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1. Introduction. Let fl be a bounded domain in Es with smooth
boundary 8Ω and let T > 0 be fixed. For a vector function ΌV =
Ĉ ,i> ̂ *,2> ̂ v.s) and a scalar function pv representing the velocity of the
fluid and the pressure we consider in βχ[0, T] an initial-boundary value
problem for the linearized Navier-Stokes equation:

(Dtυu -

(1.1) divi ^ O ,

Ujί=O = « , V\gΩ = 0 ,

where a(x), f(x, t) are given vector functions and v is the so-called viscosity
coefficient.

The existence and uniqueness results for (1.1) are now well known
(see, for instance, [1]); whereas the behavior of the solutions, as the
viscosity coefficient v tends to zero, is not yet fully understood, and we
wish to study such a question in this note.

We first introduce our notation. Let L\Ω) be the Hubert space of
square integrable real functions on Ω and let Wk}2(Ω) be the Sobolev space
of functions with square integrable derivatives up to the order k in L2(Ω).
For vector valued functions v = (v19 v2, v8) the corresponding spaces are
denoted by L\Ω) and Wh'\Ω). The norms will be denoted by || ||L2(fl),
|| Wwk.2^ etc. Let C~(Ω) = {v = (v19 v2, v*); ^ e C ^ ΰ ) , supp(v t)cΩ, ί =
1, 2, 3} and C^a{Ω) = {veC~(Ω); άivv = 0}. We define L2

σ(Ω) and H(Ω) as
the closures of C^σ{Ω) in U{Ω) and Wlf2(Ω). The orthogonal projection from
L\Ω) (resp. L2(i2x(0, Γ)) = L2(0, Γ; L\Ω))) onto L2

σ(Ω) (resp. L2(0, T; L2

a(Ω)))
will be denoted by Pσ.

We now assume in (1.1) that aeH(Ω) and feL\Ωx(0, T)). Then
as will be seen in the next section, we have the solution (vv, pv)y which
a s v ^ O converges weakly in the Hubert space L\Ωx (0, T))xL\Ωx (0, T))
to the solution (ι?0, p0), given by
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\ΌO(X, t) = a{x) H
(1.2)

tVPoto «) = (/- W(», *)
of the equations:

(1.3) div ι?0 = 0 ,

obtained from (1.1) by setting v = 0 and eliminating the physically re-
quired boundary condition due to the viscosity of the fluid.

Our purpose here is to show that the solution (pu, pu) actually enjoys
a better convergence property in a domain strictly away from the
boundary.

We introduce a partial fractional integration

(1.4) I«pXx, t) = (l/Γ(α))Γ (ί - τy-'pAx, τ)dτ (a > 0)
Jo

with respect to the time variable ί, where Γ(a) is the Gamma function;
also, in this note we always suppose that the pressure function pu(x, t) is
subjected to the condition

(1.5) [ pv(x, t)dx = 0

for almost all t in [0, T], so that pv(x, t) is essentially uniquely determined
from Vpu(x, t).

Our result is now as follows.

THEOREM 1.1. If ae H{Ω), f e L\Ω x (0, T)) and if V is an arbitrary
compact subdomain of Ω, then as v —> 0

(1) υv converges strongly to v0 in L2(Vx{0f T)),
(2) for any a > 0 I"pv converges strongly to Iap0 in L2(Fx(0, Γ)).

This result can be stated in a stronger form by assuming the data
α, f sufficiently smooth. Such a result will be presented in Section 5.

2 Weak convergence of solutions for vanishing viscosity. Ac-
cording to [1], we have the following existence theorem:

THEOREM 2.1. Assume that aeH(Ω), feL\Ωx(0, T)) and (1.5) for
pu. Then, there exists a unique solution (vuf pu) of (1.1) such that
vveU(0, T;W2>\Ω)), DtυueL\0, T; L2

σ(Ω)), p»eL\0, T W^Ω)), and more-
over that vu(t) e C([0, T]; H(Ω)), i.e., vu(t) is continuous on [0, T] with
values in H(Ω). For this solution we have the following estimates:
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3

/O 1\ II Π « II _i_ ιi/2 V
\^ # J -/ II -Lftuι> \\L2(ΩX(O,T)) I V 2LΛ

3=1 3

) ^ C(\\f\\L2{Qx(0ιT)) + ]Σ || Dy

( 2 . 2 ) I k W I k * , ^ C ( | | f | | L . ( l ϊ x ( o f Γ ) J + \\a\\L2{Ω))

for t e [0, T] where D3 = 9/9â  αwcZ C is a constant independent of v.

