where I is the 3 x 3 unit matrix and Hess (I", *, K )(x, t)={DiD,-S I'(x—y,t):
K(y)dy},< j<s With =, denoting the convolution with respect t(faac—variables.
In the following we also use symbol * to mean the convolution in (z, t)-
variables. Note here that K(x), I',(x, t) are the so-called fundamental
solutions of the Laplacian A and the heat equation D, — vA; T, is usually
called Oseen’s tensor.

Owing to Solonnikov [3], we may now represent the solution of the
Cauchy problem (3.1) as
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3.3) {wv(w, t)=Vs(x,t) + I',*,(Ca + b)(x, t) + T, +&F + 9,)x, t),

' 0.z, t) = Aiv(K =, (Cf + 9.))(x, t) — Ds,(z, t) + vAs,(z, t),
where
(8.4) s, t) = K=*,(,-VQ(x, t) = (—1/47r)SE3Iw — Y| vy, t)-VE(y)dy

and b(x) = —Vs,(x, 0); for a vector function u = (u,, u,, u;) we agree that
I, x,, K=x,--- act componentwise and T,*u means (33—, T,i; * %;);<isse
The proof of Theorem 1.1 is thus reduced to the investigation of various
terms involved in this formula. Before proceeding we provide some
lemmas, most of which are fairly well known.

LEMMA 3.1. Let 2, 2" be bounded open sets in E, and let f(x) be in
LXQ). If
w@) = | 1o - ylrway,

then u(x) € W Q") and the following estimate
lullweee, = CQ, Q)| f |22

holds with a constant C(Q, 2') depending only on 2, 2'.
LEMMA 3.2. Let 2 be an open set in E; and let f(x) be in LY Q). If

u(x, t) = Sg I'(x—y, t)f(ydy,
then

Hu,,(t)HLz(Ea) = 1 f 2

for 0<yv=1land 0<t =T, and when v—0, u xr, t) converges to f(x)
n LA(Q) uniformly in t€ (0, T]. If in addition fx) e C*(V) in a compact
subdomain V of 2, then as vy — 0 every spatial derivative Dzu,(x, t) con-
verges to Dif(x) uniformly for €V and te(0, T].

LEMMA 3.3. Suppose that 2 is an open set in E, and let
T
(X, t) = S S r(x—uy,t—1)f(y, t)dydr
0JR2

with f(x, t)Te L}2x(0, T)). Then as y—0, u,(x, t) converges strongly to the
Function S f@, D)de in L2 %0, T)).
0

Proor. Write the restriction u,|ox(,r as I', o(f). It is sufficient to
show (1) that the operator I', , is bounded in L*2x (0, T)) independent
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of ve(0,1], and (2) that as v — 0, I, (f)(x, t) therein converges to
t
flx, 7)dz for a dense subset of functions f. Now, (1) follows immedi-
0
ately from the estimate in Lemma 3.2. To see (2), we let f be any
continuous function on [0, T'] with values in C3(R2), so that as a function
of = the support of f(x, t) is contained in a fixed compact subset V of Q2
for each te[0, T']. If Q' denotes any bounded open set in E, including
V, then by Lemma 3.2, S ' (x—y,t—17)f(y, t)dy converges, as v — 0,
Q2
to f(x, ) uniformly for z in 2’ and for ¢,z with 0 <z <t < T; on the
other hand, the integral converges to zero also uniformly for x in E,\ 2',
since we have |['(x—y, t—7)|<Cexp(—7/v) for 0<v<1, (2, y) e ENQ' XV
and 0 <7<t < T with constants C, v depending only on dist (V,ta.Q') and
T. From this, clearly follows the convergence of I, ,(f)(x, t) to S fle, T)dr
0

in L*(2x (0, T)) for the functions f under consideration, which constitute
its dense subspace. Thus we have (2), and therefore the lemma.

LEMMA 3.4. If 2 is a bounded open set in E,, and h(x, t;y, 7) is a
bounded fumnction for x, y im 2 and t, = in (0, T), then the integral
transform

e, 1) = (| 1y, 1o — yl1t = o1y, Ddyde

with a <1, B3< 3, gives us a completely continuous operator H in
LXQ2x (0, T)).

PrOOF. Let 7.(s) (0 <e =1) be a function on the reals such that
7.(s) =1 for s = ¢ and 0 for s < ¢ and let

Hw ) = ') h, 6y, (e — Dt — 2 Dla—y [ |t—c[f(y, D)dydz .

The operator H, is clearly completely continuous in L*(Q2 x (0, T')); further,
a simple computation gives the estimate

“(H — He)f“Lz(QX(O,T)) = Cmax(e*, el_a)HfHLZ(aX(O’T”

with a constant C independent of ¢, so that as operators in L2 x (0, T)),
we have H = lim,_, H.. As is well known, the complete continuity of H
then follows.

4. Proof of Theorem 1.1. Recall that { is a smooth function such
that {(x) is equal to unity on 2, and vanishes identically outside £2,.
Thus V¢ has its support in the closure of w, = 2,\ 2,;.

Let us now consider the convergence for v —0 of various terms of
Vlrxon = Wlyxomn appearing in (3.3). We first examine
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Vae, ) = (—~14m)|_V.lz — y[*(VE-0)(W, tidy -

Here, by Theorem 2.1, v, is in C([0, T']; L*(R)) with || v,(¢)]|L2(ey uniformly
bounded by a constant for 0 < v =<1 and 0 <¢ £ T, and by Theorem 2.2
v,(t) converges weakly in L*2) as vy —0 for every t€[0, T]. Now the
kernel V,z — y|™ of this integral transform is of class C* when (x, %)
is in Vxw,. Thus Vs,(t) converges strongly in L*Q2) for each te[0, T]
and we also have ||Vs,(f)| ey, < C with a constant C independent of
v€(0,1] and t€[0, T]. By a Lebesgue theorem then follows the strong
convergence of Vs, in L}V x (0, T)).