Now, concerning the weak convergence, we have

THEOREM 2.2. Let the assumption on a, f, pu be the same as in
Theorem 2.1, and let (Ό09 pQ) be the solution of (1.3) given by (1.2). Then,

( 1 ) the vector vv (resp. Dtv^ pj) converges weakly to v0 (resp. DtvQ, p0)
in L2(i2x(0, T)) as v->0.

( 2 ) For every t e [0, T] the vector υυ(t) converges weakly to vo(t) in
L2

σ(Ω) as v->0.

PROOF. Let Φ be an arbitrary continuous function on [0, T] with
values in C^a{Ω). We then have the identity

Π Dtυ^Φdxdt + v έ Π D c DjΦdxdt = ¥[ Pσf-Φdxdt
JO JΩ j=l JO JΩ JO JΩ

where the dot means the pointwise scalar product of two vectors.
From the estimate (2.1), follows therefore

lim Π Dtvu Φdxdt = Π Pf Φdxdt .
v-»0 JθJi2 J θ J β

By continuity, this relation holds for every ΦeL 2(0, T; L2

σ(Ω)); also for
every ΦeL 2(0, T; L2(Ω)), since both Dtvu and Pσf belong to L2(0, T; L2

a(Ω)).
Hence Dtvv converges weakly to Dtv0 = Pσf in Γ ( β χ ( 0 , T)) as v—>0.

Let ΨeL2(Ω). Then

( ( Π DτvXτ)-Wdxdτ
Ω JΩ JOJΩ

for every £ e [0, T], From the result just obtained there now follows the

S t
Pσf(τ)dτ in L2(Ω), which proves

0

(2). The weak convergence of υy to v0 in L2(Ωx(0, T)) is also clear, since
υχt)eC([0, T];H(Ω))

As regards the pressure pu, we consider the relation

\ Dtvv-Φdxdt + V Σ Π Dfr-Dfidxdt + Γ( Vp^Φdxdt = Π f Φdxdt
0 Jβ J=l Jo Jβ Jo Jί2 Jo Jβ

which holds for every ΦeL 2(0, T\Wl\Ω)). Here Wl\Ω) is the closure
of C™{Ω) in TF1>2(i3). We now let y->0 in this relation. Then since Dtυv

converges weakly to Dtv0 = Paf and the second term vanishes in the
limit, we obtain
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l imΠ Vp^ Φdxdt = Π i1 ~ Pa)f Φdxdt = Π ^P
v-+o JO JΩ JO JΩ JO JΩ

in view of (1.2), or equivalently

S TC CTC

\ vXdxdt = I \ pQXdxdt
0 J β JO J/2

with 1 = div Φ, since Φ(x, t) vanishes on the boundary dΩ. Now let
D = {XeL2(i2x(0, Γ)); % = divΦ, ΦeL2(0, Γ; T 0̂

1>2(β))} and let DL denote
the orthogonal complement of D in L2(i2x(0, T)). Then L2(i2x(0, Γ)) =
ΰ φ ΰ 1 , 5 being the closure of D, and we easily infer that D1 contains
only the functions independent of the variable x. By our assumption
(1.5), the above relation therefore holds for every element in L2(i2x(0, T)),
and the proof of Theorem 2.2 is thus complete.

3. Solonnikov's integral representation. Let Ωδ = {xe Ω; inf^aβ \x —
y\ > δ} and let there be given a compact subset V oΐ Ω. Taking 3
sufficiently small we shall suppose that V is in Ωiδ. Let ζ(x) be a C°°-
function which is equal to unity on Ω2δ and vanishes identically outside
Ωδ. We put wv = ζvu, q» = ζpv, and regard these as functions on E3x[Q, T]
with supports in Ωδx[0, T]. Now multiplying (1.1) by ζ, we obtain a
system of equations in E3x[0, T]:

(3.1)

Dtwv -

divu?, = Vζ i?, ,

where gv denotes t h e vector — 2v Σ 5 = i DjζDάυv — vΔζι?v + pvVζ. Thus, we

may think of (wuf qu) as t h e solution of this Cauchy problem. Let

•K{x)= - l / 4 τ r | a j | ,

I ί(4πyί)-3 / 2 e x p ( - 1 x \η±vt) for ί > 0 ,

ί u(x, t) — j
10 for ί < 0 ,

.TΛα, ί) - {Tvij(x, ί)}^ l f^8 - Γp(a;, ί)I - Hess(Γv *.^)(», «) ,

where 7 is the 3x3 unit matrix and Hess (Γ, *aK)(x, t) = {DίDΛ ΓXx—y, t)
J#3

K(y)dy}1^ί)j^ with *β denoting the convolution with respect to ^-variables.
In the following we also use symbol * to mean the convolution in (x, ί)-
variables. Note here that K(x), ΓXx> t) are the so-called fundamental
solutions of the Laplacian Δ and the heat equation Dt — vA; Tv is usually
called Oseen's tensor.

Owing to Solonnikov [3], we may now represent the solution of the
Cauchy problem (3.1) as
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firv(a?, ί) = Vsv(#, ί) + Γy *. (ζα + 6)(α, ί) + Γp * (ζf + Λ)(α, t) ,

k ( s ί) d i v ( j : * « 7 + Λ))(a;, t) - DA(a?, t) + vΔβy(aj, t) ,

where

(3.4) sAx, t) = ΛΓ*.(^ Vζ)(α?, ί) = (-l/4τr)( | s - v\-ιυAv, t) Vζ(y)dy
J#3

and b(x) = — Vsv(ίc, 0); for a vector function w = (ulf u2, us) we agree that
Γ» *x9 K *x act componentwise and Tv * u means (Σ5=i ϊ l ϋ * %)i^^3
The proof of Theorem 1.1 is thus reduced to the investigation of various
terms involved in this formula. Before proceeding we provide some
lemmas, most of which are fairly well known.

LEMMA 3.1. Let Ω, Ω' be bounded open sets in Ez and let fix) be in

L\Ω). If

u(χ) = \ \χ - y\"1f{y)dy ,

then u(x) e W2>2(Ωf) and the following estimate

\\u\UhΩf) £C(Ω,Ω')\\f\\L*{Ω)

holds with a constant C(Ω, Ωr) depending only on Ω, Ω\

LEMMA 3.2. Let Ω be an open set in E3 and let f(x) be in L2(Ω). If

uAx, t) = I ΓAx - y, t)f{y)dy ,
JΩ

then

for 0 < v ^ 1 and 0 < t ^ T, and when v —> 0, uAx> t) converges to f(x)
in L\Ω) uniformly in te (0, T]. If in addition f(x) e C°°(V) in a compact
subdomain V of Ω, then as v -»0 every spatial derivative D£uA%, t) con-
verges to D;f(x) uniformly for xe V and t e (0, T].

LEMMA 3.3. Suppose that Ω is an open set in E3 and let

uAXf t) = \ \ ΓA% — Vft- τ)f(y, τ)dydτ
JO JΩ

with f(xf t) e L\Ωx (0, T)). Then as u->0, uAx, t) converges strongly to the

function V fix, τ)dτ in L2(i2x(0, T)).
Jo

PROOF. Write the restriction uu\Ωx(OtT) as ΓV ) f l(/). It is sufficient to
show (1) that the operator ΓUtQ is bounded in L 2 (βχ(0, T)) independent
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of v e (0, 1], and (2) that as v —> 0, ΓU}Ω(f)(x, t) therein converges to

S f(x, τ)dτ for a dense subset of functions /. Now, (1) follows immedi-
0

ately from the estimate in Lemma 3.2. To see (2), we let / be any-
continuous function on [0, T] with values in C™(Ω), so that as a function
of x the support of f(x, t) is contained in a fixed compact subset V of Ω
for each t e [0, Γ]. If Ωf denotes any bounded open set in Es including
V, then by Lemma 3.2, \ Γv(x — y, t — τ)f{y, τ)dy converges, as v —> 0,

JΩ

to f(x, τ) uniformly for x in Ωf and for t, τ with 0 < τ < t ^ T; on the
other hand, the integral converges to zero also uniformly for x in EB\Ω',
since we have \Γu(x—y, £-r)|^Cexp(-7/v) for 0<v<:i, (x, y)eEs\Ω'x V
and 0 < τ < t <̂  T with constants C, 7 depending only on dist (V9 dΩf) and

S t
f(x> τ)dτ

0

in L\Ω x (0, T)) for the functions / under consideration, which constitute
its dense subspace. Thus we have (2), and therefore the lemma.