The convergence of I, *,(Ca + b)(x, t) in L*(Vx(0, T)) is essentially
implied by Lemma 3.2, since {a is in L*E,) by assumption and b(x) =
—Vs(x, 0) = (1/477:)SE V. x — y|"(VC-a)y)dy is also in IXE,) by Lemma
3.1 combined with the fact that b(x) = O(1/|z[?) for |z| — co.

We now pass on to considering the terms involving Oseen’s tensor:
T, =TI+ Hess(I',*,K). Put

@, t) = (WADV div | o — y|"(CHw, Oy .

Since fe LX(2x(0, T)), it follows that fe L*E,x(0, T)) by Lemma 3.1
and by f(x, t) = O1/|x|®) for |x|— . Now, by a change of the order
of integration we may express Hess(I", *, K) * ({f) as I',»f. Hence,

T,x U, ) = || o — v, t = 0F + Dy, Ddydr .

Thus T, *{f converges strongly to St(Cf(z') + f(z))dr in LXVx (0, T)) as
y — 0, by Lemma 3.3. ’

To deal with T, x g, we first note that the vector g, = —2v 33, D,.{D,v,
—vAlv, + p,V{, having support in w;, converges weakly to p,V{ in
L(2x%x(0, T)) for y—0 by Theorem 2.2. Now take a C=-function 7 on
E, such that »n(x) =1 on 2,, and =0 outside £2,,, If z varies in V, we
may then write:

Tog0m 6) = || 1w~ 2t - 0o odede

@5

+amm|| (], , Hessr@—vt—o0 - 7)

0

x|y — z]‘ldy>gy(z, 7)dzdr
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r
+amm| | (], 1@ - vt — OHess,(wly — 2y
— Hess, |2z — z|“>g,(z, T)dzdt
+ (am)| | Hess.|z — 219,z Odade (=L, + Lo+ Lo+ LJ).
0Jwg

Here if (x, 2) is in Vxw, (VCQ,), 0 <y =<1and 0 <t < T, then we have
constants C, 7, such that | ,(x — 2, t)| < Cexp(—7d°), and also that

Hess, I'(x — ¥, t — 7)1 — )|y — zl“dy’ < Cexp(—79% .

SE3\[)35
These estimates clearly show that I, ,(x, t), I,,(x, t) converge to zero in
L*(Vx(0, T)). Further, by Lemma 3.2, one sees that (1/47r)§ r'(@x—y,

t — 7)Hess,(n(y)|y — 2| )dy converges as vy —0 to (1/4w)Hess, |x —2z|™ in

C~-topology, or in particular, uniformly for (x, z) in VxXw, and for 0 <
<t =T, since n(y)|ly — z|™" is of class C~ for (y, 2) in 2, Xw,;. Thus,
I, o(%, t) converges to zero in LV x(0, T)). Concerning I,,, it is clear

T
that the integral transform g — S Hess, |t — z|'g(z)dz is a completely
0Jo

continuous mapping from L*w, X (0, f’)) into L*(Vx (0, T)). Therefore as
y—0 I,, converges strongly in L*(Vx (0, T)) since g, converges weakly
in L¥w,;x (0, T)).

As regards the pressure, or its fractional integration I°p,|, o =
Iq,|yx0m With 0 < @ <1, if we write I°q, as J,, + J,, + J,, in the order
corresponding to the three terms in (3.3), then

T, ) = UT@)| (¢ = 0 div(K +, CF + g.)a e

- S S lx — y |t — | h(, t; ¥, T)-(CF + 9,)(y, T)dydr

where h(zx, t; ¥, 7) is a bounded vector function for (x, t), (¥, ) in 2 x][0, T,
and by Lemma 3.4, there follows the convergence of J,, in L}V x (0, T))
as y— 0. The other terms J,,, J,; can be treated in a similar way by
recalling the weak convergence of D,v, in Theorem 2.2 and the uniform
boundedness of v'*||v,||;20.r;w1.2(), in Theorem 2.1. The proof of Theorem
1.1 is thus complete.

5. Remarks. If we suppose in (1.1) the solution (v, p,) to be suf-
ficiently smooth near the boundary, we naturally obtain the so-called
compatibility conditions on a(x), f(x, t) and on their derivatives for x €09,
depending on the degree of smoothness we require for the solution. For
details we refer the reader to [3], and we here assume that such a
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compatibility condition, either in the classical or in a generalized sense,
is always satisfied for a(x), f(z, t), according to the situation. In view of
regularity results [3], if we assume the data a, f sufficiently smooth, then
we may obtain as much regularity as desired for v,, p,; correspondingly,
we may state results similar to Theorem 1.1 in a stronger form. We
here present such a result without proof, this being analogous to the
proof of Theorem 1.1.

THEOREM 5.1. If ac HQ)N W*H%(Q) and Dif € L0, T; W**2(Q)) for
01k, k being an integer =1, then there exists a unique solution
(v, »,) of (1.1) such that Dit'wv,e L*0, T; W* 2*Q)) and DVp,e L¥0, T,
w2 (@) for 0<I<k. Further, when v—0, DYv,(t) converges, uniformly
in tel0, T], to Di'vy(t) in the space W** 2" V) for 0 <I' <k —1 and
D!'Vp,(t) also converges to D.'Vp,(t) in W*2"*(V) for each tc[0, T], where
V is any compact subset of 2.
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