LEMMA 3.4. If Ω is a bounded open set in E3, and h(x, t; y, τ) is a
bounded function for xf y in Ω and t, τ in (0, Γ), then the integral
transform

(Hf)(x, t) - Π h(x, t;y,τ)\x-y\~β\t- τ\-*f(y, τ)dydτ
JO JΩ

with a < 1, β < 3, gives us a completely continuous operator H in
L2(J2x(0,

PROOF. Let 7]ε(s) (0 < ε ̂  1) be a function on the reals such that
η£s) = 1 for s ^ ε and 0 for s < ε and let

(HJXx, t) = Π h(x, t y, τM\x-y\)ηε(\t-τ\)\x-y\-β\t-τ\-af(yf τ)dydτ .
JO JΩ

The operator Hε is clearly completely continuous in L2(βχ(0, Γ)); further,
a simple computation gives the estimate

\\(H-Hε)f\\L2{ΩX(0>T)) ^ Cmax(ε3-*, ^- a ) | |/ |U 2 ( f l x ( 0 > r ) )

with a constant C independent of ε, so that as operators in L\Ω x (0, T))f

we have H = lim£_0 He. As is well known, the complete continuity of H
then follows.

4. Proof of Theorem 1.1. Recall that ζ is a smooth function such
that ζ(x) is equal to unity on Ω2δ and vanishes identically outside Ωδ.
Thus Vζ has its support in the closure of ωδ = Ωδ\Ω2δ.

Let us now consider the convergence for v-^0 of various terms of
v»\vχ(o,τ) = wv\vχ(o,τ) appearing in (3.3). We first examine
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Vsv(x, t) = (-l/4ττ)ί V.I a? - y\-\Vζ.vv){y, t)dy .
Jωδ

Here, by Theorem 2.1, vu is in C([0, Γ]; L2(J2)) with || Όu(t)\\L2lQ) uniformly
bounded by a constant for 0 < v ^ 1 and 0 ^ ί ^ T, and by Theorem 2.2
i;y(ί) converges weakly in L\Ω) as D ^ O for every te[O, T], Now the
kernel VJOJ — y\~ι of this integral transform is of class C°° when (x, y)
is in Vxωδ. Thus Vβy(ί) converges strongly in L2(β) for each ίe [0 , Γ]
and we also have || Vsy(<) ||L2(F) ^ C with a constant C independent of
v e (0, 1] and t e [0, T]. By a Lebesgue theorem then follows the strong
convergence of Vsv in Z,2(Fx(0, Γ)).

The convergence of Γu*x(ζa + &)($, ί) in Z,2(Fx(0, T)) is essentially
implied by Lemma 3.2, since ζa is in L\EZ) by assumption and b(x) =

-VβΛa, 0) = (l/4ττ)^ V. |a?- y\~1(Vζ-a)(y)dy is also in Z , 2 ^ ) by Lemma

3.1 combined with tiie fact that b(x) = O(l/|ίc|2) for |a?|-> °°.

We now pass on to considering the terms involving Oseen's tensor:
Tv = ΓJ + Hess(Γv *x if). Put

fix, t) = (l/4ττ)V div ( I α - » rXCOd/, t)d»
JΛ 3

Since feL\Ωx(0,T)), it follows that feL\Ezx(0,T)) by Lemma 3.1

and by f(x, t) = O(l/|ίu|3) for |cc|—>oo. Now, by a change of the order

of integration we may express Hess(Γv *ΛK) * (ζf) as Γ v*f. Hence,

•f t) = Π Λ(α - y, t - τ)(ζf + 0(2/, r)d2/dr .
Jθ J E%

Thus Γp*ζf converges strongly to \\ζf(τ) + f(τ))dτ in L2(Fx(0, Γ)) as
Jo

v—>0, by Lemma 3.3.
To deal with Tv * firy we first note that the vector gv= —2v Σ5-i DόζDάvv

— vΔζvu + £>vVζ, having support in ωδ, converges weakly to p0Vζ in
L2(Ωx(0, T)) for v->0 by Theorem 2.2. Now take a C°°-function 37 on
Es such that 37(05) = 1 on Ωu and = 0 outside Ω2δ. If & varies in V, we
may then write:

Tv * firv(ίc, t ) = \ \ Γv(x — z , t — τ)gv{z, τ ) d z d τ
Jθ jωδ

/C

X ! 0/ /γ |~^ /7/j/ 1/if -̂y τ\c\/yf]'T
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— Vft —
Ω2δ

— Hess. | a — 21"1 W θ , τ)dzdτ

(l/4π)Π
JO Jω

+ (l/4π)Π Hess. I a? - z\~xglz, τ)dzdτ ( = / M + IUt2 + /V)3 + I M ) .
JO Jω3

Here if (x, z) is in Vxωδ ( F c β J , 0 < y <£ 1 and 0 < ί <: Γ, then we have
constants C, 7, such that \Γu(x — z,t)\ ^ Cexp( —τδ2), and also that

IL ^ Cexp(-7δ2) .• v\*v — t/j t/ — z j\± — JKu))\ U — z ay
jEΆ\ΩSδ

These estimates clearly show that IUtl(x, t), IV)2(x, t) converge to zero in

L\Vx(0, T)). Further, by Lemma 3.2, one sees that (l/4ττ)( Γv(x - y,
JΩ2δ

t — z)Kessy(η(y)\y — z\~x)dy converges as v—>0 to (l/4ττ)Hess. | x — z\~λ in
C°°-topology, or in particular, uniformly for (x, z) in Vxωδ and for 0 ^
τ < t 5j T, since η(y)\y — z\~x is of class C°° for (y, z) in Ω2δxcoδ. Thus,
I>,i(%9 t) converges to zero in L2(Fx(0, T)). Concerning I M , it is clear
that the integral transform g-^\ \ Hess,, \x — z\~1g(z)dz is a completely

Jθ Jωδ

continuous mapping from L\ωδx(Of T)) into Z,2(Fx(0, T)). Therefore as
v—>0 IvΛ converges strongly in Z,2(Fx(0, T)) since gv converges weakly
in LXωδx(0, T)).

As regards the pressure, or its fractional integration Iapi,\vx{Q,τ) —
IaQu\vχ(o,τ) with 0 < a ^ 1, if we write Iaqv as Jvl + Jv>2 + Jv>8 in the order
corresponding to the three terms in (3.3), then

Jv &, t) = (l/Γ(a))\T (ί - z)"-1 div(K *. (ζf + gy))(χ, z)dz
Jo

= Π l» - V\~2\t - τl-^a?, t; y, τ) (ζf + flrj(y, r)dydr
Jθ JΩ

where h(x, t; y, z) is a bounded vector function for (x, ί), (y, r)ini2x[0, Γ],
and by Lemma 3.4, there follows the convergence of JVtl in L2(Fx(0, Γ))
as v—>0. The other terms Jv2, JvS can be treated in a similar way by
recalling the weak convergence of Dtvv in Theorem 2.2 and the uniform
boundedness of v1/2||rv||L2(0tΓ;^i,2(fl)) in Theorem 2.1. The proof of Theorem
1.1 is thus complete.

5. Remarks. If we suppose in (1.1) the solution (»„, pv) to be suf-
ficiently smooth near the boundary, we naturally obtain the so-called
compatibility conditions on α(cc), f(x, t) and on their derivatives for x e dΩ,
depending on the degree of smoothness we require for the solution. For
details we refer the reader to [3], and we here assume that such a



LINEARIZED NAVIER-STOKES EQUATIONS 25

compatibility condition, either in the classical or in a generalized sense,
is always satisfied for a(x), f(x, t), according to the situation. In view of
regularity results [3], if we assume the data α, f sufficiently smooth, then
we may obtain as much regularity as desired for vv, pv; correspondingly,
we may state results similar to Theorem 1.1 in a stronger form. We
here present such a result without proof, this being analogous to the
proof of Theorem 1.1.

THEOREM 5.1. If a e H(Ω) n W2k+1>\Ω) and D\f e L2(0, T; W2k~2l'\Ω)) for
0 ^ I ^ k, k being an integer ^ 1 , then there exists a unique solution
(Vu,P>) of (1.1) such that Dl

t

+1v>eL2(0, T; W2k~2l'2(Ω)) and Dι

tVpveL\0, T;
W2k~2h\Ω)) for O^l^k. Further, when v—>0, Dl'vXt) converges, uniformly
in te[0, Γ], to Dι

t'v0(t) in the space w**-*-*'.*(V) for 0 ^ V ^ k - 1 and
D\'Vp£t) also converges to D\'VpQ(t) in W2k~2lf'\V) for each t e [0, Γ], where
V is any compact subset of Ω.
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